
Cactus Representation of Minimum Cuts:
Derandomize and Speed up

Zhongtian He
Princeton University

Shang-En Huang∗

Boston College
Thatchaphol Saranurak†

University of Michigan

Abstract

Given an undirected weighted graph with n vertices and m edges, we give the first determin-
istic m1+o(1)-time algorithm for constructing the cactus representation of all global minimum
cuts. This improves the current n2+o(1)-time state-of-the-art deterministic algorithm, which can
be obtained by combining ideas implicitly from three papers [Kar00, Li21, Gab16]. The known
explicitly stated deterministic algorithm has a runtime of Õ(mn) [Fle99, NNI00]. Using our
technique, we can even speed up the fastest randomized algorithm of [KP09] whose running
time is at least Ω(m log4 n) to O(m log3 n).

∗Supported by NSF Grant No. CCF-2008422.
†Supported by NSF CAREER grant 2238138.

ar
X

iv
:2

40
1.

10
85

6v
1

 [
cs

.D
S]

 1
9

Ja
n

20
24

Contents

1 Introduction 1
1.1 Related Works . 2

2 Preliminaries 3
2.1 Crossing Mincuts, Uniqueness of Minimal Mincuts 3
2.2 Cactus: Representation of all Global Mincuts . 4

3 The Framework of [KP09] and Our Improvement 4

3.1 2-Respecting Mincuts and Tree Packing . 4
3.2 Cut Labels and Three Types of 2-Repecting Mincuts 5
3.3 Computing Cut Labels Efficiently . 6
3.4 Technical Contribution . 8

4 Useful Tools 9

5 Comparable 2-respecting Minimal Mincuts of Edges 11
5.1 Reduction to Computing Lower Vertices . 11
5.2 Computing the Lower Vertex for each Edge . 14

5.2.1 Computing Highest Partner of each Vertex 15
5.2.2 Main Algorithm for Computing Lower Vertices 15

6 Incomparable 2-respecting Minimal Mincuts of Edges 20
6.1 Minimum v-Precuts and P -Outer Minimum v-Precuts 22
6.2 Algorithm Description . 23
6.3 Implementation . 25
6.4 Correctness . 27
6.5 Runtime Analysis . 28

7 Putting Everything Together: Proof of Lemma 3.5 29

A Constructing Cactus from Minimal Mincuts 32
A.1 Warmup I: Assumptions and Preprocessing . 33
A.2 Warmup II: Nesting Relation Tree . 33
A.3 Chains and Chain Certificates . 35
A.4 Reducing Cactus to Hierarchical Representation of Global Mincuts 38
A.5 Constructing a Hierarchical Representation . 40
A.6 Efficient Implementation of Algorithm 4 . 43

B Minimal Mincuts of Vertices: Proof of Lemma 3.4 45

B.1 On the Missing Case in [KP09] . 45

B.2 Our Algorithm . 46

C The Algorithm from [KP09] Runs in Ω(m log4 n) Time 48

1 Introduction

The global minimum cut problem has been studied for decades. For an undirected, weighted
graph G = (V,E,w), the global mincut of G is a minimum weight subset of edges that disconnecting
the graph by removing them. Lots of beautiful works on this problem appeared in the last century
[GH61, HO92, NI92a, NI92b, SW97], and then a series of work utilizing randomization [Kar93, KS96]
finally led to an near-linear time Monte Carlo algorithm by Karger [Kar00] in 1996.

It turns out that there is a cactus representation of all (possibly Θ(n2)) minimum cuts using
an O(n)-edge cactus graph introduced by [DKL76] (see also [FF09]). The cactus representation
of global mincuts has found several algorithmic applications: it is a key subroutine for several
edge connectivity augmentation algorithms [Gab91, NGM97, CLP22a, RZZ23] and also in several
dynamic mincut algorithms [Hen95, GHT18]. Many algorithms were designed to find the cactus
representation of minimum cuts. [KT86] outlined the first algorithm for constructing the cactus that
takes Θ(n3) time. Their algorithm was parallelized by [NV91] and refined by [NK94]. Later on, faster
algorithms were developed by [Gab91, KS96, NNI00] and [Fle99] where the latter two algorithms
running in Õ(mn) are the fastest explicitly stated deterministic algorithms for computing cactus
representation. Finally, [KP09] showed that the cactus representation problem is near-linear time
computable by randomized algorithms as well.

All these near-linear time algorithms mentioned so far have one drawback: they are Monte Carlo
meaning that they can err. It was a big open problem if there are near-linear (or almost-linear1)
time deterministic algorithms for computing global mincuts and even computing cactus. After a
series of works [KT18, HRW20, Sar21] and [LP20], Li recently showed an m1+o(1)-time determin-
istic algorithm for computing a global minimum cut [Li21], by derandomizing the construction of
the skeleton graph which is the single randomized procedure in Karger’s near-linear time mincut
algorithm [Kar00].

A natural question is that, given that we can deterministically compute a global mincut, whether
we can also compute a cactus representation for all global mincuts as well. It turns out that Li’s
deterministic skeleton graph construction [Li21] applied to Karger and Panigrahi’s algorithm [KP09]
is not sufficient. Instead, one may replace the procedure of [KP09] by Gabow’s algorithm [Gab16]
together with Karger’s dynamic programming technique [Kar00], achieving a deterministic n2+o(1)-
time. Recently, Kawarabayashi and Thorup [KT18] and Lo, Schmidt, and Thorup [LST20] success-
fully showed how to construct cactus deterministically in near-linear time, assuming simple graphs.
Nonetheless, the general problem of whether such an algorithm exists for general weighted graphs
is still open.

In this work, we improve the quadratic n2+o(1)-time barrier by showing the first almost-linear
deterministic algorithm for computing the cactus representation of minimum cuts for undirected
weighted graph, which positively answers the open question raised by [KP09]2. Furthermore, using
our technique, we also speed up the best previous randomized algorithm [KP09] by a logrithmic
factor.

1As a convention from the literature [Kar00, Li21], we say a function that is Õ(m) to be near-linear and m1+o(1)

to be almost-linear.
2Actually, they asked if there exists an efficient algorithm to (deterministically) compute a certificate of a cactus

representation, which turns their Monte Carlo algorithm into a Las Vegas algorithm.

1

Theorem 1.1. There are algorithms for computing cactus representation of all (global) minimum
cuts in an undirected weighted graph with the following guarantees

• Deterministic algorithm in m1+o(1) time.

• Randomized Monte-Carlo algorithm in O(m log3 n) time.

This is the first almost-linear time deterministic algorithm for computing cactus. Previously,
the fastest deterministic algorithm takes Ω(mn) by [Gab16, Fle99, NNI00]. The mo(1) factor in our
running time is solely from the overhead of no(1) in the deterministic tree packing algorithm by Li
[Li21]. If this factor was improved to O(polylog(n)), our running time would be Õ(m) too.

By plugging a faster randomized tree packing [Kar00] into our new approach, we obtain a
randomized algorithm that is even faster than the fastest known algorithm by [KP09] which takes
time at least Ω(m log4 n). We discuss this in more details in Section 3.4.

New Development. After we have published the manuscript, a new result by Henzinger, Li,
Rao, and Wang [HLRW24] shows how to deterministically construct in O(m polylog(n)) time a
collection of polylog(n) trees that every minimum cut 2-respects one of the trees. By our reduction,
this immediately that we can deterministically compute a cactus in O(m polylog(n)) time.

Application. Cactus construction has an immediate application to the +1-edge-connectivity aug-
mentation problem defined as follows: given an undirected integer-weighted graph G = (V,E,w)
where w : E → N, compute an edge set E′ of the minimum size such that the minimum cut on
G′ = (V,E ∪ E′) has value λ(G) + 1, where λ(G) is the value of the minimum cut of G. To solve
this problem, one can simply compute a cactus representation of G and then apply in O(n) time
a DFS traversal algorithm from Naor, Gusfield, and Martel on top of the cactus [NGM97, Sec-
tion 3]. Therefore, Theorem 1.1 gives immediately the first m1+o(1)-time deterministic algorithm
and a O(m log3 n)-time randomized algorithms for this problem, improving the previous bound of
Ω(m log4 n) implied by [KP09].3

1.1 Related Works

Deterministic Algorithms. For decades, significant effort has been devoted to devising deter-
ministic algorithms that is as fast as their randomized counterparts. Examples include the line of
work on deterministic minimum edge cut algorithms [KT18, HRW20, Sar21, LP20, Li21], deter-
ministic minimum vertex cut algorithms [Gab06, SY23], and deterministic Laplacian solvers and
approximate max flow [CGL+20]. Each of these deterministic algorithms usually deepens insight on
the problems. Our result extends this line of research and reveals deeper structural understanding
on 2-respecting mincuts (defined later in Section 3.1).

3We remark that if G is an unweighted graph, the +1-edge-connectivity augmentation problem can be solved in
O(m log2 n(log log n)2) time by [HRW20, LST20]. In addition, if the goal is to increase the edge connectivity to a
particular quantity τ in a weighted graph, this variant can also be solved in Õ(m) time by [CLP22b].

2

Faster Randomized Global Mincut Algorithms. Recently, [GMW20] and [MN20] gave faster
randomized algorithms for computing a single global minimum cut in an undirected weighted graph.
Their algorithms run in O(m log2 n) and O(m log2 n+n log6 n) respectively, which improved Karger’s
long-standing O(m log3 n) time algorithm. But their approaches are difficult to generalize to find all
global mincuts. Our algorithm leaves an O(log n) gap between finding one mincut with all mincuts
in randomized setting, which is left for future work.

2 Preliminaries

Let G = (V,E,w) be an undirected weighted graph, with n vertices and m nonnegatively
weighted edges. A cut (X,V \X) (or the cut induced by X, or simply denoted by X if the context
is clear) is a proper partition of V , and the edges across the cut are called cut edges. The weight of
the cut is defined to be the sum of all edge weights across the cut, denoted by C(X) := C(X,V \X).
By extending the above notation we define for any two (not necessarily disjoint) subsets X and Y ,
let C(X,Y) be the sum of weights of edges with one endpoint being in X and another endpoint
being in Y . Notice that an edge with both endpoints in X ∩ Y will be counted twice.

Global Mincuts. The global minimum cut or simply mincut is a cut whose weight is the smallest
among all cuts. Throughout the paper we use λ to denote the weight of any global minimum cut.
We also assume that the value λ is already precomputed [Li21, Kar00, GMW20, MN20].

Minimal Mincuts. Since a cut separates some vertices from any given vertex, throughout the
paper, we will designate an arbitrary but fixed root vertex r ∈ V . After fixing the root, we are
able to characterize the mincuts that separate a vertex or an edge from the root. The size of a cut
(X,V \ X) where r /∈ X is then defined to be the number of vertices in X. Intuitively, for each
vertex v (or an edge e = (u, v)), the most relevant global mincut would be the one that minimizes
the number of the vertices “on the v (or e) side” of the cut. Thus, we have the following definition:

Definition 2.1 (Minimal mincuts). The minimal mincut of a vertex v is the mincut of the least
size separating v from r. If v is not separated from r by any mincut, then its minimal mincut is
null. The minimal mincut of an edge (u, v) is defined similarly except that the mincut must separate
both u and v from r.

2.1 Crossing Mincuts, Uniqueness of Minimal Mincuts

The most important property of minimum cuts along the history should be the submodularity
of crossing cuts. Two cuts (X,V \X) and (Y, V \ Y) are said to be crossing if each of X ∩ Y,X \
Y, Y \X, (V \X) ∩ (V \ Y) is non-empty. With submodularity one can show that:

Lemma 2.2 ([DKL76]). If (X,V \X) and (Y, V \ Y) are crossing mincuts, then each of the cuts
induced by X ∩Y , X \Y , Y \X, and X ∪Y are also mincuts. Furthermore, we have C(X ∩Y, (V \
X) ∩ (V \ Y)) = C(X \ Y, Y \X) = 0.

3

With the crossing property above, we are able to deduce the uniqueness of the minimal mincut
of a vertex (or an edge). This uniqueness property plays an important role in many applications
(closest mincut, left-most mincuts, ...etc) as well as constructing a cactus representation of mincuts.

Lemma 2.3 ([KP09]). If a minimal mincut of a vertex or edge exists, then it is unique.

2.2 Cactus: Representation of all Global Mincuts

Dinitz et al [DKL76] showed that there exists a cactus graph H (every edge belongs to at most
one cycle) with O(n) edges that represents all global mincuts on G. The representation has the
following properties. Each vertex of G is mapped to a node on H. (This mapping could be neither
surjective or injective.) For every edge in H or two edges in the same cycle of H that split all nodes
in H into two parts, the corresponding partition of vertices in G forms a global mincut. Conversely,
for any global mincut in G one can also find a corresponding edge or a pair of edges in H that
represents this mincut.

Although the size of the cactus representation is O(n), it is highly nontrivial to compute such
a representation from G. Karger and Panigrahi [KP09] gave the first randomized Monte Carlo
algorithm that computes a cactus representation in Õ(m) time. Since there can be Ω(n2) many
mincuts (in a cycle, for example), we note that this cactus has to be computed without explicitly
listing all mincuts.

3 The Framework of [KP09] and Our Improvement

Since our improvement is mainly based on the framework of Karger and Panigrahi [KP09], in
this section we introduce the framework and describe our contribution in details.

3.1 2-Respecting Mincuts and Tree Packing

Similar to most of the fastest exact minimum cut algorithms [Kar00, KP09, GMW20, MN20],
our algorithm is based on computing global minimum cuts that 2-respect a spanning tree. Let T
be any spanning tree on G. A cut is said to be k-respecting T if the spanning tree T contains at
most k cut edges. A cut is said to strictly k-respect a spanning tree of a graph if the spanning
tree contains exactly k cut edges. Karger [Kar00] first showed that there exists a collection T of
O(log n) spanning trees in G such that every global mincut 2-respects some spanning tree in T .
Such collection T is also called a tree packing. In the same paper Karger also gave a randomized
Monte Carlo algorithm that in O(m+n log3 n) time computes a tree packing with high probability.4

Recently, Li [Li21] gave the first deterministic algorithm that computes a tree packing of size no(1)

in m1+o(1) time.

Once a tree packing T is found, the task of searching for a global minimum cut can be reduced
to checking all global minimum cuts that 2-respect a spanning tree T ∈ T . We summarize these
useful algorithms computing tree packings in Theorem 3.1.

4Later on, Gawrychowski, Mozes and Weimann [GMW20] give another time bound O(m log2 n), which is faster
on sparse graphs, but we do not exploit this new bound in our paper.

4

Theorem 3.1. Given an undirected weighted graph G, there are algorithms that compute a tree
packing T consisting of

• no(1) spanning trees by a deterministic algorithm in m1+o(1) time, or
• O(log n) spanning trees by a randomized Monte Carlo algorithm5 in O(m+ n log3 n) time,

such that each global mincut 2-respects some tree in T .

Karger and Panigrahi’s algorithm [KP09] reduces the cactus construction problem to computing
the minimal mincuts of all the vertices and edges. Besides designing an efficient algorithm which
computes these minimal mincuts, it is also important to store these minimal mincuts in a succinct
way. Using Theorem 3.1, each minimal mincut 2-respects some tree in T . As long as there is a
way to represent a 2-respecting mincut on a tree using O(log n) bits, each minimal mincut can be
represented efficiently in a total of O(m log n) bits. We refer to these representations as cut labels.

3.2 Cut Labels and Three Types of 2-Repecting Mincuts

Fix a spanning tree T ∈ T with root r. The set of descendants of a vertex v is in a spanning
tree T is denoted by v↓T , and the set of strict descendants of v is denoted by v⇓T , i.e. v⇓T = v↓T \ {v}.
Similarly, the set of ancestors of v in T is denoted by v↑T , and we define v⇑T = v↑T \ {v}. We may
drop the subscript and simply denote the sets by v↓, v⇓, v↑, and v⇑ if there is no confusion.

Consider any 2-respecting cut on T . This cut must intersect with at most two edges on T . In
particular, this cut can be either 1-respecting T or strictly 2-respecting T . In the case where there
are two edges across the cut on T , these two edges may or may not be on the same path from the
root r to some vertex on T . Hence, we can classify any 2-respecting cut as one of the following
three types:

Type 1. The cut 1-respects T . In this case there exists a vertex v so that v↓T induces the cut.

Type 2-Comparable. The cut strictly 2-respects T , and the two tree edges across the cut belong
to the same path from the root r. Let v and w be the lower endpoints to the tree edges across
the cut. Then, we must have v ∈ w↓ or w ∈ v↓ and we say that v and w are comparable
(denoted by v ∥ w). Moreover, without loss of generality let w ∈ v↓, then this cut must be
induced by v↓T \ w

↓
T . In this case we say that w is the lower vertex and v is the upper vertex.

Type 2-Incomparable. The cut strictly 2-respects T , and the two tree edges across the cut belong
to different paths from r. Let v and w be the lower endpoints to the tree edges across the cut.
Then we must have v /∈ w↓ and w /∈ v↓. In this case we say that v and w are incomparable
(denoted by v ⊥ w). Again, this cut must be induced by v↓T ∪ w↓

T .

With the above classification of 2-respecting mincuts, one immediately sees that any mini-
mal mincut of a vertex (or an edge) can be represented by an O(log n)-bit cut label of the form
(type, v, w, T). Once we obtain cut labels of minimal mincuts for all vertices and all edges, a cactus
representation can be constructed efficiently:

5success with high probability 1− n−Θ(1).

