

Pushing Feature Selection ahead of Join

Rong She, Ke Wang, Yabo Xu

School of Computing Science, Simon Fraser University

rshe, wangk, yxu@cs.sfu.ca

Philip S. Yu

IBM T.J. Watson Research Center

psyu@us.ibm.com

ABSTRACT1

Current approaches for feature selection on multiple

data sources need to join all data in order to evaluate

features against the class label, thus are not scalable and

involve unnecessary information leakage. In this paper,

we present a way of performing feature selection

through class propagation, eliminating the need of join

before feature selection. We propagate a very compact

data structure that provides enough information for

selecting features to each data source, thus allowing

features to be evaluated locally without looking at any

other information. Our experiments confirmed that our

algorithm is highly scalable while effectively preserving

the data privacy.

Keywords

feature selection, class propagation, scalability, data

privacy, classification

1. INTRODUCTION

In scientific collaborations and business initiatives, data

often reside in multiple data sources in different formats.

Classification on such data is challenging, as the

presence of many irrelevant features causes problems

on both scalability and accuracy. Additionally, as data

may be collected from different data providers, if

irrelevant features are not removed before data

integration, unnecessary details will be revealed to other

data sources, causing problems on data privacy.

To address these concerns, feature selection is needed

as it effectively reduces the data size and filters out

noises, while limiting the information shared among

different data sources. However, with data scattered

among multiple sources and the class label exists in

only one of the data sources (“class table”), current

approaches for feature selection have to perform join

before features can be evaluated against the class label.

Example 1.1 Consider a toy example in Figure 1.

1 This work is supported in part by a grant from Networks of Centers

of Excellence/Institute for Robotics and Intelligent Systems, a grant

from Institute for Robotics and Intelligent Systems/Precarn, and a

grant from Natural Sciences and Engineering Research Council of

Canada.

Given “Credit Card” table and “Transaction” table,

suppose we want to select features that are relevant to

determine whether certain credit card is in good

standing or not. A straight-forward method would join

these tables on the common feature “Account No”,

resulting in a joined table with 8 records and 9 attributes.

Each feature can then be examined against the class

attribute in the joined table. ■

Several problems arise with this approach. Firstly, as

the join operation is expensive and there is blow-up in

the data size, it is a waste in both time and space as

many features will be removed by subsequent feature

selection. Secondly, unnecessary details are revealed

which violates the data privacy constraint, thus is

undesirable. In addition, there are cases where learning

is done on some query results defined with each user

specification, e.g., to study personal behaviors, user

may want to join the two example tables on persons’

names. It is thus impossible to materialize the joined

result once and use it for all subsequent learning.

In this paper, we propose a way to perform feature

selection without join. We observe that a feature

selection algorithm is essentially a computational

solution that measures the class relevance of all features.

For typical relevance measures, all information required

in the computation is the class distribution associated

with each feature. If the class information can be

propagated to all data sources, it is easy to evaluate all

features locally. Thus, instead of evaluating all features

in a central table, we push the class labels into each

individual data source. In other words, we push the

process of feature selection ahead of the join operation.

2. Related Works

In multi-relational learning such as [1,10,13], the target

entity is an “object”, which is one entry in the target

table. Features in all non-target tables are properties of

the target object. However, the problem we are dealing

with is conceptually different. We regard each entry in

the final joined table as our target entity, i.e.,

classification is defined on joined instances.

A number of surveys on feature selection methods are

available [3,8]. In general, it’s a process that chooses an

optimal subset of features according to certain criterion

Credit

Card

Acc. No Card

Holder

Class

C1 A1 Mary Good

C2 A1 Michael Good

C3 A2 Helen Bad

C4 A2 John Good

Credit Card Table

Trans.

No

Acc.

No
Date Customer Type Amount

1 A1 02/12’02 Michael transfer 100.00

2 A1 03/03’03 Michael withdraw 200.00

3 A2 05/20’02 John deposit 390.98

4 A2 11/01’03 Helen transfer 34.00

Transaction Table

Figure 1. Example Database with Many-to-Many Relationship

[7]. Previous works on feature selection focused on

developing evaluation criteria and search strategies,

given one flat table with a set of features. Not much

work is done when it comes to feature selection across

multiple relations, other than the intuitive join approach.

Sampling is another technique that is often used for

scalability. However, as it only operates on a portion of

the original data, the results are only approximations.

