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ABSTRACT1 

Current approaches for feature selection on multiple 

data sources need to join all data in order to evaluate 

features against the class label, thus are not scalable and 

involve unnecessary information leakage. In this paper, 

we present a way of performing feature selection 

through class propagation, eliminating the need of join 

before feature selection. We propagate a very compact 

data structure that provides enough information for 

selecting features to each data source, thus allowing 

features to be evaluated locally without looking at any 

other information. Our experiments confirmed that our 

algorithm is highly scalable while effectively preserving 

the data privacy. 
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1. INTRODUCTION 

In scientific collaborations and business initiatives, data 

often reside in multiple data sources in different formats. 

Classification on such data is challenging, as the 

presence of many irrelevant features causes problems 

on both scalability and accuracy. Additionally, as data 

may be collected from different data providers, if 

irrelevant features are not removed before data 

integration, unnecessary details will be revealed to other 

data sources, causing problems on data privacy. 

To address these concerns, feature selection is needed 

as it effectively reduces the data size and filters out 

noises, while limiting the information shared among 

different data sources. However, with data scattered 

among multiple sources and the class label exists in 

only one of the data sources (“class table”), current 

approaches for feature selection have to perform join 

before features can be evaluated against the class label. 

Example 1.1 Consider a toy example in Figure 1. 
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Given “Credit Card” table and “Transaction” table, 

suppose we want to select features that are relevant to 

determine whether certain credit card is in good 

standing or not. A straight-forward method would join 

these tables on the common feature “Account No”, 

resulting in a joined table with 8 records and 9 attributes. 

Each feature can then be examined against the class 

attribute in the joined table. ■ 

Several problems arise with this approach. Firstly, as 

the join operation is expensive and there is blow-up in 

the data size, it is a waste in both time and space as 

many features will be removed by subsequent feature 

selection. Secondly, unnecessary details are revealed 

which violates the data privacy constraint, thus is 

undesirable. In addition, there are cases where learning 

is done on some query results defined with each user 

specification, e.g., to study personal behaviors, user 

may want to join the two example tables on persons’ 

names. It is thus impossible to materialize the joined 

result once and use it for all subsequent learning. 

In this paper, we propose a way to perform feature 

selection without join. We observe that a feature 

selection algorithm is essentially a computational 

solution that measures the class relevance of all features. 

For typical relevance measures, all information required 

in the computation is the class distribution associated 

with each feature. If the class information can be 

propagated to all data sources, it is easy to evaluate all 

features locally. Thus, instead of evaluating all features 

in a central table, we push the class labels into each 

individual data source. In other words, we push the 

process of feature selection ahead of the join operation. 

2. Related Works 

In multi-relational learning such as [1,10,13], the target 

entity is an “object”, which is one entry in the target 

table. Features in all non-target tables are properties of 

the target object. However, the problem we are dealing 

with is conceptually different. We regard each entry in 

the final joined table as our target entity, i.e., 

classification is defined on joined instances. 

A number of surveys on feature selection methods are 

available [3,8]. In general, it’s a process that chooses an 

optimal subset of features according to certain criterion  



 

Credit 

Card 

Acc. No Card 

Holder 

Class 

C1 A1 Mary Good 

C2 A1 Michael Good 

C3 A2 Helen Bad 

C4 A2 John Good 

Credit Card Table 

Trans. 

No 

Acc. 

No 
Date Customer Type Amount 

1 A1 02/12’02 Michael transfer 100.00 

2 A1 03/03’03 Michael withdraw 200.00 

3 A2 05/20’02 John deposit 390.98 

4 A2 11/01’03 Helen transfer 34.00 

Transaction Table 

Figure 1. Example Database with Many-to-Many Relationship 

[7]. Previous works on feature selection focused on 

developing evaluation criteria and search strategies, 

given one flat table with a set of features. Not much 

work is done when it comes to feature selection across 

multiple relations, other than the intuitive join approach. 

Sampling is another technique that is often used for 

scalability. However, as it only operates on a portion of 

the original data, the results are only approximations. 