5

Lemma 3.2. Given a graph G = (V,E), a tree packing T and the set of cut labels representing
minimal mincuts of each vertex v ∈ V and each edge e ∈ E, there exists a deterministic algorithm
that computes a cactus representation in O(mα(m,n) + n|T |) time, where α(m,n) is the inverse
Ackermann function.

In [KP09], a similar statement was given. However, only an imprecise Õ(m) time bound was
given and some description of the algorithms and argument of the proofs were omitted (e.g., the
proof to Lemma 3.12 in [KP09] and the cases analysis on their last page). In this paper, we give
a formal detailed proof of Lemma 3.2. Since the technical contribution is mainly to complete (and
simplify) the argument of [KP09] by incorporating formal concepts from [Gab16], we defer the proof
to Appendix A.

3.3 Computing Cut Labels Efficiently

With the help of Theorem 3.1 and Lemma 3.2, the task of computing a cactus representation
reduces to computing cut labels of the minimal mincuts for each vertex and each edge. Since the
number of trees in the tree packing T is small, it suffices to compute a minimal 2-respecting mincut
candidate on each tree T for each vertex and each edge. That is, whenever the minimal mincut of
an edge or a vertex 2-respects T , the returned candidate must be this mincut.

Notice that for a particular vertex v (or an edge e), the candidate may not exist in every tree.
Now, if we are able to compute minimal 2-respecting mincut candidates in almost-linear time, we
are able to compute the cactus representation in almost-linear time as well:

Lemma 3.3. Suppose there is a deterministic algorithm that, given a spanning tree T , computes a
label for every vertex v and edge e representing its minimal 2-respects mincut candidate in ttree total
time. Then, to compute the cactus representation of a graph, there is a deterministic algorithm that
runs in ttree · no(1) +m1+o(1) time, and there is also a randomized Monte Carlo algorithm that runs
in O(ttree log n+m log2 n) time.

Proof. We first invoke Theorem 3.1 and obtain a tree packing T . Then, for each spanning tree
T ∈ T , we compute a cut label for every vertex v and edge e representing its minimal 2-respects
mincut. Since every mincut 2-respects one of the tree from T , one of the cut label of each vertex v
and edge e corresponds to its minimal mincut (and we can obtain it by comparing the weight and
size in O(m) total time). In total, this takes either ttree · no(1) +m1+o(1) time deterministically or
O(ttree log n+m log2 n) time Monte-Carlo randomized.

Given labels representing minimal mincuts of all vertices and edges, we obtain a cactus repre-
sentation in O(m log2 n) additional time by Lemma 3.2.

Computing Minimal 2-Respecting Mincut Candidates. The remaining task is to compute
cut labels of the minimal 2-respecting mincut candidates on every tree T ∈ T , for each vertex and
each edge. Karger and Panigrahi [KP09] provided a deterministic algorithm (see Lemma 3.4) for
computing these cut labels for vertices — they partially bypassed the challenge for computing cut
labels of the edges via randomization. However, there is a missing case in [KP09] when computing
cut labels for vertices.

6

Regarding the gap in [KP09], we believe that the approach is not wrong, but the fix seems to
require more than changing some typos. The following Lemmas 3.4 and 3.5 summarizes the tasks
for obtaining cut labels to minimal 2-respecting mincut candidates for vertices and edges on a given
tree T .

Lemma 3.4 ([KP09]). Given a spanning tree T , we can deterministically compute, for each vertex
v, a cut label representing a minimal 2-respecting mincut candidate of v in O(m log2 n) total time.

In this paper, we give a simpler and complete algorithm of Lemma 3.4 in Appendix B.

Lemma 3.5 (Key Lemma). Given a spanning tree T , we can deterministically compute, for each
edge e, a cut label representing a minimal 2-respecting mincut candidate of e in O(m log2 n) total
time.

The algorithm and the proof to Lemma 3.4 will be in Appendix B. The rest of our paper is
devoted to proving Lemma 3.5. By plugging Lemmas 3.4 and 3.5 into Lemma 3.3, we can conclude
Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 3.4 and 3.5, we have that ttree = O(m log2 n). Thus, by
Lemma 3.3 we obtain a deterministic algorithm computing a cactus respresentation in m1+o(1)

time, and also a randomized Monte Carlo algorithm that runs in O(m log3 n) time.

Toward the Proof of Lemma 3.5. We show a path to prove our key lemma. The goal is to
find a minimal 2-respecting mincut candidate for each edge e on a given tree T . Since there are
three types of cuts that 2-respects a tree T , it is natural to split the task into three subproblems,
with each of them focusing on Type 1 cuts, Type 2-Comparable cuts, and Type 2-Incomparable
cuts respectively.

Minimal 1-respecting mincut candidate for vertices and edges Computing the minimal
1-respecting mincut candidate for all vertices and edges is relatively simple, and can be derived
from [Kar00]. For the sake of completeness we include the proof below.

The following basic lemma from [Kar00] can be implemented by dynamic program.

Lemma 3.6 (Lemma 5.1 in [Kar00]). The values of all cuts that 1-respect a given spanning tree T
can be determined in O(m+ n) time.

In the second step, we show how to compute the minimal 1-respect mincut candidate for vertices.

Lemma 3.7. Given a graph G and a spanning tree T , there is an algorithm such that, in O(m+n)
time computes the minimal 1-respecting mincut candidates for all vertices.

Proof of Lemma 3.7. First, we invoke Lemma 3.6 to compute the value of all the 1-respecting cut.
By comparing the value of each 1-respecting cut with the value of mincut λ, we can identify all the
1-respecting mincuts. If the 1-respecting cut v↓ seperating u from r, then u must in the subtree
of v. Therefore, we can run a DFS and maintain the minimal 1-respecting mincut containing the
current vertex u, which can be done in linear time.

7

Finally, we get the minimal 1-respecting mincut candidate for all edges.

Lemma 3.8. Given a graph G and a spanning tree T , there is an algorithm such that, in O(m+n)
time computes the minimal 1-respecting mincut candidates for all edges.

Proof. Observe that a 1-respecting cut contains e = (u1, u2) if and only if it contains lcae =
LCA(u1, u2). By Lemma 3.7, we compute the minimal 1-respecting mincut for all the vertices in
O(m+n) time. In addition, computing lcae for all the edges can be done in linear time. Therefore,
we get the minimal 1-respecting mincut candidate for all the edges in O(m+ n) time.

Therefore, the remaining challenges are finding a strictly comparable 2-respecting mincut can-
didate (see Lemma 5.1) and a strictly incomparable 2-respecting mincut candidate (see Lemma 6.1)
for each edge.

3.4 Technical Contribution

New Algorithm for Minimal 2-Respecting Mincuts. Lemma 3.5 is the key technical con-
tribution. We give the first deterministic algorithm for computing minimal mincuts for edges in
almost-linear time, which leads to the deterministic algorithm for computing cactus representation.
With Lemma 3.5, we also obtain an O(m log3 n) randomized algorithm for computing a cactus
representation, while the previous fastest (randomized) algorithm by [KP09] requires Ω(m log4 n)
runtime (see Appendix C.)

In fact, our algorithm is more modular than the algorithm by Karger and Panigrahi [KP09] in
the following sense: their algorithm only computes minimal mincuts for only some random edges,
but they show that this set of edges is sufficient. It requires more intricate proof to show that these
mincuts suffice for constructing a correct cactus representation. The approach makes the overall
framework less modular.

Structural Properties for 2-Respecting Mincuts. What enables us to achieve Lemma 3.5 are
new structural lemmas about 2-respecting mincuts. 2-respecting mincuts are not esoteric objects.
In fact, fast algorithms related to 2-respecting mincuts have been the only known pathway for
obtaining global mincuts in general weighted graphs in near-optimal complexity in many models of
computation (sequential [Kar00], parallel [GG21], distributed [DEMN21], streaming and cut queries
[MN20]. We are hopeful that these structural lemmas are promising for these models too.

For example, when the minimal mincut of an edge e is a comparable 2-respecting cut, a non-
trivial observation is that the task is reduced to computing only the lower vertex le of the two
vertices that define the 2-respecting cut. This allows us to focus on just “half of the problem” and
hence the algorithm can be greatly simplified. Structural insights of Lemma 5.9, Corollary 5.10,
and Lemma 5.11 allow us to design a DFS procedure that obtains these lower vertices in just one
pass. Lemma 6.8 plays a similarly important role when the minimal mincut of an edge e is an
incomparable 2-respecting cut.

8

A Full Detailed Proof to Cactus Construction. We also provide a not only comprehensive
but also simplified algorithm in Appendix A for constructing a cactus from the labels of minimal
mincuts of vertices and edges. Some correctness proofs in the last section of Karger and Panigrahi’s
paper [KP09] were missing, and unfortunately there was no full version. By revisiting the work of
Gabow’s [Gab16] and Karger and Panigrahi’s [KP09], we believe Appendix A helps the readers and
the community understand Karger and Panigrahi’s algorithm with a much higher confidence.

Other Technical Contributions. Besides the key technical contribution and the simplified cac-
tus construction algorithm, we also introduce a new algorithm for computing minimal mincut of
vertices, which is simpler and fixes a gap in [KP09]. This algorithm serves as an alternative proof
to Lemma 3.4 and is described in Appendix B. Last but not least, we formalize the reduction to
path using path decomposition in Lemma 4.1, which allows us to focus on paths. This reduction
simplifies the description of the algorithm, makes the analysis more modular, and can become handy
in other applications.

4 Useful Tools

Reduction to Paths via Path Decomposition. To facilitate our algorithm throughout the
paper, we utilize the reduction that reduces a problem on a tree to several problems on a collection
of paths. Similar techniques have been developed in order to solve problems related to minimum
cuts that 2-respecting trees. Two specific ways of decomposing a tree into paths were used: bough
decomposition [Kar00] and heavy path decomposition [GMW20, BLS20] (see also [MN20, GG21] for
more discussions).

It turns out that all we need is a balanced property for any decomposition of a tree into a
collection of paths. Let T be a tree rooted at r. An oriented path on T is a path P with the vertex
closest to r being an endpoint. A path decomposition P of T is a collection of oriented paths on
T so that each vertex of T belongs to exactly one path. We say that a path decomposition P is
balanced if for any vertex v, the path from the root of the tree to v intersects with O(log n) paths
in P. Both bough decomposition and heavy path decomposition of a tree are balanced, and can be
computed in linear time.

With the balanced property, it is straightforward to see that there will be only an O(log n)
overhead if we are allowed to process each path P ∈ P with a runtime related to the size of the
subtree rooted at the highest vertex of P (e.g., perform a DFS). Specifically, given a path P , we
define P ↓ to be the set of all vertices with at least one ancestor in P . Let E(P ↓) be the set of edges
incident to at least one vertex in P ↓ and let d(P ↓) =

∑
v∈P ↓ deg(v) be the unweighted volume of

the subtree. Lemma 4.1 below describes how we will bound the total running time using a balanced
path decomposition in this paper.

Lemma 4.1. If there exists an algorithm that preprocess G and a spanning tree T in tp time such
that, for any path P in a balanced path decomposition P of T , and a specific function g(e, P),
computes g(e, P) for all e ∈ E(P ↓) in total time O(d(P ↓) log n). Then, we can compute in tp +
O(m log2 n) time g(e, P) for all e ∈ E and for all P where e ∈ E(P ↓).

9

Proof. By the property of balanced path decomposition, for each edge e, there are at most O(log n)
paths P such that e ∈ E(P ↓). Therefore, we have∑

P∈P
d(P ↓) = O(m log n) . (1)

For each P ∈ P, since the algorithm computes g(e, P) values every e ∈ E(P ↓) in O(d(P ↓)) time. We
can compute g(e, P) for all e ∈ E and all P where e ∈ E(P ↓) in total time O(

∑
P∈P d(P ↓) log n) =

O(m log2 n). Adding the preprocessing time tp, the algorithm runs in tp +O(m log2 n) time.

The usages of Lemma 4.1 in this paper are quite similar in the taste: suppose we would like to
compute some information (e.g., a minimal incomparable 2-respecting mincut candidate) of an edge
g(e), and realizes that g(e) can be computed efficiently from the set {g(e, P)} where e ∈ P ↓ (e.g., a
minimal 2-respecting mincut candidate with one crossing edge on P). Then by applying Lemma 4.1
we can focus on computing g(e, P) values for each specific path P ∈ P. We apply Lemma 4.1 in
many cases in Section 5, Section 6, and Appendix B.

The path decomposition P we use throughout in this paper will be assumed to be balanced.

Data Structures on Trees. The second tool that are extensively used are dynamic tree data
structures (and top-tree data structures). These data structures maintain values associated with
vertices, with the list of operations supported in Lemma 4.2.

Lemma 4.2. There exists a data structure over a dynamic forest of n vertices, supporting the
following operations in the worst case O(log n) time:

• Link(v, w): where v, w are in different trees, links these trees by adding the edge (v, w) to our
dynamic forest.

• Cut(e): remove edge e from our dynamic forest.

• AddPath(u, x): add x to the value of every vertices on the path from u to the root.

• MinPath↓(u): return argmin of the value of vertex on the path from u to the root, and break
tie by finding the deepest one.

• MinPath↑(u): the same as MinPath↓(u), but break tie by finding the highest one.

All these operations can be supported with a dynamic tree [ST83]. Besides, we need the following
operations, which can be implemented using top-tree [AHLT05].

• MinTree↓(u): returns a vertex v with minimum value in the tree T that contains u, breaking
tie by finding the one with the smallest subtree size |v↓|.

• MinTree↑(u): the same as MinTree↓(u), but break tie by finding the one with the largest
subtree size |v↓|.

• MinNonPath(v, w): where v, w are in the same tree T , return the vertex u with the minimum
value such that u ∈ T but u is not in the path between v and w.

10

Proof. The operations Link(v, w), Cut(e) and AddPath(u, x) are basic primitives of dynamic tree
[ST83]. To implement MinPath↑(u) and MinPath↓(u), we just need to show how to break tie, since
finding the argmin along the path is also a primitive. WLOG we consider implementing MinPath↑(u).
In the preprocessing step, we add −ϵ|u↓| to the value of vertex u where ϵ≪ 1/n. Then for the values
of two vertices equals before, they will become difference since the two vertices are comparable for
they are on the path from u to the root, and the value of the higher one will become smaller. By
reversing the sign the same approach works for MinPath↓(u).

Since MinTree(u) is a primitive of top-tree6, we can use the same approach as above to break
tie. Finally MinNonPath(v, w) can be implemented by the MaxNonPath primitive of a top-tree, which
appears in the proof of Theorem 4 in [AHLT05].

5 Comparable 2-respecting Minimal Mincuts of Edges

In this section, we present the algorithm computing the minimal mincut of edge when it is a
comparable 2-respecting mincut of T . Henceforth, for every edge e ∈ E we call T the right tree for
e if the minimal mincut of e is a comparable 2-respecting mincut of T . (In this case we also call e
a right edge in T .) In particular, we can represent this minimal mincut using a vertex pair (ue, le)

on the tree, indicating that u↓e \ l↓e is the comparable 2-respecting mincut we found for the edge e.
For convenience, for any comparable 2-respecting mincut w↓ \ v↓, we call v the lower vertex and w
the upper vertex in the cut w↓ \ v↓.

Lemma 5.1 summarizes the algorithm that computes such a vertex pair (ue, le) for every edge e
on any given spanning tree T ∈ T in O(m log2 n) time. Notice that when we analyze the correctness
of the algorithm on a spanning tree T , it suffices to focus on the edges where T is the right tree. In
the case that T is not the right tree for an edge e, it could be that the returned vertex pair (ue, le)
be either some arbitrary mincut or it could be (null, null).

Lemma 5.1. There is an algorithm that, given a graph G = (V,E) and a spanning tree T ∈ T , in
total time O(m log2 n) computes, for every edge e ∈ E, a vertex pair (ue, le) where ue, le ∈ V ∪{null}
with the following guarantee: if T is the right tree for e, then u↓e \ l↓e is the minimal mincut of e.

Our algorithm is divided into two main steps. In the first step the lower veritces le are computed.
Then based on le, in the second step the algorithm finds their correponding upper vertices ue.

It turns out that the second step becomes simpler once we have computed the lower vertices
le for all edge e. This reduction is presented in Section 5.1. Surprisingly, there is a deterministic
algorithm that guarantees to find lower vertices le for each right edge e efficiently. We present the
most important structural property supplemented with the algorithm in Section 5.2.

5.1 Reduction to Computing Lower Vertices

Fix a spanning tree T ∈ T and suppose that we have already obtained all lower vertices le ∈
V ∪ {null} for each edge. Lemma 5.2 states that there exists an efficient algorithm that guarantees
to find corresponding upper vertices ue for all right edges on T .

6Theorem 4 in [AHLT05].

11

Lemma 5.2 (Reduction to lower vertices). There is an algorithm that, given a graph G = (V,E),
a spanning tree T , and a lower vertex le ∈ V ∪ {null} for every edge e ∈ E, in time O(m log2 n)
computes an upper vertex ue ∈ V ∪{null} for every edge e ∈ E with the following guarantee: If T is
the right tree for e and le is the lower vertex of the minimal mincut of edge e, then ue is the upper
vertex of the minimal mincut.