Also, it does not address the data privacy issue at all. As

one work that is close to ours, the VFREL algorithm

proposed in [5] made use of feature selection to reduce

the dataset size before passing the flattened (joined)

data to a propositional learner. At each iteration, a small

sample of the flattened database is used to eliminate

features that are most likely to be irrelevant. That is,

they still perform join on a portion of data at each step

in order to select features.

Our work differs as we eliminated the need of join

before feature selection. In addition, we also address the

data privacy problem while there is no such concern in

their context.

The idea of information propagation across multiple

relations has been explored [13]. However, they

propagated IDs of target records, which may be of

arbitrarily large size. And they need to do propagation

in each iteration of building the classifier. We propagate

class labels with a size equal to the number of classes

(typically very small in classification). Once the class

label is propagated to each table, all evaluation is done

locally and there’s never need to propagate again.

3. Algorithm Overview

Figure 2 compares our approach with the existing

approach. With our framework, feature selection is done

through class propagation where class distribution

information is propagated from the class table to other

tables without join. By pushing feature selection ahead,

we only need to join a much smaller subset of features

at a later stage, thus the algorithm is more scalable and

data privacy is protected.

In order to measure the relevance of features, typical

measures such as information gain [9] and gini index [2]

are defined based on the relative frequency of each class.

Everything that is needed for calculating these measures

is contained in the projection of the examined feature

values and their class distribution. Such projection has

been referred to as “AVC (Attribute-Value-Class label)

set” in [4]. The size of such AVC set is proportional to

the number of distinct values in each attribute. To

obtain such AVC values, the only data structure that

needs to be propagated is the class distribution

information. This observation leads to the first and the

core part of our algorithm, class propagation.

The operations after class propagation are rather

standard, including feature selection, join and

classification. As our focus is to study the effect of class

propagation, we simply made use of some commonly-

used existing methods. We do not intend to introduce a

new feature selection or classification algorithm. Rather,

we provide a method to perform feature selection

directly on multiple data sources. Since we measure the

relevance of features in the same way as it is done on

the joined table, it is guaranteed the resulted feature set

is exactly the same as would be produced by joining the

databases. In the next section, we will focus on details

of class propagation.

4. Class Propagation

To propagate class information, we maintain a data

structure at each data source, named “ClsDis” (class

Figure 2. Work Flow Overview

Simple Approach Our Approach

Join (all features)

Feature Selection

Classification

Class Propagation

Feature Selection

Join

(with subset of features)

Classification

John

Helen

Michael

Mary

Card

Holder

<1,0>A2C4

<0,1>A2C3

<1,0>A1C2

<1,0>A1C1

ClsDis

<good, bad>

Acc.

No

Credit

Card

Credit Card Table

Transaction Table

Helen

John

Michael

Michael

Customer

<1,1>34.00transfer11/01’03A24

<1,1>390.98deposit05/20’02A23

<2,0>200.00withdraw03/03’03A12

<2,0>100.00transfer02/12’02A11

ClsDis

<good, bad>AmountTypeDate
Acc.

No

Trans.

No

Step 3:

propagate backward

Step 2: propagate forward

Total: <6,2>

Total: <3,1> Total: <6,2>

Figure 3. Class Propagation on the Example Database with 2 tables

John

Helen

Michael

Mary

Card

Holder

<2,0>A2C4

<0,2>A2C3

<2,0>A1C2

<2,0>A1C1

ClsDis

<good, bad>

Acc.

No

Credit

Card

Credit Card Table

distribution vectors), in the form of “<count1, count2, …

countn>” where n is the total number of classes. Each

count in the vector represents the number of instances

of the corresponding class in the joined table.

Operations on such class vectors are performed on each

corresponding pair of class counts. For some operator

‘⊗’ and two vectors V: <C1,C2,…,Cn> and V’:

<C1’,C2’,…,Cn’>, V ⊗ V’=<C1 ⊗ C1’, C2 ⊗ C2’, …, Cn

⊗ Cn’>. (e.g., <1,2>*<3,4>=<1*3, 2*4>=<3, 8>)

4.1 An example with a 2-table database

Consider our toy example database in Figure 1. Credit

Card table contains the class label (credit standing

“good” or “bad”). We consider the query where we

need to join the tables on “Acc. No” for classification.

Step 1. Initialization

In the class table, if a tuple has class i, its class vector is

initialized such that counti=1 and countj=0 where j≠ i.

For non-class tables, all counts of the class vectors are

initialized to 0s.

Step 2. Forward Propagation

Class propagation starts from the class table. Since we

are joining on the attribute AccNo, for each tuple in

Transaction table with AccNo = Ai, its “ClsDis” is the

aggregation of class counts in Credit Card table with

the same AccNo.