Also, it does not address the data privacy issue at all. As 

one work that is close to ours, the VFREL algorithm 

proposed in [5] made use of feature selection to reduce 

the dataset size before passing the flattened (joined) 

data to a propositional learner. At each iteration, a small 

sample of the flattened database is used to eliminate 

features that are most likely to be irrelevant. That is, 

they still perform join on a portion of data at each step 

in order to select features. 

Our work differs as we eliminated the need of join 

before feature selection. In addition, we also address the 

data privacy problem while there is no such concern in 

their context. 

The idea of information propagation across multiple 

relations has been explored [13]. However, they 

propagated IDs of target records, which may be of 

arbitrarily large size. And they need to do propagation 

in each iteration of building the classifier. We propagate 

class labels with a size equal to the number of classes 

(typically very small in classification). Once the class 

label is propagated to each table, all evaluation is done 

locally and there’s never need to propagate again. 

3. Algorithm Overview 

Figure 2 compares our approach with the existing 

approach. With our framework, feature selection is done 

through class propagation where class distribution 

information is propagated from the class table to other 

tables without join. By pushing feature selection ahead, 

we only need to join a much smaller subset of features 

at a later stage, thus the algorithm is more scalable and 

data privacy is protected. 

In order to measure the relevance of features, typical 

measures such as information gain [9] and gini index [2] 

are defined based on the relative frequency of each class. 

Everything that is needed for calculating these measures 

is contained in the projection of the examined feature 

values and their class distribution. Such projection has 

been referred to as “AVC (Attribute-Value-Class label) 

set” in [4]. The size of such AVC set is proportional to 

the number of distinct values in each attribute. To 

obtain such AVC values, the only data structure that 

needs to be propagated is the class distribution 

information. This observation leads to the first and the 

core part of our algorithm, class propagation. 

The operations after class propagation are rather 

standard, including feature selection, join and 

classification. As our focus is to study the effect of class 

propagation, we simply made use of some commonly-

used existing methods. We do not intend to introduce a 

new feature selection or classification algorithm. Rather, 

we provide a method to perform feature selection 

directly on multiple data sources. Since we measure the 

relevance of features in the same way as it is done on 

the joined table, it is guaranteed the resulted feature set 

is exactly the same as would be produced by joining the 

databases. In the next section, we will focus on details 

of class propagation. 

4. Class Propagation 

To propagate class information, we maintain a data 

structure at each data source, named “ClsDis” (class 

Figure 2. Work Flow Overview 
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Figure 3. Class Propagation on the Example Database with 2 tables 
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distribution vectors), in the form of “<count1, count2, … 

countn>” where n is the total number of classes. Each 

count in the vector represents the number of instances 

of the corresponding class in the joined table. 

Operations on such class vectors are performed on each 

corresponding pair of class counts. For some operator 

‘⊗’ and two vectors V: <C1,C2,…,Cn> and V’: 

<C1’,C2’,…,Cn’>, V ⊗ V’=<C1 ⊗ C1’, C2 ⊗ C2’, …, Cn 

⊗ Cn’>. (e.g., <1,2>*<3,4>=<1*3, 2*4>=<3, 8>) 

4.1 An example with a 2-table database 

Consider our toy example database in Figure 1. Credit 

Card table contains the class label (credit standing 

“good” or “bad”). We consider the query where we 

need to join the tables on “Acc. No” for classification. 

Step 1. Initialization 

In the class table, if a tuple has class i, its class vector is 

initialized such that counti=1 and countj=0 where j≠ i. 

For non-class tables, all counts of the class vectors are 

initialized to 0s. 

Step 2. Forward Propagation 

Class propagation starts from the class table. Since we 

are joining on the attribute AccNo, for each tuple in 

Transaction table with AccNo = Ai, its “ClsDis” is the 

aggregation of class counts in Credit Card table with 

the same AccNo. 

This results in the Transaction table with propagated 

“ClsDis” as shown after step 2 in Figure 3. Note the 

total class count in Transaction table have reflected the 

effect of join on both tables. 