Intuitively, for any lower vertex le of e = (u1, u2), if we obtain the list of comparable partners
who form comparable 2-respecting mincuts with le, then the upper vertex we are looking for must
be the lowest ancestor of LCA(le,LCA(u1, u2)) which appears in the list. However, obtaining the
list is inefficient. Fortunately, based on the path decomposition, we can maintain all such candidates
of upper vertices on-the-fly and answer all the queries using a dynamic data structure. Specifically,
whenever the algorithm processes a vertex v on a path P ∈ P, this data structure finds all upper
vertices for all edges in Qv = {e ∈ E | le = v}, which is summarized in Lemma 5.3. Hence, by
applying a very similar path decomposition framework as in Lemma 4.1, we can compute all upper
vertices efficiently, which is summarized in Lemma 5.4.

Lemma 5.3. Let P be a path decomposition of T . We can preprocess the graph G and the spanning
tree T in O(m log n) time so that, given any path P ∈ P, we can compute the upper vertex ue for
Lemma 5.2 for every edge e ∈ ⋃

v∈P Qv in O(d(P ↓) log n+
∑

v∈P |Qv| log n) time.

Lemma 5.4 (A variant of path decomposition). Let g be a function of e ∈ E. If there exists an
algorithm that preprocess G and a spanning tree T in tp time such that, for any path P in a balanced
path decomposition P of T , any partition of subset of E′ ⊆ E into {Qv}v∈V , computes g(e) for all
e ∈ ⋃

v∈P Qv in total time O((d(P ↓) +
∑

v∈P |Qv|) log n), then we can compute in tp +O(m log2 n)
time g(e) for all e ∈ E′.

Proof. For each P ∈ P, the algorithm computes g(e) values for all e ∈ ⋃
v∈P Qv in total time

O((d(P ↓) +
∑

v∈P |Qv|) log n). Since
⋃

v∈V Qv = E′ and
⋃

P∈P P = V , we can compute g(e) for
all e ∈ E′ by running the algorithm on every path P ∈ P. Summing up over P ∈ P, we can
compute g(e) for all e ∈ E′ in total time O(

∑
P∈P(d(P

↓) +
∑

v∈P |Qv|) log n) = O(m log2 n +
m log n) = O(m log2 n) by Equation (1). Adding the preprocessing time tp, the algorithm runs in
tp +O(m log2 n) time.

By plugging in Lemma 5.3 to Lemma 5.4, we obtain Lemma 5.2.

Proof of Lemma 5.2. First, for each edge e with le = null, we set ue = null. Then, we partition
the set of the remaining edges into {Qv}v∈V such that Qv contains all the edges e with the lower
vertex le = v. By Lemma 5.3, there exists an algorithm that preprocess G and tree T in O(m log n)
time such that, given a path P in a path decomposition P, compute ue for every edge e ∈ ⋃

v∈P Qv

in total time O((d(P ↓) +
∑

v∈P |Qv|) log n). Since it satisfies the condition of Lemma 5.4, we can
compute the upper vertex ue for every edge in O(m log2 n) time.

Now we describe an algorithm that achieves Lemma 5.3.

12

Proof of Lemma 5.3. Fix a spanning tree T ∈ T . For any vertex v ∈ V and its ancestor w ∈ v⇑,
the weight of the comparable cut w↓ \ v↓ is given by:

C(w↓ \ v↓) = C(w↓)− C(v↓) + 2(C(v↓, w↓)− C(v↓, v↓)) . (2)

Suppose v is the lower vertex of the minimal mincut of e. Then by factoring out the terms only
related to v, it suffices to compute the following comparable precut values for all w ∈ v⇑.

Definition 5.5 (Comparable precut value). The comparable precut value of v at w, is defined by

C∥v(w) := C(w↓) + 2C(v↓, w↓) .

Note that the value is only defined for w ∈ v⇑. We say that w is a comparable partner or just a
partner of v if w is a minimizer of comparable precut value at v.

To see the high level idea, we first show how to compute the upper vertex ue for every edge
e ∈ Qv assuming that the comparable precut value of v at w has already been computed for every
w ∈ v⇑. Suppose e = (u1, u2) ∈ Qv is a right edge on T . Let lcae denote LCA(u1, u2). The
minimal mincut of e must contain the vertex xe = LCA(v, lcae) since the minimal mincut is a
comparable 2-respecting mincut in T with the lower vertex le = v. As the minimal mincut u↓e \ l↓e of
edge e is the mincut satisfying the condition above with the minimal size, we have that ue must be
the lowest partner of v such that ue ∈ x↑e, which can be found using MinPath↓(xe) (see Figure 1).
Below we show how to remove the assumption that comparable precut values of v at all w ∈ v⇑

have been precomputed.

xe

v = le (assume already computed)

ue = MinPath↓(xe)

lcae

u1 u2e

a mincut
u↓
e \ l↓e

Figure 1: High level idea: once the lower vertex of an edge le has found, we may locate the upper
vertex ue along the path via a MinPath↓ query.

Given a path P = (v1, v2, . . . , vk) from the path decomposition with v1 being the deepest vertex,
our algorithm will process vi starting from i = 1, 2, . . . , k. We will maintain the invariant that once

13

we process the vertex vi the values C∥vi(w) for all w ∈ v⇑i can be accessed via val[w].

Next we show how to maintain the invariant. In the preprocessing step before the path P was
given, we set val[w] = C(w↓) for each vertex w and create a dynamic tree on T (Lemma 4.2), which
can be done in O(m log n) time.7 Now we start from the deepest vertex v1, the algorithm needs
to add 2C(v↓1, w↓) to each val[w] so that val[w] = C∥v1(w). For each edge (u, u′) where u ∈ v↓1, we
invoke AddPath(u′, 2C(u, u′)) so that two times the weight of the edge (u, u′) is added to val[w] for
each w ∈ u′↑. The total time to recover the invariant is O(d(v↓1) log n).

After obtaining C∥v1(w) values, for every e ∈ Qv1 , we first compute xe = LCA(v1, lcae) and then
compute ũe = MinPath↓(xe). Finally, we check if ũe is a partner of v1. If so, then we know that
the upper vertex ue = ũe because MinPath↓(xe) the lowest ancestor of xe that is a partner of v1 if
there exists some partners. For running time, by Lemma 4.2, this requires O(log n) time for each
e ∈ Qv1 . So the total time for finding the upper vertices ue such that their corresponding lower
vertex is le = v1 is O(|Qv1 | log n) time. Therefore, the whole process on vertex v1 can be done in
O(d(v↓1) log n+ |Qv1 | log n) time.

Then, the algorithm scans through the rest of vertices v2, v3, · · · vk on the path one by one.
Suppose the algorithm reaches vi now. The algorithm is similar to what we did at v1. With the
invariant after processing vi−1, it suffices to add 2C(v↓i \ v

↓
i−1, w) to val[w] for each w ∈ v↑i by

invoking AddPath(u′, 2C(u, u′)) for each edge (u, u′) where u ∈ v↓i \ v
↓
i−1. (These edges can be found

in O(d(v↓i \v
↓
i−1)) time using a DFS from vi without searching the subtree rooted at vi−1.) Therefore,

in O(d(v↓i \ v
↓
i−1) log n) time, val[w] are updated to C∥vi(w) for all w ∈ v⇑i , and then the algorithm

uses MinPath↓(xe) to find ue for all e ∈ Qvi in O(|Qvi | log n) time.

After finishing all the process on the path P , we need to roll back to the initial state val[w] =
C(w↓) in order to process other paths. Therefore, the algorithm computing ue for every e ∈ ⋃

v∈P Qv

takes O(d(P ↓) log n+
∑

v∈P |Qv| log n) time in total, which proves Lemma 5.3.

5.2 Computing the Lower Vertex for each Edge

In the rest of this section, we show how to compute the lower vertex for each edge. Fix a
tree T ∈ T . If the minimal mincut of edge e is a comparable 2-respecting mincut of T , then the
algorithm will find the lower vertex le for e. Lemma 5.6 summarizes the algorithm:

Lemma 5.6. There is an algorithm that, given a graph G = (V,E) and a spanning tree T , in
O(m log2 n) time computes a vertex l̂e for every edge e, such that if e is a right edge in T where the
minimal mincut of e is u↓e \ l↓e , then l̂e = le.

The algorithm described in Lemma 5.6 consists of two parts. In the first part the algorithm
computes the highest partner H(v) (defined below) for each vertex v ∈ V as a preprocessing step.
Then in the second part we apply a specialized depth first search that obtains le values for all e ∈ E.

7We first compute lcae = LCA(u1, u2) for each edge e = (u1, u2) in linear time [GT85]. Then it suffices for
obtaining val[w] = C(w↓) by invoking AddPath(u1, w(e)), AddPath(u2, w(e)), and AddPath(lcae,−2w(e)) for every
edge e in O(m logn) total time.

14

5.2.1 Computing Highest Partner of each Vertex

Fix a spanning tree T ∈ T . For each vertex v, we denote HT (v) the highest (comparable)
partner of v. If there is no comparable 2-respecting mincut with lower vertex v, then HT (v) := null.
When there is no confusion, we shall drop the subscript T and simply denote it by H(v). The goal
for the algorithm is to compute H(v) for all v ∈ V .

We will use the reduction to path from Lemma 4.1. For any P ∈ P, define g(e, P) = H(v) if
v ∈ P and e is the tree edge with v being the lower vertex, otherwise g(e, P) = null.

Given a path P = (v1, v2, . . . , vk) ∈ P with v1 being the deepest vertex, the algorithm computes
the highest partner for each vi ∈ P as follows. Similar to the proof of Lemma 5.3, the algorithm
processes the vertices in the order v1, v2, . . . , vk. A dynamic tree on T is used and val[w] is main-
tained such that after processing vi we obtain precut values val[w] = C∥vi(w) for all w ∈ v↑i . Then,
using a dynamic tree query MinPath↑(vi) the algorithm obtains a highest vertex w with the min-
imum precut value C∥vi(w). Finally, we are able to assign g(e, P) = w (where e is the tree edge
with vi being the lower vertex, i.e., H(vi) = w) if the cut w↓ \ v↓ is indeed a mincut. According to
Equation (2), checking whether λ = C(w↓ \ v↓) can be done in constant time as long as the value
C(v↓) + 2C(v↓, v↓) is precomputed.

From the discussion above, we have an algorithm that, given a path P , computes g(e, P) for all
e ∈ E(P ↓) in O(d(P ↓) log n) time. The preprocessing step is the same with the one in Lemma 5.3,
which can be done in O(m log n) time. By plugging in the path decomposition Lemma 4.1, we
obtain an algorithm that computes H(v) of all vertices v ∈ V in O(m log2 n) total time.

5.2.2 Main Algorithm for Computing Lower Vertices

In this subsection we state the main algorithm for Lemma 5.6. Recall that the goal is, for every
right edge e in T , we want to compute its lower vertex le. Recall that when we say that le is a lower
vertex, we means that there exists some ue where u↓e \ l↓e forms a minimal mincut of some right
edge e. For convenience, we denote vw as the set of vertices on the path between any two vertices
v and w on T . For any right edge e, let P̂e = uele be its canonical path. For any e = (u1, u2), let
lcae = LCA(u1, u2).

Motivation: high-level approach and the key structural lemma. At the highest level, the
description of our algorithm is as follows. We will perform a post-order traversal on the tree T (i.e.
if a is an ancestor of b then a is visited after b). When we visit u, we will be able to compute some
lower vertices le of edges e where le is below u (i.e. le ∈ u⇓). At the end, we make sure that we
have computed all lower vertices le of all the right edges e in T . To specify our algorithm in more
details, we start with this definition.

Definition 5.7 (Valid lower vertices below u). We call a vertex v a valid lower vertex below u if
v ∈ u⇓ and H(v) ∈ u↑. Let Lu denote the set of all valid lower vertices below u.

In other words, v ∈ Lu if there exists a comparable 2-respecting mincut containing u with the
lower vertex v. Since H(le) must be an ancestor of ue, we have following:

15

Fact 5.8. For every right edge e, le ∈ Lu for any u ∈ P̂e \ {le}.

Suppose that, magically, there is a data structure that, given a vertex u, can return the set Lu

of all valid lower vertices below u. One idea would be that whenever the post-order traversal visits
u, we query the data structure with u. Then, whenever u ∈ P̂e \ {le}, then le would be reported.
However, there is an obvious issue in this approach: the total size of Lu over all u is simply too
large to be reported quickly.

Therefore, we should consider a small subset of Lu that still contains le. Which subset of Lu

satisfies this? Intuitively, since u↓e \ l↓e is a minimal mincut, le should be “as high as possible” (and ue
should be “as low as possible”). This motivates the following definition: for any vertex set S, the set
of top vertices of S, denoted by top(S), contains all vertices v ∈ S where there is no other v′ ∈ S∩v⇑
strictly above v. It makes sense to hope that top(Lu) = {le} for any u ∈ P̂e \ {le}. This would be
perfect because, not only that the output size is small, the data structure even identifies le for us.
Unfortunately, this cannot be true. For example, let xe = LCA(le, lcae), for any u ∈ lexe \ {le, xe}
strictly between le and xe, top(Lu) might not contain le because there might exist another mincut
u′↓ \ l′↓ such that le, l′, u, u′, xe are ancestors of each other in this order and so le /∈ top(Lu) because
of l′. Similarly, for any u ∈ uexe \ {ue, xe} strictly between ue and xe, top(Lu) might not contain le
as well (see Figure 2). So we could only hope to guarantee that top(Lu) = {le} when u = xe.

xe

le

ue

lcae

u1 u2

H(le)

Ye

e

top(Lxe
\ Ye) must be {le}

top(Lu′) may not contain le

Figure 2: Querying xe must find le. Querying at other vertices might not find le.

Surprisingly, something very close to the above wishful claim is actually true:

Lemma 5.9 (Pinpoint the lower vertex). Suppose e = (u1, u2) is a right edge whose minimal mincut
is u↓e \ l↓e . For vertex xe = LCA(le, lcae), we have top(Lxe \ Ye) = {le}, where Ye := u1u2 ∪ xelcae

is the avoiding set of e.

16

Before showing the proof, let us discuss the purpose of Lemma 5.9. It helps us pinpoint the
lower vertex le because it says that, the lower vertex le is exactly the unique top vertex of Lxe \ Ye,
the set of valid lower vertices below xe excluding Ye. Note that it is very natural to exclude Ye
because, for any right edge e = (u1, u2), le cannot be on Ye, otherwise u↓e \ l↓e would not contain e.

Proof of Lemma 5.9. Suppose for contradiction that top(Lxe \ Ye) ̸= {le}. First, observe that
top(Lxe \ Ye) is not empty since the set Lxe \ Ye contains the vertex le. Now we arbitrarily select
a vertex l′ ∈ top(Lxe \ Ye) different from le. By the definition of valid lower vertex below xe, there
exists u′ ∈ x↑e that u′↓ \ l′↓ forms a mincut. Since l′ ∈ Lxe \ Ye and u′ ∈ x↑e, the mincut u′↓ \ l′↓ also
contains edge e.

Next we consider the relative position of these two mincuts u↓e \ l↓e and u′↓ \ l′↓. Since l′ is a
top vertex of Lxe \ Ye, we have l′ /∈ l↓e . So there are only two cases: u′↓ \ l′↓ ⊂ u↓e \ l↓e or these
two mincuts cross with each other. For the first case, u′↓ \ l′↓ is a smaller mincut containing e,
contradicts to minimality. For the second case, by the crossing property of mincuts (Lemma 2.2),
the intersection of these two mincuts is a smaller mincut containing e, again contradicts to the
minimality of u↓e \ l↓e .

Let Ye,u := u1u2 ∪ ulcae. Note that Ye = Ye,xe . Recall that our plan is to perform a post-order
traversal. By Lemma 5.9, whenever we arrives at u = xe and query top(Lu \ Ye,u), the lower vertex
le would be returned for us and we are done for e. But we do not know xe. Then, from which
vertex u should we query top(Lu \ Ye,u) for finding le? Since we know that at least xe ∈ lca↑

e, we
can query for finding le when u ∈ lca↑

e. Now, the corollary below will be helpful because it says
that for all u ∈ xelcae, whenever we query for finding le, we will actually see nothing before the
traversal actually reaches xe.

Corollary 5.10. For any vertex u ∈ xelcae \ {xe}, we have top(Lu \ Ye,u) = ∅.

Proof. Suppose for contradiction that there exists vertex u ∈ xelcae \ {xe} such that top(Lu \
Ye,u) ̸= ∅. Since le /∈ u↓, the set top(Lu \ Ye,u) contains other vertex l′ different from le. Since
top(Lxe \ Ye) = {le} by Lemma 5.9, H(l′) ∈ x↓e. But this implies that H(l′)↓ \ l′↓ is a mincut
containing e with smaller size than u↓e \ l↓e , contradicts to minimality.

Equipped with this insight, now we are ready to move our attention on how to implement our
high-level approach efficiently.

Implementation. There are two main challenges in implementing the above high-level approach.

1. (Efficiency of queries): For any fixed vertex u, how can we return top(Lu \ Ye,u) quickly
given an edge e as a query? Furthermore, as we perform a post-order traversal, the vertex u
is not fixed. We need a dynamic data structure where u can be updated too.

2. (The number of queries): For any fixed edge e, if we query for top(Lu \ Ye,u) on all u or
even just on all ancestors of lcae, then the total number of queries would be already super
linear in m. We will exploit a structural lemma (Lemma 5.11) to reduce the number of queries.

17

In order to describe our algorithm and address how do we cope with both challenges, we first
describe an algorithm that solves a simpler case when xe = lcae. That is, if we have a data structure
that supports the queries to top(Lxe \Ye) then all lower vertices will be found by Lemma 5.9. After
we describe the algorithm that solves the simpler case, we generalize the algorithm and solve both
challenges in the general case.

Simple Case: lcae is always on the path P̂e.

Let us assume here that, for every right edge e, lcae is on the path P̂e. Equivalently, xe = lcae.
Even with this assumption, we will need to deal with the first challenge above. We will remove this
assumption in the next part.

We perform a post-order traversal on T . Suppose that u is the current vertex. There are two
main tasks: (1) we will show how to maintain all the valid lower vertices below u, (2) we will show
how to find the lower vertex le for every right edge e with lcae = u via queries to the top-tree data
structure.

To help solving the first task, we will exploit top-tree as follows. The top-tree we are maintaining
is always a subgraph (forest) of T , and each vertex is associated with a value that satisfying the
following invariant. Suppose the current vertex is u. For each vertex v ∈ u↓, if v is a valid lower
vertex below u, the value of v in the top-tree should be depthv (the depth of v in T). Otherwise, if
v is not a valid lower vertex below u, the value of v is ∞.

Now we solve the first task. The algorithm will maintain the invariant while running the post-
order traversal. Initially, the top-tree is the same as the spanning tree with a super large value
∞≫ n assigned to each vertex. When the traversal reaches u, the algorithm will do the following
updates on the top-tree. First, the algorithm checks for each child v of u: if H(v) ̸= null, then assign
value depthv to vertex v, otherwise leave the value of v unchanged (which is ∞). Second, for any
vertex v ∈ u↓ such that H(v) is a child of u, the algorithm assigns ∞ to v. These vertices can be
preprocessed once H(v) is found. Furthermore, we can safely assign ∞ to v because that v will no
longer be a valid lower vertex below u or below any vertex reached later in the post-order traversal.
Since for each vertex v the value of v is changed at most twice in the algorithm, by Lemma 4.2 the
top-tree can be maintained in O(n log n) total time.

Now we solve the second task. We show how to use the top-tree to find le for each edge e =
(u1, u2) where lcae = u upon the reaching u in the post-order traversal. Recall that by Lemma 5.9,
the lower vertex le is the unique vertex in top(Lxe \ Ye) = top(Lu \ u1u2). It implies that le is the
unique vertex with smallest value among all vertices in u↓ \ u1u2 stored in the top-tree. Therefore,
we first apply Cut(u,parent(u)) to separate the subtree rooted at u. Then the lower vertex can be
found by le = MinNonPath(u1, u2). Finally, we apply Link(u,parent(u)) to restore the tree. See
Figure 3 for an illustration.

General Case: lcae may not be on the path P̂e.

In the general case, we no longer have the assumption lcae ∈ P̂e. By Lemma 5.9 and Corol-
lary 5.10, for each right edge e, it is natural to consider climbing up the tree from lcae toward xe.
The first time where the algorithm climbs up to a vertex u such that top(Lu \Ye,u) ̸= ∅ implies that

18

xe = lcae = u

parent(u)

le

ue

u1 u2e

MinNonPath(u1, u2)

Figure 3: Simple Case: le can be found by MinNonPath(u1, u2) after separating the subtree rooted
at u = lcae.

u = xe. However, the time cost of performing such multiple queries per edge is unacceptable.

To deal with the challenge, we establish a key observation (Lemma 5.11) that leads to the
following “packaging” idea. Initially every edge e is individually packed and is assigned to the vertex
lcae. Upon reaching a vertex v in the post-order traversal, the data structure checks for each
package whether or not a lower vertex can be assigned. If a lower vertex l is found, then all edges e
in the same package get the same lower vertex le = l. Otherwise, all packages will be combined into
one large package and sent to the parent of v. Our key observation states that, for all right edges
e so that v ∈ P̂⇔

e := P̂ ↓
e \ (P̂e ∪ l↓e), these right edges will be in the combined package and they all

have the same minimal mincut. In particular, their lower vertices will be the same (see Figure 4).

Lemma 5.11. Fix vertex v. For all right edges e1, e2 where their endpoints are in v↓ and v ∈
P̂⇔
e1 ∩ P̂⇔

e2 (i.e. le1 , le2 ̸∈ v↓ and ue1 , ue2 ∈ v⇑), we have that P̂e1 = P̂e2.

Proof. First, we show that the minimal mincut of e1 also contains e2, and vice versa. Since v ∈ P̂⇔
e1 ,

the minimal mincut of e1 contains the whole subtree v↓. Since both the endpoints of e2 are in v↓,
the minimal mincut of e1 contains e2. Symmetrically, the arguments also hold if we swap e1 and
e2. By Lemma 2.3, the minimal mincut of e1 and e2 are the same and hence P̂e1 = P̂e2 .

Now we implement the algorithm in the general case via top-tree. When the traversal reaches
vertex u, there are several packages at u. For the single edge packages that are directly created in
preprocessing, the same procedure from simple case works: we cut off the subtree rooted at u and
query MinNonPath for each of these edges. For any combined package that was delivered from a
child v, since there is no valid lower vertex found in v↓, we claim that it suffices to check top(Lu\v↓).

To see why, first observe that le /∈ Lv because le is never in Ye,v and we also know that le /∈
top(Lv \ Ye,v) (since e is forwarded from v). Now, suppose that le ∈ top(Lu). We claim that le
actually is in top(Lu \ v↓). This is because if le ∈ v↓, then le ∈ Lv. But we already concluded

19

P̂e1

v

P̂⇔
e1

e1 e2

Figure 4: An illustration to Lemma 5.11: if the algorithm arrives at vertex v but has not found any
lower vertex for e1 and e2 yet, then P̂e1 = P̂e2 .

above that le /∈ Lv. This completes the claim that if le ∈ top(Lu), then le ∈ top(Lu \ v↓). Now,
by Lemma 5.9, if le ∈ top(Lu), then {le} ⊆ top(Lu \ v↓) ⊆ top(Lu \ Ye,u) = {le}. Therefore,
top(Lu \ v↓) = {le}.

Therefore, the algorithm separates the subtree induced from u↓ \ v↓ by cutting off the edges
(u,parent(u)) and (v, u). Then top(Lu \ v↓) is obtained by querying MinTree↑(u). If MinTree↑(u)
returns a vertex l with a value not equal to ∞, then all edges within the package from v has
their lower vertex assigned to l by Lemma 5.11. After processing all packages at u, the algorithm
combines all edges where their lower vertices are not found yet into one package, which can be
efficiently implemented with a linked list. Back to a high-level explanation, observe that although
there can be many edges in the package from v forwarded to its parent u that we want to query.
We only need to query once for each package. This is how we resolve the second implementation
challenge about the number of queries.

To analyze the runtime, we notice that the number of top-tree queries made is linear to the
total number of packages that has ever created, which is O(n+m) top-tree queries. Therefore, the
algorithm for computing le for every edge e can be done in O(m log n) total time. However, from
Section 5.2.1 we know that preprocessing H(v) values takes O(m log2 n) time. Hence, the total time
computing lower vertices for each edge takes O(m log2 n) time, which proves Lemma 5.6.

6 Incomparable 2-respecting Minimal Mincuts of Edges

In this section, we present the algorithm computing the minimal mincut of edge when it is a
incomparable 2-respecting mincut of T . Similar to the comparable case, for every edge e ∈ E we
call T the right tree for e if the minimal mincut of e is a incomparable 2-respecting mincut of T .
(In this case we also call e a right edge in T .)

20

Lemma 6.1. There is an algorithm that, given a graph G = (V,E) and a spanning tree T ∈ T , in
total time O(m log2 n) computes, for every edge e ∈ E, an unordered vertex pair g(e) = (ve, we) or
null where ve, we ∈ V with the following guarantee: if T is the right tree for e, then v↓e ∪ w↓

e is the
minimal mincut of e.

Let e = (u1, u2) be a right edge in T whose minimal mincut is v↓ ∪ w↓ where v ̸= w. To prove
Lemma 6.1, there are two main cases to consider: (1) the endpoints are in different subtrees: u1 ∈ v↓

and u2 ∈ w↓, or (2) both endpoints are in the same subtree, e.g. both u1, u2 ∈ v↓.

For the first case, we solve it based on the main lemma below. We will devote to most of this
section for proving it.

Lemma 6.2. Let P be a path decomposition of T . There is an algorithm that preprocesses G =
(V,E) and spanning tree T in O(m log n) time so that, given any path P ∈ P, in time O(d(P ↓) log n)
the algorithm computes, for every edge e = (u1, u2) such that e ∈ E(P ↓), an unordered vertex pair
g(e, P) = (v, w) or null with the following guarantee:

Suppose v↓ ∪ w↓ is the incomparable minimal mincut for e such that u1 ∈ v↓ and u2 ∈ w↓.
Let Pv, Pw ∈ P be the paths that contains v and w respectively. Then, either g(e, Pv) = (v, w) or
g(e, Pw) = (v, w).

For the second case, observe that LCA(u1, u2) ∈ v↓ since u1, u2 ∈ v↓. Therefore, the min-
imal mincut of the right edge e is also the minimal incomparable 2-respecting mincut of vertex
LCA(u1, u2), which can be computed efficiently using Lemma 6.3. The proof of Lemma 6.3 is
deferred to Appendix B, since it also serves as a building block of Lemma 3.4.

Lemma 6.3. There is an algorithm that, given a spanning tree T of G = (V,E), in total time
O(m log2 n) computes, for every vertex u ∈ V the minimal incomparable 2-respecting mincut candi-
date f(u) = (vu, wu) or null with the following guarantee:

If there exists an incomparable 2-respecting cut that separating u from root r, then f(u) ̸= null

and v↓u ∪ w↓
u is such a mincut with smallest size.

Now we prove Lemma 6.1 using Lemmas 6.2 and 6.3:

Proof of Lemma 6.1. Suppose v↓∪w↓ is the minimal mincut for a right edge e = (u1, u2). Depending
on whether the endpoints of e are in the same subtree (rooted in either v or w), or in the different
subtrees, we consider the following two cases:

Case 1: (different subtrees) WLOG, assume u1 ∈ v↓ and u2 ∈ w↓. Given a balanced path
decomposition P, for each path P ∈ P, the algorithm in Lemma 6.2 computes a candidate
vertex pair g(e, P) = (v′, w′) or null for every edge e = (u1, u2) such that e ∈ E(P ↓). Plugging
in the path decomposition framework Lemma 4.1, we can compute g(e, P) for all edge e =
(u1, u2) ∈ E and all P ∈ P such that e ∈ E(P ↓) in O(m log2 n) time.

Next, for each edge e, the algorithm compares the size of all candidate mincuts g(e, P) for
each path P such that e ∈ E(P ↓) and select the smallest one to be (ve, we). This step takes
O(log n) time for each edge e since there are at most O(log n) paths P such that e ∈ E(P ↓)

21

by the balanced property of P. Since Lemma 6.2 guarantees that either g(e, Pv) or g(e, Pw)
equals to (v, w), our algorithm find the minimal mincut of e.

The total time for this case is O(m log2 n) +O(m log n) = O(m log2 n).

Case 2: (same subtree) WLOG, assume u1, u2 ∈ v↓. This implies LCA(u1, u2) ∈ v↓. There-
fore, the minimal mincut of e will also be the minimal incomparable 2-respecting mincut of
LCA(u1, u2), which has been computed via the algorithm from Lemma 6.3 in O(m log2 n)
time.

Since it takes O(m log2 n) time for both cases, the whole algorithm runs in O(m log2 n) total time.

The rest of the section is devoted for proving Lemma 6.2. In Section 6.1 we introduce several
essential concepts that allow us to describe and prove the algorithm in a precise way. In Section 6.2
we describe the high-level idea to the algorithm that finds all incomparable minimal 2-respecting
mincut candidate for each edge, and in Section 6.3 we complete the implementation details. Finally
in Section 6.4 and Section 6.5 we prove the correctness of the algorithm and analyze the runtime,
concluding the proof of Lemma 6.2.

6.1 Minimum v-Precuts and P -Outer Minimum v-Precuts

Fix a spanning tree T ∈ T . Our algorithm for Lemma 6.2 requires implementation on efficiently
identifying incomparable 2-respecting mincuts v↓∪w↓ with one vertex v on the path P ∈ P. In this
section we first recall the concepts of minprecut values from [Kar00] and then we introduce outer
minprecut values that help us to describe the algorithm with clarity.

Observe that for any pair of incomparable vertices v ⊥ w, the weight of the cut induced by
v↓ ∪ w↓ can be expressed as

C(v↓ ∪ w↓) = C(v↓) + C(w↓)− 2C(v↓, w↓) .

Suppose v↓ is one part (the other part is w↓) of the minimal incomparable 2-respecting mincut of
e. Then by factoring out the terms only related to v, it suffices to compute the following incomparable
precut values for all w ⊥ v.

Definition 6.4 (Incomparable precut value). The incomparable precut value of v at w, is defined
by

C⊥v (w) := C(w↓)− 2C(v↓, w↓) .

Note that the value is only defined in the incomparable scenario w ⊥ v.

The incomparable precut values are defined analogously to the comparable precut values. Ac-
tually, they share the same functionality in the sense that given a vertex v, an algorithm can be
designed to find a partner w such that v and w together idetifies a incomparable (resp. comparable)
2-respecting mincut v↓ ∪ w↓ (resp. w↓ \ v↓). Such partner should be a minimizer of the minpercut
value defined below.

22

Definition 6.5. The incomparable minprecut value of v, is defined by

C⊥v := min{C⊥v (w) | w ⊥ v} .

A vertex w is called an incomparable mincut partner of v if v↓ ∪ w↓ is a mincut. For brevity,
we will omit the word “comparable/incomparable” and simply call C⊥v (w) as precut value of v (at
w) and call w a mincut partner of v if the context is clear. Besides, we call w a minprecut partner
of v if C⊥v (w) = C⊥v . Note that a mincut partner must be a minprecut partner, but it may not be
correct conversely.

Given a path P ∈ P, our algorithm will maintain the minprecut value of the current vertex v
when climbing up the path P . It turns out that if we further exclude all the candidates of partner
within P ↓, the algorithm can maintain minprecut values and partners of v in a more efficient way,
which leads to the following definitions.

Definition 6.6. We call w an outer vertex of path P if w ̸∈ P ↓.

The outer minprecut value is defined similar to the minprecut value except that only the outer
vertices are taken in consideration.

Definition 6.7. The P -outer minprecut value of v is defined as the minprecut value of v such that
the minprecut partner w is an outer vertex of v. Specifically,

C⊥v,P = min{C⊥v (w) | w /∈ P ↓, w ⊥ v}

We call w a P -outer minprecut partner of v if w is an outer vertex of P and C⊥v,P (w) = C⊥v,P .
Now we are ready to describe the algorithm.

6.2 Algorithm Description

Now, we are ready to describe the algorithm for Lemma 6.2.

The high-level description of the algorithm is as follow: Given a path P = (v1, v2 · · · , vk) ∈ P
with v1 being the deepest vertex, our algorithm visits vi in the order of i = 1, 2, . . . , k. At iteration
i, the algorithm visits vi and maintains the invariant such that the values C⊥vi(w) for all P -outer
vertex w can be accessed via val[w], and the P -outer minprecut value C⊥vi,P is stored in val∗.

Whenever the algorithm reaches the vertex vi, it first calls a subroutine called LocalUpdate(vi)
that will recover the invariant on val[w]. Once the invariant holds, if vi has a P -outer mincut
partner w, then any edge e = (u1, u2) where u1 ∈ v↓i and u2 ∈ w↓ which has not been assigned a
minimal mincut candidate yet should obtain an incomparable 2-respecting mincut (vi, w′) for some
specific choice of w′ ∈ w↓ as the minimal mincut candidate g(e, P).

To implement this high-level plan, our algorithm will maintain a set Ê ⊆ E(v↓i) that contains
all edge e whose g(e, P) values is not assigned yet, and a witness set W of vertices that will be
helpful for extracting the correct minimal mincut candidates. We summarize the invariant for W
as follows, and we defer the proof to the end of Section 6.4.

23

Lemma 6.8 (Invariant for W and Ê). The witness set W and the edge set Ê satisfies the following
invariant whenever the algorithm returns from LocalUpdate(vi) when visiting vi ∈ P :

(1) W is always a subset of P -outer minprecut partners of the current visiting vertex vi.

(2) Any edge e = (u1, u2) ∈ Ê satisfies that u1 ∈ v↓i and u2 /∈ P ↓.

(3) (Correctness Guarantee): for any edge e = (u1, u2) ∈ Ê such that u1 ∈ v↓i , if there exists
a P -outer mincut partner of vi that is an ancestor of u2, then there exists a witness w ∈ W
that is an ancestor of u2.

Use W to find incomparable minimal 2-respecting mincuts for edges. Following this
property, we are able to present the algorithm to find incomparable minimal 2-respecting mincuts
for edges using W and Ê. The algorithm visits v1, v2, . . . , vk along the path. Whenever the algorithm
visits vi, all edges e = (u1, u2) such that u1 ∈ v↓i \ v

↓
i−1 and u2 /∈ P ↓ shall be added to Ê (let v↓0 = ∅

for convenience).