Step 3. Backward Propagation 

Then we need to propagate back from Transaction table 

to Credit Card table, as the class counts in Credit Card 

table have not reflected the join. Consider a tuple T with 

AccNo=Ai in Credit Card table. T will join with all the 

tuples in Transaction having this account number. Let V 

be the aggregated class counts for such tuples in 

Transaction. V is also the aggregated class counts over 

all tuples in Credit Card with this AccNo. T is one of 

such tuples. We need to redistribute V among such 

tuples in Credit Card according to their shares of class 

counts in Credit Card table. 

As an example, the third tuple in Credit Card table has 

“AccNo=A2” and gets the new “ClsDis” <0,2> as a 

result of <2,2>*(<0,1>/<1,1>), since the aggregated 

“ClsDis” with “AccNo=A2” is <2,2> in Transaction 

table, the original class vector is <0,1> in this entry of 

Credit Card table, and the aggregated class vector with 

this account number in Credit Card table is <1,1>. The 

final results are shown after step 3 in Figure 3. 

After propagation, all tables contain the same 

aggregated class count, which is the same as if we have 

joined the tables. This is also why we need to propagate 

in a backward direction, so that the effect of join is 

reflected in all tables. (We omit the formal proof due to 

the space limit.) 

4.2 General Scenarios 

In general, we can deal with datasets with acyclic 

relationships among tables, i.e., if each table is a node 

and related tables (share join predicate) are connected 



 

by edges, the resulted graph should be acyclic. 

Under this assumption, for cases with more than two 

tables and complex schemas, class vectors are 

propagated in the depth-first order from the class table. 

This process may include both forward (when 

propagating from table at a higher level downward) and 

backward (from a lower table upward) propagations. 

The last table contains class information aggregated 

from all tables. To ensure all other tables contain the 

same information, class vectors are then propagated 

back in one pass. 

5. EXPERIMENTAL RESULTS 

5.1 Experiment Settings 
We compared the performance of feature selection on 

multiple tables through class propagation (CP algorithm) 

with feature selection on joined table (Join algorithm). 

Since they both return the same set of features, we only 

need to compare their running time. We also examined 

the effect of feature selection on classification. 

We rank features according to information gain, as it is 

one of the most often used evaluation criteria. Then we 

select a top percentage of features. When join is needed, 

it is done as a standard database operation by using 

Microsoft SQL Server. As this software has a limit on 

the number of attributes in any single table (1024), 

when the dataset exceeds this limit, we wrote an 

alternative join program which is a simple 

implementation of the nested loop join [11]. For 

classification, we implemented RainForest [4] to build 

a decision tree classifier, since decision trees are 

reasonably good in performance and easy to 

comprehend [2,9]. RainForest has been shown to be a 

fast classifier on large scale data, where the traditional 

decision tree classifier C4.5 [9] can not be used when 

data is very large or has very high dimensions. 

All implementations are written in C++. Experiments 

were carried out on a PC with 2GHz CPU and 500M 

main memory running Windows XP. 

5.2 Datasets 

Mondial dataset is a geographic database that contains 

data from multiple geographical web data sources. We 

obtained it in the relational format online [12]. Our 

classification task is to predict the religion of a country 

based on related information contained in multiple 

tables. We consider all religions which are close to 

Christian
2
 as positive class and all other religions as 

negative class. We ignored tables that only consist of 
                                                                 

2  Armenian Orthodox, Bulgarian Orthodox, Christian, Christian 

Orthodox, Eastern Orthodox, Orthodox, Russian Orthodox 

geographic information. Finally we have 12 tables, the 

number of attributes ranges from 1 to 5 and all tables 

have less than 150 records with two exceptions (one 

table has 1757 records and another has 680 records). 

About 69% of data is negative and 31% is positive. 10 

fold cross validation is used on this dataset. 