In order to obtain correct results, after vi is visited, the algorithm should identify a mincut
candidate g(e, P) := (ve,P , we,P) for all right edges e ∈ Ê with ve,P = vi. One way to achieve this is
to scan through all edges in Ê and use MinPath↓ queries on a dynamic tree to find we,P (whenever
ve,P = vi we will find we,P correctly). However, the amount of edges whose ve,P = vi could be a
tiny fraction in Ê.

Using the correctness guarantee from Lemma 6.8, we will be able to identify all edges whose
ve,P = vi without spending any time on any other edges: all we need to do is to extract the subset
of Ê whose outer endpoints are descendants of any w ∈ W .Interestingly, the task of finding all
descendant outer endpoints can be reduced to a dynamic range query problem, which can be solved
efficiently using a standard binary search tree. We discuss the implementation details in Section 6.3
and also in AssignMinCut(vi) (see Algorithm 3).

Now it comes down to efficiently maintain the witness set W .

Maintaining the set W . The algorithm maintains the set W as following:

• In the beginning of iteration i, if the minprecut value of vi is the same of the minprecut value
of vi−1, we keep the set W . Otherwise reset W to be empty.

• For each newly added edge e = (u1, u2) where u1 ∈ v↓i \ v
↓
i−1, u2 /∈ P ↓, we find the highest

ancestor of u2 which is a P -outer minprecut partner of vi, and add it to W .

• For the current vertex vi, if it has some P -outer mincut partners, reset W to be empty in the
end of this iteration.

We summarize and implement the procedure that maintains W , together with maintaining the
precut values as we move from the vertex vi−1 to vi into the algorithm LocalUpdate(vi). The high
level implementation of the entire algorithm is summarized in Algorithm 1.

24

Algorithm 1 Computing incomparable 2-respecting minimal mincuts of edges
1: Initialize the witness set W ← ∅, Ê ← ∅, and val∗ =∞.
2: for each i = 1, 2, . . . , k do ▷ The i-th iteration handles vi.
3: Call LocalUpdate(vi). ▷ Algorithm 2: update W , Ê, and val∗.
4: Call AssignMinCut(vi). ▷ Algorithm 3.
5: if C⊥(v↓i) + val∗ = λ then
6: Reset W ← ∅.
7: end if
8: end for

6.3 Implementation

There are two steps that we need to provide a detailed implementation: maintaining the set
W (implementing LocalUpdate(vi)), and using W to compute the minimal 2-repsecting mincut
candidates of all edges via range queries (implementing AssignMinCut(vi)).

Implementing LocalUpdate and Preprocessing. We use a dynamic tree (Lemma 4.2) to main-
tain the precut values of the current vertex vi while climbing up the path P . We maintain the
invariant that once we process the vertex vi the values C⊥vi(w) for all w ⊥ vi, w /∈ P ↓ can be accessed
via val[w] . Recall that C⊥vi(w) = C(w↓) − 2C(v↓i , w↓). In the preprocessing step before the path P
was given, we set val[w] = C(w↓) for each vertex w and create the dynamic tree on T , which can be
done using the same preprocessing step of comparable case in footnote 7. After that, we initialize
the minprecut value val∗ to be the minimum of val[w] over all the P -outer vertices, which can be
done using the following dynamic tree operations. We first apply Cut(vn,parent(vn)) to separate the
subtree P ↓. Then we apply AddPath(parent(vn),∞) to set the value of all the ancestor of vn to be
∞, since they are not incomparable vertices of any vertex vi ∈ P . Now we use MinTree↑(parent(vn))
to find w which is argmin of val[w] over all the P -outer vertices, and set val∗ = val[w]. Finally, we
apply Link(vn, parent(vn)) to restore the tree.

Given the path P , the algorithm scans through the vertices v1, v2, · · · vk on the path one by one.
Suppose the algorithm reaches vi now. With the invariant after processing vi−1 (the invariant for
v0 is val[w] = C(w↓)), it suffices to substract 2C(v↓i \ v

↓
i−1, w) to val[w] for each w ⊥ vi, w /∈ P ↓ by

invoking AddPath(u,−2C(v, u)) for each edge (v, u) where v ∈ v↓i \ v
↓
i−1, u /∈ P . (These edges can be

found in O(d(v↓i \ v
↓
i−1)) time using a DFS from vi without searching the subtree rooted at vi−1.)

Therefore, in O(d(v↓i \ v
↓
i−1) log n) time, val[w] are updated to C⊥vi(w) for all P -outer vertex w ⊥ vi.

While the algorithm updates the precut value as stated above, it also updates the minprecut
value val∗, set W and set Ê. The algorithm scans through the edges (v, u) where v ∈ v↓i \v

↓
i−1, u /∈ P

and invokes MinPath↑(u) to find the vertex w with the minimum precut value, and break tie by
finding the highest one. Then we update the minprecut value val∗. If val∗ changes, we reset W to
be empty. Finally, if val[w] = val∗, we insert w to the set W . These steps for maintaining the set
W are equivalent to the high-level description in Section 6.2.

Notice that in Algorithm 2 we explicitly use a global binary search tree data structure (BST)
representing the set Ê. Thus, there will be some steps (line 3) involving BST that will be used for

25

finding the mincut candidates, which is described in the next paragraph.

Algorithm 2 LocalUpdate(vi)
1: Call AddPath(vi,∞).
2: for each edge e = (v, u) such that v ∈ v↓i \ v

↓
i−1, u /∈ P ↓ do

3: Call InsertBST(pre_order[u], e). ▷ Insert e to Ê.
4: Call AddPath(u,−2C(v, u)).
5: Call w ← MinPath↑(u).
6: if val[w] < val∗ then
7: val∗ ← val[w].
8: Reset W ← ∅.
9: end if

10: if val[w] = val∗ then
11: Insert w into W .
12: end if
13: end for

Computing minimal mincut candidates of edges from W . First, we clarify the global data
structures in the algorithm. While climbing up the path P , we use a binary search tree (BST) to
store all the edges in Ê, with the key equals to the pre-order indices of the outer endpoints. Note
that there will be only one global BST in our algorithm. The BST supports the following primitives.

• InsertBST(x, e), store edge e = (u1, u2) (u1 ∈ P ↓, u2 /∈ P ↓) into the BST with key x. In our
algorithm, we will always set x to be pre_order[u2], i.e., the pre-order index of vertex u2.

• ExtractBST(w↓), extract all the edges with endpoints in w↓, i.e. the edges with index in the
interval corresponds to w↓.

We use the BST to store the edges that have not found their minimal mincut candidates yet.
When the algorithm reaches vi on the path, it inserts all edges e = (v, u) with v in v↓i \ v

↓
i−1 and

u /∈ P ↓ to the BST, with the key pre_order[u]. This step is implemented in line 3 of Algorithm 2.
To compute the minimal mincut candidates of edges using W , we first check whether there exists a
mincut partner of vi (line 1 in Algorithm 3). If there exists, we perform the range query using BST
to extract all the edges with endpoint u ∈ w↓ for each w ∈W , which is implemented in Algorithm 3.
Finally, for each extracted edge with endpoint u ∈ w↓, we find w′ to be the lowest ancestor such
that w′ is the mincut partner of vi, and set g(e, P) = (vi, w

′).

26

Algorithm 3 AssignMinCut(vi)

1: if C(v↓i) + val∗ = λ then
2: for each w ∈W do
3: for each e = (v, u)← ExtractBST(w′↓) do
4: w′ ← MinPath↓(u).
5: Set g(e, P) = (vi, w

′).
6: end for
7: end for
8: end if

6.4 Correctness

First, we show a basic property of path decomposition and outer vertex that will be useful for
analyzing the algorithm.

Lemma 6.9. For any spanning tree T , any path decompostion P, and any vertices v and w so that
v ⊥ w, let Pv ̸= Pw ∈ P be the paths that contains v and w respectively. Then either v is a Pw-outer
vertex or w is a Pv-outer vertex.

Proof. Observe that either Pv ∩ P ↓
w = ∅ or Pw ∩ P ↓

v = ∅, which implies the lemma.

For any right edge e = (u1, u2), suppose the minimal mincut of e is v↓e ∪ w↓
e where u1 ∈ v↓e and

u2 ∈ w↓
e . By Lemma 6.9, without loss of generality, suppose w is a Pv-outer vertex where Pv is the

path containing v. The main property for the correctness of the algorithm can be summarized in
Corollary 6.10, which can be derived from maintaining the invariant of W (Lemma 6.8).

Corollary 6.10. For a path P ∈ P and an edge e = (u1, u2) with u1 ∈ P ↓ and u2 /∈ P ↓, let vi be
the deepest vertex in P that has an outer mincut partner w where u1 ∈ v↓i and u2 ∈ w↓. Then, there
exists an ancestor of w in W when returned from LocalUpdate(vi) at iteration i in Algorithm 1.

Proof. It suffices to show that e ∈ Ê at iteration i after returning from LocalUpdate(vi). Then the
lemma is implied by the correctness guarantee of Lemma 6.8.

Since vi is the deepest vertex in P that has an outer mincut partner w where u2 ∈ w↓, the edge
e has not obtained its mincut candidate g(e, P) yet, hence e ∈ Ê.

Using Corollary 6.10, we are able to prove that all minimal incomparable 2-respecting mincut
candidate can be correctly found:

Proof of the correctness of Lemma 6.2. For any right edge e = (u1, u2), suppose the minimal mincut
of e is v↓ ∪w↓ where u1 ∈ v↓ and u2 ∈ w↓. By Lemma 6.9, WLOG, suppose w is a Pv-outer vertex
where Pv is the path containing v. First, we show that there doesn’t exist any mincut v′↓ ∪ w′↓

containing e such that v′ ∈ v⇓. Otherwise, the intersection of v′↓ ∪w′↓ and v↓ ∪w↓ will be a smaller
mincut containing e, contradicts to minimality.

27

Let P = Pv for brevity. By the argument above, v is the deepest vertex in P that has an outer
mincut partner w where u1 ∈ v↓i and u2 ∈ w↓. Then by Corollary 6.10, there exists w′ to be an
ancestor of w such that w′ ∈ W at the iteration of v in Algorithm 1. Therefore, the algorithm
will extract the edge e since u1 ∈ v↓ and u2 ∈ w′↓. Then the algorithm finds w as it is the lowest
ancestor of u2 and also a P -outer mincut partner of v. Finally, the algorithm sets g(e, P) = (v, w)
as desired.

Finally, we prove that the invariant for W and Ê holds.

Proof of Lemma 6.8. The first and second invariants are directly from the algorithm.

Now we prove the third invariant correctness guarantee. Consider when the algorithm returns
from LocalUpdate(vi). For any edge e = (u1, u2) ∈ Ê where u2 /∈ P ↓ such that there exists a
P -outer mincut partner of vi that is an ancestor of u2, let w be the lowest P -outer mincut partner
of vi that is an ancestor of u2, then we prove that w ∈W .

Observe that val∗ is non-increasing over the time. Let j be the largest index such that C⊥vj ,P (w) ̸=
C⊥vj−1,P

(w). Since w is a mincut partner of vi, we deduce that w is inserted to W in LocalUpdate(vj)
and val∗ doesn’t change during the iterations (j, i], which implies that W is incremental in the
following iterations. Therefore, w remains in W when the algorithm returns from LocalUpdate(vi).

6.5 Runtime Analysis

Proof of the running time of Lemma 6.2. First, for the preprocessing step stated in the beginning
of Section 6.3, it takes O(m log n) time to initialize val[w] = C(w↓) for every vertex w and create
the dynamic tree on T . After given a path P , it takes constant dynamic tree operations to initialize
val∗.

In iteration i of Algorithm 1, we show that the cost of the subroutines LocalUpdate(vi) is
in O(d(v↓i \ v

↓
i−1) log n) time. And we show that the total time processing AssignMinCut(vi) is

O(d(P ↓) log n) for the whole path P . Therefore, we deduce that the total time processing a path P
is within O(d(P ↓) log n) time.

In Algorithm 2 LocalUpdate(vi), for each edge e with one endpoint in v↓i \ v
↓
i−1, the algorithm

invoke constant time dynamic tree operations and BST operations. Therefore, the total time cost
is O(d(v↓i \ v

↓
i−1) log n).

In Algorithm 3 AssignMinCut(vi), it only goes into the if clause when there exists some mincut
partner of vi. Then the time cost will be O(pi + qi log n) where pi is the size of set W and qi is the
number of edges extracted from the BST in iteration i. Since W is reset to be empty each time
when the if-clause is executed, and by line 11 in Algorithm 2 each edge in E(P ↓) causes at most
one insertion to W , hence

∑
i pi is bounded by O(d(P ↓)). Furthermore, each edge got inserted and

deleted at most once in Ê so
∑

i qi is bounded by O(d(P ↓)).

Therefore, the algorithm preprocesses G = (V,E) and spanning tree T in O(m log n) time, and
processes each path P in O(d(P ↓) log n) time.

28

7 Putting Everything Together: Proof of Lemma 3.5

Finally, we show that given a spanning tree T , we can combine the results in Sections 5 and 6
to get the minimal 2-respecting mincut of every edge e in O(m log2 n) total time. As the discussion
below Lemma 3.5, the mincut can be classified into three types.

Type 1. By Lemma 3.8, the algorithm computes the minimal 1-respecting mincut candidate for
every edge e.

Type 2-Comparable. By Lemma 5.1, the algorithm computes the minimal comparable 2-respecting
mincut candidates for every edge e.

Type 2-Incomparable. By Lemma 6.1, the algorithm computes the minimal incomparable 2-
respecting mincut candidates for every edge e.

For each edge e, we get three minimal mincut candidates as above. If all of the three candidates
are null, then the minimal 2-respecting mincut of e respects to T is null. Otherwise, the minimal
2-respecting mincut of e respects to T is the mincut with the smallest size among the minimal
mincut candidates.

Since the algorithm for each case runs in O(m log2 n) time and the comparing time is constant
for each edge, the whole algorithm runs in O(m log2 n) total time, concluding Lemma 3.5.

Acknowledgment

We thank David Karger and Debmalya Panigrahi for their clarification related to [KP09].

References

[AHLT05] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintain-
ing information in fully dynamic trees with top trees. Acm Transactions on Algorithms
(talg), 1(2):243–264, 2005. 10, 11

[BLS20] Nalin Bhardwaj, Antonio Molina Lovett, and Bryce Sandlund. A simple algorithm
for minimum cuts in near-linear time. In Susanne Albers, editor, 17th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2020, June 22-24, 2020, Tór-
shavn, Faroe Islands, volume 162 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. 9

[CGL+20] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic
connectivity, flows, and beyond. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 1158–1167. IEEE, 2020. 2

29

[CLP22a] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting edge connectivity via
isolating cuts. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3237–3252. SIAM, 2022. 1

[CLP22b] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Edge connectivity augmentation in
near-linear time. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022, pages 137–150. ACM, 2022. 2

[DEMN21] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed
weighted min-cut in nearly-optimal time. In Samir Khuller and Virginia Vassilevska
Williams, editors, 53rd Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1144–1153, 2021. 8

[DKL76] Efim A. Dinits, Alexander V. Karzanov, and Micael V. Lomonosov. On the structure of
a family of minimum weighted cuts in a graph. Studies in Discrete Optimization, pages
209–306, 1976. 1, 3, 4

[FF09] Tamás Fleiner and András Frank. A quick proof for the cactus representation of mincuts.
EGRES Quick-Proofs Series, 3, 2009. 1

[Fle99] Lisa Fleischer. Building chain and cactus representations of all minimum cuts from
hao–orlin in the same asymptotic run time. Journal of Algorithms, 33(1):51–72, 1999.
1, 2

[Gab91] Harold N Gabow. Applications of a poset representation to edge connectivity and graph
rigidity. In [1991] Proceedings 32nd Annual Symposium of Foundations of Computer
Science, pages 812–821. IEEE Computer Society, 1991. 1

[Gab06] Harold N Gabow. Using expander graphs to find vertex connectivity. Journal of the
ACM (JACM), 53(5):800–844, 2006. 2

[Gab16] Harold N Gabow. The minset-poset approach to representations of graph connectivity.
ACM Transactions on Algorithms (TALG), 12(2):1–73, 2016. 1, 2, 6, 9, 33, 35, 36, 37,
38, 39

[GG21] Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work
and low depth. ACM Trans. Parallel Comput., 8(2):8:1–8:20, 2021. 8, 9

[GH61] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the
Society for Industrial and Applied Mathematics, 9(4):551–570, 1961. 1

[GHT18] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut
in polylogarithmic amortized update time. ACM Transactions on Algorithms (TALG),
14(2):1–21, 2018. 1

[GMW20] Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(m log2 n)
time. In 47th International Colloquium on Automata, Languages, and Programming,
ICALP, 2020. 3, 4, 9

30

[GT85] Harold N Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case
of disjoint set union. Journal of computer and system sciences, 30(2):209–221, 1985. 14

[Hen95] Monika Rauch Henzinger. Approximating minimum cuts under insertions. In Interna-
tional Colloquium on Automata, Languages, and Programming, pages 280–291. Springer,
1995. 1

[HLRW24] Monika Henzinger, Jason Li, Satish Rao, and Di Wang. Deterministic near-linear time
minimum cut in weighted graphs. In Proceedings of the 2024 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2024. 2

[HO92] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut
in a graph. In Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms (SODA), 1992. 1

[HRW20] Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge
connectivity. SIAM Journal on Computing, 49(1):1–36, 2020. 1, 2

[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In SODA, volume 93, pages 21–30. Citeseer, 1993. 1

[Kar00] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM),
47(1):46–76, 2000. 1, 2, 3, 4, 7, 8, 9, 22

[KP09] David R Karger and Debmalya Panigrahi. A near-linear time algorithm for constructing
a cactus representation of minimum cuts. In Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 246–255. SIAM, 2009. 1, 2, 4, 5, 6, 7,
8, 9, 29, 32, 33, 34, 35, 43, 45, 48

[KS96] David R Karger and Clifford Stein. A new approach to the minimum cut problem.
Journal of the ACM (JACM), 43(4):601–640, 1996. 1

[KT86] Alexander V Karzanov and Eugeniy A Timofeev. Efficient algorithm for finding all
minimal edge cuts of a nonoriented graph. Cybernetics, 22(2):156–162, 1986. 1

[KT18] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-
linear time. J. ACM, 66(1):4:1–4:50, 2018. 1, 2

[Li21] Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 384–395, 2021. 1, 2, 3, 4

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 85–92. IEEE, 2020. 1, 2

[LST20] On-Hei Lo, Jens Schmidt, and Mikkel Thorup. Compact cactus representations of all
non-trivial min-cuts. Discrete Applied Mathematics, 303, 04 2020. 1, 2

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-
query, and streaming algorithms. Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, 2020. 3, 4, 8, 9

31

[NGM97] Dalit Naor, Dan Gusfield, and Charles Martel. A fast algorithm for optimally increasing
the edge connectivity. SIAM Journal on Computing, 26(4):1139–1165, 1997. 1, 2

[NI92a] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs
and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992. 1

[NI92b] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of ak-connected graph. Algorithmica, 7(1):583–596, 1992.
1

[NK94] Hiroshi Nagamochi and Tiko Kameda. Canonical cactus representation for minimum
cuts. Japan Journal of Industrial and Applied Mathematics, 11:343–361, 1994. 1

[NNI00] Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for cactus
representations of minimum cuts. Japan journal of industrial and applied mathematics,
17(2):245–264, 2000. 1, 2

[NV91] Dalit Naor and Vijay V Vazirani. Representing and enumerating edge connectivity cuts
in rnc. In Workshop on Algorithms and Data Structures, pages 273–285. Springer, 1991.
1

[RZZ23] R Ravi, Weizhong Zhang, and Michael Zlatin. Approximation algorithms for steiner tree
augmentation problems. In Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2429–2448. SIAM, 2023. 1

[Sar21] Thatchaphol Saranurak. A simple deterministic algorithm for edge connectivity. In
Symposium on Simplicity in Algorithms (SOSA), pages 80–85. SIAM, 2021. 1, 2

[ST83] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal
of computer and system sciences, 26(3):362–391, 1983. 10, 11

[SW97] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM
(JACM), 44(4):585–591, 1997. 1

[SY23] Thatchaphol Saranurak and Sorrachai Yingchareonthawornchai. Deterministic small
vertex connectivity in almost linear time, 2023. To appear at SODA’23. 2

A Constructing Cactus from Minimal Mincuts

The goal of this section is to prove Lemma 3.2:

Lemma 3.2. Given a graph G = (V,E), a tree packing T and the set of cut labels representing
minimal mincuts of each vertex v ∈ V and each edge e ∈ E, there exists a deterministic algorithm
that computes a cactus representation in O(mα(m,n) + n|T |) time, where α(m,n) is the inverse
Ackermann function.

The difference between Lemma 3.2 and the statement given in [KP09] is that we are given all
cut labels representing minimal mincuts of all edges, while in [KP09] they are given only the labels

32

of minimal mincuts of some edges.8 Because of this, we are able to give a simpler algorithm than
the one provided in [KP09].

This section is organized as follows. In Appendix A.3 and Appendix A.4 we define the hierarchy
representation H for all mincuts. With the hierarchy representation H, a cactus can then be
constructed in linear time (Lemma A.10). In Appendix A.5 we describe the algorithm that computes
the hierarchy representation H. Before we introduce the notations and dive into the construction —
for both the warmup as well as historical reasons — we would like to introduce a cruder hierarhcical
representation which we call it nesting relation tree T̂ in Appendix A.1 and Appendix A.2. Both
warmup subsections are not strictly required in Appendix A.3 and Appendix A.4 but they become
useful for proving correctness in Appendix A.5.

A.1 Warmup I: Assumptions and Preprocessing

Let r be the root we chose to fix throughout the algorithm. As a technical reminder: from now
on, we will abuse the notation and identify every cut (X,V \ X) by the subset X where r /∈ X.
Any two cuts X and Y are nesting if either X ⊆ Y or Y ⊆ X. For any vertex v ̸= r let Xv to be
the minimal mincut of v on G. For convenience we also define Xr = V . Similarly, for each edge e,
if there exists a minimal mincut for e it is denoted by Xe; otherwise we set Xe = V .

Preprocessing: Merging Vertices with the Same Minimal Mincuts. First, without loss
of generality we may assume that all vertices (except r) have distinct minimal mincuts. This
assumption can be achieved easily by merging vertices with the same minimal mincut: if two
vertices u and v have the same minimal mincut, then any mincut does not separate u and v. If a
vertex u does not have a minimal mincut, then any mincut does not separate u and r. Therefore,
all mincuts are preserved in the merged graph.

The preprocessing can be done in linear time deterministically: the algorithm first performs a
bucket sort to all vertices’ minimal mincut labels according to their sizes and breaking ties lexico-
graphically. Then, two vertices can be merged if and only if they are neighbors in the sorted order
and they have identical cut labels. Notice that we may assume that two cuts are the same if and
only if their labels are the same.

A.2 Warmup II: Nesting Relation Tree

Readers may skip this subsection if the goal is to obtain only a high-level idea of the algorithm.
8In particular, [KP09] reduces the problem into several one-layer cactus construction problems, and piecing back

all constructed partial (and contiguous) cactus after solving these separated subproblems. The main reason for
introducing this seemly-extra reduction step is because in their algorithm some edges do not have correct minimal
mincut labels — these erroneous labelings will not cause a problem (with high probability) in the reduced problems.
This reduction makes the problem simpler to solve. However, the reduction complicates the correctness proof and
some details were omitted.

Our simplified algorithm described in this section does not depend on the reduction mentioned above. We emphasize
that this algorithm is in fact equivalent to performing [KP09] in a bottom-up fashion. We give the algorithm and the
correctness proof via a hierarchy representation introduced implicitly by Gabow [Gab16] in Appendix A.5.

33

Let v ̸= r be a non-root vertex. By the non-crossing property (Lemma 2.2) of the mincuts,
any two minimal mincuts of vertices are either nesting or disjoint. With the preprocessing from
Appendix A.1, we are able to see that for all v ̸= r, there exists a unique vertex pv ∈ V such that
Xv ⊊ Xpv and there exists no vertex u /∈ {v, p} with Xv ⊊ Xu ⊊ Xpv .9

Now, the nesting relation tree T̂ can be defined by designating pv as the parent of v for each
non-root v. It is straightforward to check that T̂ is a well-defined tree, by observing that the nesting
relations among all minimal mincuts of vertices are acyclic. The following lemma states that T̂ can
be constructed efficiently.

Lemma A.1. Given the labels to minimal mincuts of vertices and the tree packing T , there is a
deterministic algorithm that constructs T̂ in O(n|T |) time.

Proof. Consider the collection of all minimal mincuts of vertices X := {Xv}v∈V . For each vertex
v ̸= r, to find its parent pv on T̂ , it suffices to search for the second smallest sized set X that
contains v (the smallest one is Xv by definition.)

This can be done by considering each tree separatedly. Recall that each mincut has a label
(type, v, w, T). For each tree T ∈ T , we define XT to be all minimal mincuts of vertices with its
label referring to T . For any vertex v, if we are able to obtain the smallest and the second smallest
mincuts of XT for every tree T ∈ T , then we are able to obtain the parent pv by selecting the
second smallest sized minimal mincuts among the ≤ 2|T | mincuts that were returned.

Now, observe that XT is also a laminar set. Thus, if we mark the O(1) entry points for each
mincut in XT on the tree T , a simple DFS can be applied to find the first and the second smallest
mincuts in XT that contains any given vertex in O(n) total time for each tree T . Hence, the total
time required is O(n|T |).

For any vertex v ∈ V , we define T̂v to be the set of vertices within the subtree rooted at v. The
following lemma gives a neat observation to this nesting relation tree T̂ :

Lemma A.2. For all v ∈ V , Xv = T̂v.

Proof. Observe that Xu ⊆ Xv if and only if u is a descendant of v. Then the statement follows.

With the help of the nesting relation tree T̂ , the following lemma enables us to categorize any
global mincut:

Lemma A.3. Let X be any (proper) mincut on G. Then, there is a set of vertices S ⊆ V such that
all vertices in S have the same parent on T̂ and X =

⋃
u∈S T̂u.

Proof. First, observe that any mincut X satisfies X = ∪u∈XXu. To see this, if X crosses with some
minimal mincut Xv of vertex v, then by Lemma 2.2, both Xv \X and Xv ∩X are mincuts. Since
v lies in one of Xv \X and Xv ∩X, we have found a smaller mincut that contains v, contradicts
to the definition of Xv. By Lemma A.2, we further have that X = ∪u∈X T̂u so X is union of some
subtrees in T̂ .

9In [KP09] the authors call Xpv the second smallest minimal mincut of v.

34

Now we would like to show that the roots of these subtrees have the same parent in T̂ . Let
S ⊆ X be comprised of all vertices x ∈ X such that the parent of x is not in X. Suppose there
are two vertices x, y ∈ S so that their parent vertices p and q are different. Since p ̸= q, without
loss of generality we may assume that p /∈ T̂q Now, X must cross with Xq(= T̂q) since x /∈ T̂q but
y ∈ T̂q. In this case, one of Xq ∩X or Xq \X is a smaller mincut that contains q, contradicting the
definition of Xq. Hence, all vertices in S has the same parent and the statement is true.

The next Appendix A.3 gives important characterization to global mincuts, which leads to the
actual cactus construction algorithm. 10

A.3 Chains and Chain Certificates

The goal of this section is to show that every global mincut has a “simple certificate” corre-
sponding to it. This will be crucial for defining the hierarchical representation of all mincuts, which
will be given in Appendix A.4. In fact, a generalization of the fact was already shown by Gabow
[Gab16] but we give an alternative (and arguably simpler) presentation of this characterization using
terminology specific to mincuts.

Definition A.4 (Mincut Certificates). Let X ⊆ V be any set of vertices. We say X has a vertex
certificate if there is a vertex v so that X = Xv. Similarly, we say X has an edge certificate if X is
the minimal mincut for some edge e.

By the end of this section, we will prove in Lemma A.7 that every mincut must either has a
vertex certificate, an edge certificate, or a chain certificate. In order to understand the last object,
we first give the definitions of chains and chain certificates below.

Definition A.5 (inspired by [Gab16], page 33–35). A chain is a sequence of disjoint non-empty
vertex subsets (C0, C1, . . . , Cℓ) where ℓ ≥ 1 and is defined recursively:

1. For each i, Ci ⊆ V has either a vertex certificate, an edge certificate, or a chain certificate.

2. For each 0 ≤ i < ℓ, Ci ∪ Ci+1 has an edge certificate.

We say that a subset of vertices X ⊆ V has a chain certificate if there exists a chain (C0, C1, . . . , Cℓ)
such that X = ∪ℓi=0Ci. A subchain is a consecutive subsequence of a chain. A maximal chain is a
chain that is not a subchain of any longer chain.

It is very important to note that Definition A.5 is well-defined, in the sense that once all subsets
with vertex or edge certificates are fixed, chains and maximal chains will be unambiguously defined.
Now, we explore some useful properties of chains. These properties can all be derived from the
crossing lemma (Lemma 2.2).

10[KP09] stopped at the above Lemma A.3 and showed that by partitioning all mincuts according to the common
parent vertex, the cactus can be constructed layer-by-layer. However, the correctness proof to the remaining part
of [KP09] dealing with one-layer cactus construction is not explicitly stated. In the next subsection, we fill in the
missing proof (and slightly simplify their algorithm) for Karger and Panigrahi’s algorithm.

35

Lemma A.6 (basic properties of a chain). Let (C0, C1, . . . , Cℓ) be a chain and let X = C0 ∪ C1 ∪
· · · ∪ Cℓ. Then the following properties are true:

(1) X is either a mincut or the vertex set V .

(2) For any edge e leaving X (i.e., e connects X and V \X), then e has an endpoint in either C0

or Cℓ.

(3) For any 0 ≤ i < ℓ, C(Ci, Ci+1) = λ/2; also, C(C0, V \X) = C(Cℓ, V \X) = λ/2. In particular,
for any non-neighbor indices i and j such that |i− j| > 1 we have C(Ci, Cj) = 0.

(4) (Lemma 4.6 in [Gab16]) For any i, if Ci has a chain certificate (C ′
0, C

′
1, . . . , C

′
ℓ′), then this

certificate must be a maximal chain.

(5) For any edge e leaving C0 (resp. Cℓ) to V \ X, the minimal mincut of e either contains C0

(resp. Cℓ) but nothing from X \ C0 (resp. X \ Cℓ), or contains the entire X.

Proof. We prove each property one by one below.

Property (1). This can be done by induction on |X| when |X| < n: we know that Cℓ has a
certificate so it is a mincut. Now, by the fact that X \Cℓ cross with Cℓ−1 ∪Cℓ, by Lemma 2.2
we know that X is a mincut.

Property (2). Fix i with 1 ≤ i ≤ ℓ − 1. Since any subchain is a chain, by property (1) we have
A := C0 ∪ · · · ∪Ci and B := Ci ∪Ci+1 ∪ · · · ∪Cℓ are two mincuts. By Lemma 2.2, there is no
edge going from A ∩B = Ci to the outside V \X.

Property (3). For any 0 ≤ i < ℓ, we focus on the term C(Ci, Ci+1) by the following: let A =
V \ (Ci∪Ci+1)), since all of Ci, Ci+1, and Ci∪Ci+1 are mincuts, we know that any two terms
of C(A,Ci), C(Ci, Ci+1), and C(Ci+1, A) add up to the value λ. Thus, each of them must be
exactly λ/2. To show that C(C0, V \ X) = λ/2 we apply the same argument to the three
mincuts C0, C1 ∪ · · · ∪ Cℓ and X. Similar argument for C(Cℓ, V \X) = λ/2.

To prove the second statement, we assume i + 1 < j and use Lemma 2.2 on mincuts A :=
Ci ∪ · · · ∪ Cj−1 and B := Ci+1 ∪ · · · ∪ Cj . Since |i − j| > 1, we know that A crosses with B
and hence C(Ci, Cj) = C(A \B,B \A) = 0.

Property (4). Without loss of generality assume i < ℓ (otherwise we simply reverse the chain.)
Assume for the contradiction that the chain certificate of Ci is not maximal. Without loss of
generality there exists an edge e such that Xe = C ′

ℓ′ ∪ C ′
ℓ′+1. Moreover, since Ci is part of

a chain, there exists an edge f so that Xf = Ci ∪ Ci+1. By property (2), we know that one
of f ’s endpoints must be in C ′

0 (i.e., cannot be leaving from C ′
ℓ′). By property (3), the other

endpoint of f should not occur in C ′
ℓ′+1. So both endpoints of f do not occur in Xe.

If Xe and Xf cross, by the crossing lemma (Lemma 2.2), Xf \ Xe is a smaller mincut that
contains f , a contradiction.

If Xe and Xf do not cross, then Xe ⊆ Xf . Notice that now Y := Ci ∪Xe is a mincut that
crosses with Ci+1. By the crossing lemma again (Lemma 2.2) we know that C(Y \Ci+1, Ci+1 \
Y) = 0. However, f is an edge that goes from Ci \Xe (⊆ Y \Ci+1) to Ci+1 \Xe (⊆ Ci+1 \Y),
a contradiction too.

36

Property (5). We first show that C0 ⊆ Xe: suppose not, C0 cross with Xe (since e has an endpoint
in C0). Let f be an edge so that Xf = C0∪C1. Notice that Xe and Xf cross and so Xf \Xe is
a smaller mincut. Observe that Xf \Xe contains both endpoints of f because, by Lemma 2.2,
there is no edge from Xe ∩C0 to C1 ⊆ (V \Xe ∪C0). This contradicts to the fact that Xf is
the minimal mincut of f .

Now that C0 ⊆ Xe, we assume for the contradiction that Xe contains strictly more than C0

but not entire X. Then, Xe cross with A := C1 ∪C2 ∪ · · · ∪Cℓ. By Lemma 2.2 Xe \A is also
a mincut. Now Xe \A is a smaller mincut that contains e, a contradiction too.

Therefore, Xe contains either entire X or just C0 but none of vertices from X \ C0.

As we will see, each chain actually corresponds to a further-from-root part of a cycle on a cactus.

Now, Gabow’s characterization of mincuts shows that every mincut has a certificate:

Lemma A.7 ([Gab16], Lemma 4.4 and Lemma 4.5). Every mincut on G has either a vertex cer-
tificate, an edge certificate, or a chain certificate.

Proof. Assume G is connected (so λ > 0). Let X be a mincut (so the induced subgraph G[X] is
connected). We prove by induction on the size of X.

Base Case. When |X| = 1, X trivially has a vertex certificate.

Inductive Case. Now suppose |X| > 1. If X has a vertex/edge certificate then we are done.