Yeast Gene Regulation dataset was deduced from KDD 

Cup 2002 task 2 [6]. We obtained 11 tables that contain 

information about genes (detailed descriptions are 

omitted due to space limit). The biggest table contains 

keywords produced from abstracts that discuss related 

genes by using standard text processing techniques 

(removing stopwords, word stemming). It has 16959 

records with 6043 attributes. The class table has 3018 

records with the class label, which represents the effect 

of gene on the activity level of some hidden system in 

yeast (“has changes”(1%), “has controlled 

changes”(2%), “no changes”(97%)). Separated training 

and testing samples are used as provided in KDD Cup. 

5.3 Experiment Results 
Table 1 shows the running time on each stage of both 

algorithms and classification results on both datasets. 

Note that the step for building the classifier is exactly 

the same for both approaches, since we have the same 

joined data at this stage. Also, when 100% features are 

selected, i.e., there is no feature selection, both 

algorithms degrade to the same method. 

It can be seen that our CP algorithm runs much faster 

than the join approach. The breakdown of the running 

time shows that the major gain is on the time needed for 

joining the data. As explained earlier, the join approach 

has to join a much larger dataset, taking a long time, 

whereas we only need a fraction of that time joining 

much less features. The experiments also show that our 

class propagation process is very fast and efficient, 

giving us the benefit of doing feature selection before 

join at very little cost. 

For Mondial dataset, the accuracy difference is 

significant between 40% and 50% feature subsets, 

suggesting that some attributes are very helpful in 

identifying the class label, although they may not be 

ranked very high. In general, when more of data privacy 

is preserved (with less features revealed to other parties), 

classification accuracy starts to decrease. However, if 

the user has very strict privacy requirements, then we 

can only select less features to satisfy such constraint. 

For Yeast Gene dataset, a small number of features 

provide very accurate classification and all other 

features are irrelevant. It is shown by the perfect 

accuracy starting from 5% feature subset. When more 

features are selected, it simply prolongs the running 

time without changing accuracy. On the other hand, the 



 

total running time of the Join approach without feature 

selection is less than the total time with 10% or more 

feature selection. This is because the effect of feature 

selection on classification time is offset by the time 

spent for feature selection itself. However, this is not 

the case for our CP algorithm, as the time of our feature 

selection is much shorter and the total running time 

always benefits from feature selection. 

Mondial Dataset Yeast Gene Dataset 

Features selected (%) Features selected (%) Running Time (seconds) 

20 30 40 50 100 5 10 20 50 100 

Join 137 137 137 137 137 1099 1099 1099 1099 1099 

Feature Selection 9.1 10.6 11.7 14.7 0 1265 1587 1879 2549 0 

Building Classifier 32.1 41.2 50.1 53.5 119 50 176 370 1001 1739 
Join 

Total 178.2 188.8 198.8 205.2 256 2414 2862 3348 4649 2838 

Class Propagation 1.2 1.2 1.2 1.2 0 9 9 9 9 0 

Feature Selection 0.4 0.5 0.5 0.5 0 130 144 158 228 0 

Join 1 1 1 1 137 67 118 226 589 1099 

Building Classifier 32.1 41.2 50.1 53.5 119 50 176 370 1001 1739 

CP 

Total 34.7 43.9 52.8 56.2 256 256 447 763 1827 2838 

Accuracy (%) 71.5 72.1 69.2 98.1 98.5 100 100 100 100 100 

Table 1. Comparison of Running Time / Accuracy 

6. DISCUSSION 

In this paper, we present a way of selecting features in 

multiple data sources without join. With a clever 

propagation of class vectors, each local data source 

receives the same class distribution information as 

produced by a join approach. Features can then be 

evaluated locally. Thus the resulted feature selection 

scheme is highly scalable, while limiting the amount of 

information disclosed to other data sources. 

The idea of class propagation can be used to develop 

more complex feature selection solutions. For example, 

we can incorporate the privacy constraints directly into 

feature evaluation by defining privacy score (from 0 to 

1) for each feature. Features with higher privacy scores 

should have less chance to be selected. Since such score 

is available at each local data source, we can design 

some complex measure to evaluate the features based 

on not only the relevance to the class label, but also 

such privacy constraints. 
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