Suppose X has no vertex/edge certificate. Consider the collection X that consists of all maximal
proper subsets of X that are mincuts. Then, since Xv ⊊ X for all v ∈ X, we know that X ̸= ∅. Take
any A ∈ X . By induction hypothesis, A has a certificate denoted as (C0, . . . , Cℓ). For convenience,
if A has a vertex certificate or an edge certificate, we use the same notation where C0 := A and
ℓ = 0.

Finally, we claim that we can actually attach the entire X \ A to either end of the certificate,
forming an authentic chain (C0, . . . , Cℓ, X \A) or (X \A,C0, . . . , Cℓ) and conclude the proof. Since
G[X] is connected, there is at least one edge e ∈ E(A,X \ A). Let Xe to be the minimal mincut
of e. We know that Xe ⊊ X because X has no edge certificate. Since Xe ∩ A ̸= ∅ but Xe is not
a superset of A (since A is maximal), we know that Xe cross A. By Lemma 2.2, both Xe \ A and
Xe ∪A are mincuts. Now, we notice that Xe ∪A is a superset of A. This implies that Xe ∪A = X
and Xe \A = X \A is a mincut.

By property (2) of Lemma A.6, e must leave from C0 or Cℓ. By property (5) of Lemma A.6,
with the clue Xe ̸= X, we know that either Xe = (X \ A) ∪ C0 or Xe = (X \ A) ∪ Cℓ. Hence, by
definition, one of (X \A,C0, . . . , Cℓ) or (C0, . . . , Cℓ, X \A) is a chain certificate of X.

The following Lemma A.8 shows that chain certificates of a mincut are basically unique. This
is helpful in the following sense: suppose we have extended the chain certificate of a mincut A to
some longer chain (let B ⊃ A be the associated mincut). Then, we do not need to store A in the
memory because the mincut A is “preserved” (as a subchain) in any chain certificate of B.

Lemma A.8 (Briefly mentioned in [Gab16], page 36). Let X be a mincut that has a chain certificate
(C0, C1, . . . , Cℓ). Then this certificate is unique up to reversing the chain.

37

Proof. Let e = (u, v) be any edge from the boundary E(V \X,C0) with v ∈ C0. (The existence of e
is guaranteed by property (2) of Lemma A.6.) Let (C ′

0, C
′
1, . . . , C

′
ℓ′) be any maximal chain certificate

of X. Without loss of generality we have v ∈ C ′
0 (reverse the chain if necessary).

Now, let i be the smallest index such that Ci ̸= C ′
i. It is easy to see that i = 0: otherwise

there are two edges e and f such that Xe = Ci−1 ∪ Ci and Xf = Ci−1 ∪ C ′
i. By property (3), the

endpoints of both e and f belongs to Ci ∩ C ′
i. We obtain a contradiction as Ci−1 ∪ (Ci ∩ C ′

i) is a
smaller mincut for either e or f (or both). Thus, C0 ̸= C ′

0 but C0 ∩C ′
0 ̸= ∅. Depending on whether

or not C0 crosses with C ′
0, there are two cases now:

Case 1: If C0 crosses C ′
0, this implies a contradiction to Lemma 2.2 because C(C0 ∩C ′

0, V \ (C0 ∩
C ′
0)) = 0 but the edge e connects C0 ∩ C ′

0 and V \X ⊆ V \ (C0 ∩ C ′
0). Therefore Ci = C ′

i for all i
and the chain is unique.

Case 2: If C0 and C ′
0 do not cross, then without loss of generality we may assume C0 ⊂ C ′

0.
Suppose there exists an index i > 0 such that C ′

0 crosses with Ci and let i to be the smallest one
among all such indices. Then, for each index j such that 0 ≤ j < i, we know that either Cj ⊊ C ′

0 or
Cj ∩ C ′

0 = ∅. However the latter case is impossible: notice that C0 ⊆ C ′
0 and Ci ∩ C ′

0, by property
(3), C0 and Ci ∩ C ′

0 are not connected in C ′
0. By property (1) C ′

0 should be a mincut and hence
must be connected, a contradiction.

Thus, C ′
0 should contain all the Cj for j < i, and there exists an edge e such that Xe = Ci−1∪Ci.

First observe that C ′
0 doesn’t contain both endpoints of e, otherwise C ′

0∩(Ci−1∪Ci) will be a smaller
mincut containing e for both cases that C ′

0 crossing with Ci−1 ∪ Ci and C ′
0 ⊂ Ci−1 ∪ Ci. Then the

edge e connects C ′
0 \ Ci and Ci \ C ′

0 but this contradicts to Lemma 2.2 for C(C ′
0 \ Ci, Ci \ C ′

0) = 0
since C ′

0 crosses Ci. Therefore C ′
0 must be a subchain (C0, C1, . . . , Ck) of the chain (C0, C1, . . . , Cℓ),

but this contradicts to property (4) of Lemma A.6 since it is not a maximal chain.

A.4 Reducing Cactus to Hierarchical Representation of Global Mincuts

The goal of this section is to reduce the problem of cactus construction to constructing a hier-
archical representation H of mincuts based on chain certificates defined in Appendix A.3.11

Lemma A.9 ([Gab16], Lemma 4.6 (i)). Consider the collection C of all mincuts X such that either
all chain certificates of X are maximal, or X has no chain certificate. Then C is laminar.12

Proof. We first show that for any two mincuts A and B that cross each other, then both A and B
have a chain certificate. Suppose A does not have a chain certificate, by Lemma A.7 we know that
A has a vertex certificate (A = Xv) or an edge certificate (A = Xe). If A = Xv for some v ∈ V then

11Gabow [Gab16] defined special directed graphs based on partial order sets called chain-trees. However, the chain-
trees are not uniquely defined. Gabow showed that a specific chain-tree can be algorithmically created based on
a particular laminar collection of mincuts. Here we define the hierarchical representation H based on exactly the
same collection as Gabow’s. There are two benefits introducing H: (1) the representation itself is based purely on
the structural property of G, not algorithmically, and (2) with the preprocessing mentioned in Appendix A.1, the
representation is unique up to reversing the chains in the chain certificates.

12The collection defined corresponds to F− in [Gab16].

38

by the crossing lemma either A \ B or A ∩ B is a smaller mincut that contains v, a contradiction.
If A = Xe then e must have one endpoint in A \B and another in A ∩B, otherwise one of the two
sets contains e, which contradicts minimality of Xe. But this implies that (A \B,A∩B) is a chain
certificate for A, which is also a contradiction. The same proof applies to B.

Now, we show that if two mincuts A and B that cross each other, then none of A and B has a
maximal chain certificate. Consider any edge e ∈ E(A ∩B,B \A). Since both endpoint of e are in
B, we know that Xe ⊆ B. Now, since A has a chain certificate, and Xe does not contain entire A,
by property (5) from Lemma A.6 we know that e is an edge that extends the chain certificate of A.
Hence, there is a chain certificate of A that is not maximal. Same proof for B.

To conclude the statement, we notice that if there are two mincuts A and B crossing each other,
then both A and B does not appear in C . So C must be laminar.

As a sanity check we note that a mincut with a vertex certificate has no chain certificate, so
Xu ∈ C for all u ∈ V . Since C is laminar on V , we know that |C | = O(n) and the total length of
chain certificates from mincuts in C is also O(n).

The Hierarchical Representation. Let C be the collection described in Lemma A.9. The
collection C naturally defines a hierarchy tree H: for each mincut A ∈ C there is a node vA in H.
Moreover, the children of vA in H are all nodes vB such that B ∈ C is the maximal proper subset
of A.

According to the definition of H and Lemma A.8, the hierarchy H is unique, but the chain
certificates are unique up to reversion. In particular, Lemma A.8 implies that every mincut X on
the graph G can be “captured” by H: if X does not have a chain certificate, then X ∈ C . Otherwise,
X has a chain certificate. By extending this chain certificate to a maximal chain, we know that there
exists a mincut Y ∈ C such that the chain certificate of X occurs as a subchain to Y ’s maximal
chain certificate.

We finish this subsection by showing that a hierarchy H can be easily turned into a cactus.
Hence, once a hierarchy H is formed with all certificates given, a cactus representation of graph G
can be constructed in linear time.

Lemma A.10 ([Gab16], Section 4.5). Given a graph G = (V,E) and its corresponding hierarchy
H with certificates in O(n) total size, a cactus representation of G can be constructed in O(n) time.

Proof. A cactus graph P can be constructed from the hierarchy H as follows. For each node vA on
H where the corresponding mincut A ∈ C has a (maximal) chain certificate (C0, C1, . . . , Cℓ). By
property (4) of Lemma A.6, all parts Ci either have a maximal chain certificate or a vertex/edge
certificate. Any superset of Ci that is proper in A has a chain representation but they are always
extendable. Thus, for each Ci there is a corresponding node vCi in H and they are children of vA.
We replace this star {(vA, vCi)}ℓi=0 by a cycle of length ℓ+ 1: (vA, vC0 , vC1 , . . . , vCℓ

).

After all the replacement are done, it is straightforward to verify that P is a cactus. Now we
assign vertices V to nodes in P . Since Xu ∈ C for all u ∈ V , by simply assign each vertex u ∈ V
to the node vXu then we are done.

39

All mincuts are preserved: a mincut with a chain certificate can be found by cutting two edges
from the replaced cycle. A mincut A without a chain certificate can be found by cutting the edge
from vA with its parent on P . On the other hand, cutting a bridge or a pair of edges in the same
cycle corresponds to a mincut too.

Now the task of constructing a cactus representation reduces to computing a hierarchy repre-
sentation H.

A.5 Constructing a Hierarchical Representation

In this section we describe an algorithm that constructs the hierarchy H defined in Appendix A.4.13

Assume that the graph has been preprocessed as described in Appendix A.1 such that every
vertex has a distinct minimal mincut. The algorithm constructs the hierarchy by processing all
vertex/edge-certificated mincuts in the non-decreasing order of their sizes.

Two variables are introduced explicitly: a (partial) collection C and a (partial) hierarchy forest
H. C is initialized as an empty set and H is initialized as an empty forest. At any moment,
the algorithm maintains a collection C of disjoint mincuts with corresponding certificate. In the
meantime, the algorithm maintains a hierarchy forest H with the invariant such that there is always a
bijection between C and the roots of all trees in H. Throughout processing the mincuts, two subsets
in C may be merged (so the corresponding trees in H may be merged at the root.) Once a mincut
A ∈ C is removed, we guarantee that some superset B of A is added to C and vA becomes a child
of vB in H.

Before we describe the steps of the algorithm, we state the most important property that leads
to the correctness of the algorithm.

Lemma A.11 (Inductive Correctness Guarantee). Upon processing a mincut of size t, any mincut
of size strictly less than t can be uniquely “represented” in H. That is, let X be a mincut with
|X| < t. If X has a chain certificate C, then there is a unique node vA in H with a chain certificate
containing C as a subchain. If X does not have a chain certificate, then X has a corresponding
node vX ∈ H.

This property explains the validity of certain steps in our algorithm. As you can see, by
Lemma A.11, at the end the algorithm returns a correct hierarchy representation H defined in
Appendix A.4. Now we describe this high-level algorithm.

Let L be the list of minimal mincuts of vertices and edges. The mincuts in L is sorted by their
size in increasing order. The algorithm processes mincuts in L one by one. Let X ∈ L be the
current processing minimal mincut. If there is already a mincut A ∈ C such that X ⊆ A, then the
algorithm does nothing. Now we assume the otherwise: X is not contained in any mincut in C . X
could be a minimal mincut of a vertex u ∈ V , or a minimal mincut of an edge e ∈ E.

Suppose that X = Xu has a vertex certificate. Using the crossing lemma (Lemma 2.2), we
deduce that the minimal mincut Xu does not cross with any mincut. In particular, Xu does not

13Our algorithm is simpler than Karger and Panigrahi’s algorithm because we do not reduce the problem into
one-layer cactus construction problems.

40

cross any mincut in the current C . In this case, we remove any mincut that is a subset of Xu from
C and add Xu to C . The hierarchy forest H is updated accordingly, by creating a node vXu and
assign the nodes vA to be its children for all A ⊆ Xu that was removed from C .

Suppose that X = Xe has an edge certificate e = (u, v) ∈ E. The algorithm checks if this edge
helps extending or creating a chain. We observe that right now u and v must belong to different
mincuts in C , otherwise there is already a mincut A ∈ C containing X. Let the mincuts A,B ∈ C
such that u ∈ A and v ∈ B. If Xe crosses with one of the mincut, say A, then we must have X \A
be a mincut. By Lemma A.11, since |X \ A| < |X|, we know that the mincut X \ A must have
already been represented in the current hierarchy H, which implies that there exists a mincut in
the current collection C that contains X \ A. Since v ∈ X \ A and by the assumption v ∈ B ∈ C ,
we know that X \A ⊆ B.

Therefore, only three cases can occur between X and A ∪ B: either X = A ∪ B, X ⊊ A ∪ B,
or X ⊋ A ∪ B. In the first case where X = A ∪ B, we know that a new chain is formed. We
create a new node vX and set vA and vB be its children in H. The certificate of vX will be a chain
certificate (A,B). In the second case where X ⊊ A∪B, we know that some chain can be extended
(or possibly, two chains are concatenated.) Without loss of generality we assume that X cross with
A. Now there will be two sub-cases, either X \ A = B or X \ A ⊊ B. If X \ A = B then on the
hierarchy H we rename vA to be vA∪B and then put vB as a new child of vA∪B. If X \ A ⊊ B,
we know that e concatenates the two chains of A and B. On the hierarchy H it suffices to merge
the two trees rooted at vA and vB, and update the certificate of vA∪B. In the third case where
X ⊋ A ∪B, similar to the vertex case, the algorithm removes all mincuts that are contained in X.
The hierarchy H is updated accordingly.

We summarize this high-level algorithm in Algorithm 4.

41

Algorithm 4 High-Level Approach for Constructing a Hierarchy Representation
Require: A graph G = (V,E), tree packing T , labels of minimal mincuts of all vertices and edges.
Ensure: A hierarchy tree H = (VH , EH). Every node on H has a certificate.
1: L ← the list of minimal mincuts of all vertices and edges, sorted by their sizes.
2: C ← ∅. ▷ A disjoint collection of mincuts.
3: H ← ∅. ▷ A hierarchy forest with certificates.
4: for each vertex/edge minimal mincut X ∈ L do
5: if there does not exist A ∈ C such that X ⊆ A then
6: if X has a vertex certificate u ∈ V then
7: AddNestingSuperset(Xu).
8: else (now X has an edge certificate e = (u, v) ∈ E)
9: Let A,B ∈ C such that u ∈ A and v ∈ B.

10: if X = A ∪B then
11: AddNewChain(Xe, A,B). ▷ Create a new chain (A,B).
12: else if X ⊊ A ∪B then
13: Swap the role of A and B so that A cross with X.
14: if X \A = B then
15: ExtendChain(Xe, A,B). ▷ Extend A’s chain by adding B at the end.
16: else (now X \A ⊊ B)
17: ConcatChains(Xe, A,B). ▷ Concat A and B’s chain certificates via Xe.
18: else (now X ⊋ A ∪B)
19: AddNestingSuperset(Xe).

Correctness Proof. We end this subsection by proving Lemma A.11, which implies that Algo-
rithm 4 does produce a correct hierarchy H after processing all minimal mincuts of vertices and
edges.

Proof of Lemma A.11. Let’s apply mathematical induction on t and let A be a mincut on G of size
|A| < t. First, since a chain certificate can only be extended or concatenated, it is straightforward
to see that if A is added to C , A will be “represented” in any future moment.Notice that when-
ever A has a vertex certificate or an edge certificate, either A will be added to C or is used for
extending/concatenating a chain.

Now, assume that A has a chain certificate (C0, C1, . . . , Cℓ) with ℓ ≥ 1. Since |A| < t, for any
0 ≤ i < ℓ we know that |Ci∪Ci+1| < t as well. Since Ci∪Ci+1 has an edge certificate, we know that
Ci ∪ Ci+1 must have been processed already for all i. If ℓ = 1, then Line 11 correctly construct a
chain. If ℓ > 1, then the mincuts Al := C0∪· · ·∪Cℓ−1 and Ar := C1∪· · ·∪Cℓ can be found uniquely
in some node (say vl and vr respectively) on H, by the induction hypothesis of Lemma A.11. Since
the node that represents C1 can also be uniquely found as a child of both vl and vr, we conclude
that vl = vr. Therefore, A can be found uniquely in v = vl = vr too.

42

A.6 Efficient Implementation of Algorithm 4

Once the high-level idea is confirmed, the remaining parts of the implementation become rela-
tively easier tasks. There may be different ways to implement Algorithm 4, and we give one of them
in this subsection.

For C the algorithm maintains an additional disjoint set data structure (with Union and Find
operations). For any mincut A ∈ C , we store (1) its size |A|, (2) one vertex v ∈ A, and (3) certificates
of A. If there are multiple certificates available for the same mincut, we store one certificate of each
kind: vertex, edge, and chain. For a chain certificate (C0, C1, . . . , Cℓ), we assume that a doubly
linked list of edges (e1, e2, . . . , eℓ) is stored in the memory where Xei = Ci−1 ∪ Ci for all 1 ≤ i ≤ ℓ.
That said, the operations to chains (e.g., AddNewChain in Line 11, ExtendChain in Line 15, and
ConcatChains in Line 17) can be implemented in a straightforward way in O(1) time).

Containment Queries. In Algorithm 4, the algorithm is often required to test whether two
given mincuts A and B satisfies A ⊆ B. (Specifically, this operation is used to implement Line 5,
Line 10, and Line 14.) This test is denoted by Karger and Panigrahi [KP09] as the containment
query : Containment(A,B) returns true if and only if A ⊆ B. In [KP09] the authors merely
mentioned that the containment queries can be answered in O(1) by answering LCA queries in the
corresponding tree. The authors did not describe an algorithm that answers containment queries
— it becomes highly non-trivial when A or B has a chain certificate. Fortunately, thanks to the
crossing lemma, most of the containment queries in the high-level Algorithm 4 can be implemented
by simply checking and comparing the sizes of the mincuts. In below, we describe the detailed
implementations line by line.

Line 1. First of all, Line 1 in Algorithm 4 can be done efficiently in O(m+n|T |) time, by computing
the sizes of the mincuts in O(n|T |) time and performing a bucket sort in O(m+n) time. Notice
that in order to correctly implement Line 19, we require that the same minimal mincuts are
listed together. This can be achieved by, e.g., breaking ties using the lexicographical order of
the cut labels. Moreover, for the same mincut we process vertices first then the edges.

Line 5. Since all mincuts in C are disjoint and they are only replaced by supersets, it suffices to use
a standard disjoint set data structure supporting membership queries. In particular, Find(x)
returns the mincut in C that contains x, or ⊥ if such mincut does not exist.

To implement Line 5, if X = Xu is a minimal mincut of vertex u, then we know that
Find(u) =⊥, and that the if statement is always evaluated to true.

If X = Xe is a minimal mincut of an edge e = (u, v). We observe that there exists A ∈ C
that contains X if and only if Find(u) = Find(v).

Line 10. Let X = Xe with e = (u, v). Suppose now that Find(u) ̸= Find(v) and there are
two mincuts A,B ∈ C with u ∈ A and v ∈ B. There are only three cases to distinguish:
X = A∪B, X ⊊ A∪B, and X ⊋ A∪B. Since A∩B = ∅, it suffices to compare the size |X|
with |A|+ |B|.

Line 13. To test whether A ⊆ X, we utilize the cut label of X and the certificate of A. Let
(type, v, w, T) be the cut label of X. Using a prebuilt data structure on T it is easy to check

43

whether a vertex belongs to X in O(1) time.

If A = Xu has a vertex certificate, we know that A ⊆ X for sure by definition of minimal
mincut of u. If A = Xe′ has an edge certificate e′ = (u′, v′), then definition of Xe′ we know
that A ⊆ X if and only if u′ ∈ X and v′ ∈ X, and this can be tested in O(1) time. If A has
a chain certificate (C0, C1, . . . , Cℓ), we know that by property (5) from Lemma A.6, A cross
with X if and only if exactly one of {C0, Cℓ} is contained in X but the other one does not.
To test so, it suffices to choose an arbitrary vertex from each of C0 and Cℓ and test whether
or not it belongs to X. This can be done in O(1) time too.

Line 14. To test whether X \ A = B or not, it suffices to check again if B ⊆ X or B cross with
X. This can be achieved as described above (implementation of Line 13).

AddNestingSuperset. It is a bit challenging if we want to search for all mincuts that are currently
in C that is contained in the given mincut X — enumerating all vertices in X and then using
the disjoint set data structure takes too much time!

To cope with this, we handle minimal mincuts for vertices and edges differently, and describe
the implementation details below.

Vertex Case (Line 7). Let X = Xv be the minimal mincut of a vertex v ∈ V . A cool trick
is, we can implement this step utilizing the nesting relation tree T̂ defined in Appendix A.2,
which requires O(n|T |) preprocessing time by Lemma A.1.

Let Cv = {u1, u2, . . .} be the children of v on T̂ . We notice that upon processing Xv, all
minimum mincuts of ui must have been processed already. Hence, by Lemma A.11, for each
ui there exists some mincut Ai ∈ C that contains Xui . Therefore, it suffices to query the
disjoint set data structure |Cv| times to identify all mincuts that are covered by X.

Since T̂ is a tree, there will be exactly n− 1 Find calls and at most n− 1 Union calls to the
disjoint data structure in total.

Edge Case (Line 19). Unfortunately all minimal mincuts of edges does not have a hierarchy
representation as T̂ in the vertex case, so the method we use for the vertex case does not apply
to this edge case14. However, this case can be solved easily by making sure we process a bunch
of identical minimal mincuts at a time. Consider the set F of all edges f such that Xf = Xe.
We claim that the sub-collection of mincuts that contain endpoints to any f ∈ F is exactly
the set of all mincuts to be subsumed. The “⇐” direction is trivial, and the “⇒” direction is
true because G[X] is connected, and any edge f ∈ F connecting these mincuts whose minimal
mincut has not been processed yet must have Xf = Xe.

In conclusion, we successfully proved Lemma 3.2 by providing an algorithm that constructs a
cactus in O(mα(m,n)+n|T |) time. Notice that it is linear time on a not-so-sparse graph whenever
m = Ω(n|T |) and |T | = Ω(log n).

14No pun intended.

44

B Minimal Mincuts of Vertices: Proof of Lemma 3.4

B.1 On the Missing Case in [KP09]

In [KP09], the key subroutine is computing the minimal mincut for vertices. Under their frame-
work, they compute Type 1, Type 2-Comparable and Type 2-Incomparable minimal 2-respecting
mincut for vertices. We believe that their approach is correct, but there seems to be a missing case
for computing the minimal incomparable 2-respecting mincut of vertices.

In one of the cases where they compute the minimal incomparable mincut partner for each
vertex v (corresponds to Lemma B.2), they define the “outermost” minimal minprecut parter of v.
In Section 3.1 of [KP09], two copies of the tree S and T are maintained. One of them is the shrunk
tree S where the algorithm contracts processed boughs and produces the bough decomposition. On
the other hand, the algorithm does not shrink T (see [KP09, Figure 2]). The outermost minprecut is
then defined and computed on the uncontracted tree T . Upon processing the bough (v1, v2, . . . , vk)

where v1 is the lowest vertex, the algorithm examines all edges incident to any vertex in v↓k with
a postorder traversal, and then dynamically maintains the outermost minimal minprecut partner.
However, in the case where the outermost partner lies in v↓i \ v

↓
i−1, this partner may become invalid

once the algorithm visits vi. Their algorithm did not describe how to update the “outermost” partner
correctly in this case.

r = v4

v3

v = v2

u = v1

w

w′

S
T

32

Figure 5: A Missing Case.

An Example. Recall the definition of incomparable precut value
C⊥v (w) = C(w↓) − 2C(v↓, w↓). Consider the graph in Figure 5 and
the green spanning tree T , we have

C⊥u (w′) = C(w′↓)− 2C(u↓, w′↓) = 4− 2× 3 = −2 .

C⊥u (w) = C(w↓)− 2C(u↓, w↓) = 3− 2× 2 = −1 .

C⊥v (w′) =∞ . (since w′ ∥ v)
C⊥v (w) = C(w↓)− 2C(v↓, w↓) = 3− 2× 2 = −1 .

Therefore, w is the unique outermost minimal minprecut of v,
and w′ is the unique outermost minimal minprecut of u. But there
doesn’t exist any edge between X = v↓\u↓ = {v, w′} and w↓, which
turns out to be a missing case for Lemma 3.4 of [KP09].

Note that maintaining the minprecuts on the uncontracted tree T instead of the shrunk tree
S is necessary. The reason is, it is possible to have a vertex v whose all minprecut partners are
processed in boughs of earlier phases. However, if the algorithm shrunk the bough after processing
it, the minprecut values at vertices on that bough are no longer available.

In the next subsection, we provide a simpler and complete algorithm that uses a completely
different approach compared to [KP09].

45

B.2 Our Algorithm

A natural question is this: can we add a self-loop on each vertex and reduce the problem
of computing minimal mincut for vertices to computing minimal mincut for edges? The reason
we cannot prove this way is that, for the incomparable case, the direction of the reduction is
actually opposite. Recall that, Lemma 6.3 computes the minimal incomparable 2-respecting mincut
candidates for vertices, and we use it to prove Lemma 6.1 which computes minimal incomparable
2-respecting candidates for edges. Therefore, proving Lemma 6.3 will be one of the main tasks in
this section. The key insight is again exploiting the structural property of 2-respecting mincut and
using top-tree to find the minimal one. (See the proof of Lemma B.2 at the end of this subsection.)

On the other hand, we can use the self-loop idea to compute the minimal comparable 2-respecting
mincut candidates for vertices using Lemma 5.1, which does not involve in a circular proof.

Corollary B.1. There is an algorithm that, given a spanning tree T of G = (V,E), in total time
O(m log2 n) computes, for every vertex u ∈ V an comparable 2-respecting minimal mincut candidate
f(u) = (vu, wu) or null with the following guarantee:

If there exists comparable 2-respecting cut that separating u from root r, then v↓u \ w↓
u is such a

mincut with smallest size.

Proof. Given a graph G = (V,E), we insert a self-loop edge eu on each vertex u ∈ V . Denote the
new graph as G′ = (V,E′). By Lemma 5.1, given the graph G′ and the spanning tree T , there is an
algorithm computing a comparable 2-respecting minimal mincut candidate f(e) = (ve, we) for each
edge e ∈ E′ with the following guarantee: if the minimal mincut of e is a comparable 2-respecting
cut of T , then v↓e \w↓

e is the minimal mincut of e. Therefore, for each vertex u ∈ V , the comparable
2-respecting minimal mincut candidate of u can be set as f(u) = f(eu), since the minimal mincut
of u is the same as the minimal mincut of eu.

We shall prove Lemma 3.4 which computes minimal 2-respecting mincut candidates for vertices.
The proof is essentially the same as Section 7, except that we use the corresponding subroutines
computing each type of 2-respecting minimal mincut for vertices.

Proof of Lemma 3.4. Given a spanning tree T , there are three types of 2-respecting cut of T . For
each type, we compute the minimal mincut candidates for vertices.

Type 1. By Lemma 3.7, the algorithm computes the minimal 1-respecting mincut candidate for
every vertex v.

Type 2-Comparable. By Corollary B.1, the algorithm computes the minimal comparable 2-
respecting mincut candidates for every vertex v.

Type 2-Incomparable. By Lemma 6.3, the algorithm computes the minimal incomparable 2-
respecting mincut candidates for every vertex v.

For each vertex v, we get three minimal mincut candidates as above. If all of the three candidates
are null, then the minimal 2-respecting mincut of v respects to T is null. Otherwise, the minimal

46

2-respecting mincut of v respects to T is the mincut with the smallest size among these minimal
mincut candidates.

Since the algorithm for each case runs in O(m log2 n) time and the comparing time is constant
for each vertex, the whole algorithm runs in O(m log2 n) total time.

In the rest of this section, we focus on proving Lemma 6.3, which exploits the following lemma
as a key subroutine.

Lemma B.2. There is an algorithm that, given a graph G = (V,E) and a spanning tree T ∈ T ,
in total time O(m log2 n) computes, for every vertex v ∈ V , a vertex called minimal incomparable
mincut partner rv ∈ V ∪ {null} with the following guarantee: if there exists incomparable mincut
partner of v, then rv is the incomparable mincut partner of v with the smallest subtree size r↓v.

With Lemma B.2, we can efficiently compute minimal incomparable 2-respecting mincut can-
didates for vertices, since all the minimal incomparable 2-respecting mincut candidates for vertices
are of the form v↓ ∪ r↓v for some v. We shall prove Lemma 6.3, and defer the proof of Lemma B.2
to the end of this subsection.

Proof of Lemma 6.3. Observe that if an incomparable 2-respecting mincut contains u, it will also
contain all the descendants of u. Hence, the minimal incomparable 2-respecting mincut of u is either
the minimal incomparable 2-respecting mincut of the parent of u or the minimal incomparable 2-
respecting mincut u↓ ∪ r↓u. Therefore, we can find the minimal incomparable 2-respecting mincut of
all the vertices using a one-time depth-first-search after computing all the rv in Lemma B.2.

The algorithm for Lemma B.2 is the main technical contribution of this subsection. We highlight
that top-tree is again the right data structure for exploiting the structural property: using MinTree↓

we can find the partner with minprecut value and break tie by finding the one with smallest subtree
size, which meets exactly the criteria of minimal incomparable mincut partner.

Proof of Lemma B.2. We will use the reduction to path from Lemma 4.1. For any P ∈ P, define
g(e, P) = rv if v ∈ P and e is the tree edge with v being the lower vertex, otherwise g(e, P) = null.

Given a path P = (v1, v2, . . . , vk) from the path decomposition with v1 being the deepest vertex,
our algorithm will process vi starting from i = 1, 2, . . . , k. We will maintain the invariant that once
we process the vertex vi the incomparable precut values C⊥vi(w) for all w ⊥ vi can be accessed via
val[w].

Next we show how to maintain the invariant. In the preprocessing step before the path P was
given, we set val[w] = C(w↓) for each vertex w ⊥ v1 and ∞ for w ∥ v1, which can be computed in
O(m log n) time. Now we start from the deepest vertex v1, the algorithm needs to add −2C(v↓1, w↓)
to each val[w] so that val[w] = C⊥v1(w). To achieve this efficiently, we create a dynamic tree on T

(Lemma 4.2). For each edge (u, u′) where u ∈ v↓1, we invoke AddPath(u′, 2C(u, u′)) so that two times
the weight of the edge (u, u′) is added to val[w] for each w ∈ u′↑.

Then, the algorithm scans through the rest of vertices v2, v3, · · · vk on the path one by one.
Suppose the algorithm reaches vi now. With the invariant after processing vi−1, it suffices to add

47

2C(v↓i \ v
↓
i−1, w) to val[w] for each w ⊥ vi by invoking AddPath(u′, 2C(u, u′)) for each edge (u, u′)

where u ∈ v↓i \v
↓
i−1. (These edges can be found in O(d(v↓i \v

↓
i−1)) time using a DFS from vi without

searching the subtree rooted at vi−1.) Therefore, in O(d(v↓i \ v
↓
i−1) log n) time, val[w] are updated

to C⊥vi(w) for all w ⊥ vi.

After obtaining C⊥vi(w) values, we compute the minimal incomparable mincut partner rvi by the
following dynamic tree operations. We first invoke Cut(vi,parent(vi)); then rvi can be found by
MinTree↓(parent(vi)); finally invoke Link(vi, parent(vi)) to restore the tree.

From the discussion above, we have an algorithm that, given a path P , computes g(e, P) for
all e ∈ E(P ↓) in O(d(P ↓) log n) time. By plugging in the path decomposition Lemma 4.1, we
obtain an algorithm that computes rv of all vertices v ∈ V in O(m log2 n) total time, because the
preprocessing time is tp = O(m+ n log n) for computing C(w↓) and building the dynamic tree.

C The Algorithm from [KP09] Runs in Ω(m log4 n) Time

Here, we give an explanation of why the algorithm by [KP09] takes Ω(m log4 n) time. For the
first log factor, their algorithm randomly generates Θ(log n) graphs from the original input graph as
follows: in each copy, an edge with weight w is contracted with probability min{ w

2λ , 1}. Note that
each contracted graph could still contain Θ(m) edges even if we increase the contraction probability
by any constant (e.g. a complete graph with unit-weight edges).

Their algorithm then spends at least Θ(m log3 n) time on each contracted graph, which is our
time-bound. These three log factors come from (1) there are Θ(log n) trees in the tree packing,
(2) for each tree, there are Θ(log n) phases in the bough decomposition, (3) for each phase, we
need to process Θ(m) edges using dynamic tree data structure, each of which takes Θ(log n) time.
Therefore, in total, the algorithm by [KP09] takes Ω(m log4 n) time, while ours avoids generating
the randomized Θ(log n) copies of the graph and takes only O(m log3 n) time.

48

	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 Crossing Mincuts, Uniqueness of Minimal Mincuts
	2.2 Cactus: Representation of all Global Mincuts

	3 The Framework of karger2009near and Our Improvement
	3.1 2-Respecting Mincuts and Tree Packing
	3.2 Cut Labels and Three Types of 2-Repecting Mincuts
	3.3 Computing Cut Labels Efficiently
	3.4 Technical Contribution

	4 Useful Tools
	5 Comparable 2-respecting Minimal Mincuts of Edges
	5.1 Reduction to Computing Lower Vertices
	5.2 Computing the Lower Vertex for each Edge
	5.2.1 Computing Highest Partner of each Vertex
	5.2.2 Main Algorithm for Computing Lower Vertices

	6 Incomparable 2-respecting Minimal Mincuts of Edges
	6.1 Minimum v-Precuts and P-Outer Minimum v-Precuts
	6.2 Algorithm Description
	6.3 Implementation
	6.4 Correctness
	6.5 Runtime Analysis

	7 Putting Everything Together: Proof of lem:labeling-edges
	A Constructing Cactus from Minimal Mincuts
	A.1 Warmup I: Assumptions and Preprocessing
	A.2 Warmup II: Nesting Relation Tree
	A.3 Chains and Chain Certificates
	A.4 Reducing Cactus to Hierarchical Representation of Global Mincuts
	A.5 Constructing a Hierarchical Representation
	A.6 Efficient Implementation of alg:cactus-high-level

	B Minimal Mincuts of Vertices: Proof of lem:labeling-vertices
	B.1 On the Missing Case in karger2009near
	B.2 Our Algorithm

	C The Algorithm from karger2009near Runs in (m4 n) Time