This results in the Transaction table with propagated

“ClsDis” as shown after step 2 in Figure 3. Note the

total class count in Transaction table have reflected the

effect of join on both tables.

Step 3. Backward Propagation

Then we need to propagate back from Transaction table

to Credit Card table, as the class counts in Credit Card

table have not reflected the join. Consider a tuple T with

AccNo=Ai in Credit Card table. T will join with all the

tuples in Transaction having this account number. Let V

be the aggregated class counts for such tuples in

Transaction. V is also the aggregated class counts over

all tuples in Credit Card with this AccNo. T is one of

such tuples. We need to redistribute V among such

tuples in Credit Card according to their shares of class

counts in Credit Card table.

As an example, the third tuple in Credit Card table has

“AccNo=A2” and gets the new “ClsDis” <0,2> as a

result of <2,2>*(<0,1>/<1,1>), since the aggregated

“ClsDis” with “AccNo=A2” is <2,2> in Transaction

table, the original class vector is <0,1> in this entry of

Credit Card table, and the aggregated class vector with

this account number in Credit Card table is <1,1>. The

final results are shown after step 3 in Figure 3.

After propagation, all tables contain the same

aggregated class count, which is the same as if we have

joined the tables. This is also why we need to propagate

in a backward direction, so that the effect of join is

reflected in all tables. (We omit the formal proof due to

the space limit.)

4.2 General Scenarios

In general, we can deal with datasets with acyclic

relationships among tables, i.e., if each table is a node

and related tables (share join predicate) are connected

by edges, the resulted graph should be acyclic.

Under this assumption, for cases with more than two

tables and complex schemas, class vectors are

propagated in the depth-first order from the class table.

This process may include both forward (when

propagating from table at a higher level downward) and

backward (from a lower table upward) propagations.

The last table contains class information aggregated

from all tables. To ensure all other tables contain the

same information, class vectors are then propagated

back in one pass.

5. EXPERIMENTAL RESULTS

5.1 Experiment Settings
We compared the performance of feature selection on

multiple tables through class propagation (CP algorithm)

with feature selection on joined table (Join algorithm).

Since they both return the same set of features, we only

need to compare their running time. We also examined

the effect of feature selection on classification.

We rank features according to information gain, as it is

one of the most often used evaluation criteria. Then we

select a top percentage of features. When join is needed,

it is done as a standard database operation by using

Microsoft SQL Server. As this software has a limit on

the number of attributes in any single table (1024),

when the dataset exceeds this limit, we wrote an

alternative join program which is a simple

implementation of the nested loop join [11]. For

classification, we implemented RainForest [4] to build

a decision tree classifier, since decision trees are

reasonably good in performance and easy to

comprehend [2,9]. RainForest has been shown to be a

fast classifier on large scale data, where the traditional

decision tree classifier C4.5 [9] can not be used when

data is very large or has very high dimensions.

All implementations are written in C++. Experiments

were carried out on a PC with 2GHz CPU and 500M

main memory running Windows XP.

5.2 Datasets

Mondial dataset is a geographic database that contains

data from multiple geographical web data sources. We

obtained it in the relational format online [12]. Our

classification task is to predict the religion of a country

based on related information contained in multiple

tables. We consider all religions which are close to

Christian
2
 as positive class and all other religions as

negative class. We ignored tables that only consist of

2 Armenian Orthodox, Bulgarian Orthodox, Christian, Christian

Orthodox, Eastern Orthodox, Orthodox, Russian Orthodox

geographic information. Finally we have 12 tables, the

number of attributes ranges from 1 to 5 and all tables

have less than 150 records with two exceptions (one

table has 1757 records and another has 680 records).

About 69% of data is negative and 31% is positive. 10

fold cross validation is used on this dataset.

Yeast Gene Regulation dataset was deduced from KDD

Cup 2002 task 2 [6]. We obtained 11 tables that contain

information about genes (detailed descriptions are

omitted due to space limit). The biggest table contains

keywords produced from abstracts that discuss related

genes by using standard text processing techniques

(removing stopwords, word stemming). It has 16959

records with 6043 attributes. The class table has 3018

records with the class label, which represents the effect

of gene on the activity level of some hidden system in

yeast (“has changes”(1%), “has controlled

changes”(2%), “no changes”(97%)). Separated training

and testing samples are used as provided in KDD Cup.

5.3 Experiment Results
Table 1 shows the running time on each stage of both

algorithms and classification results on both datasets.

Note that the step for building the classifier is exactly

the same for both approaches, since we have the same

joined data at this stage. Also, when 100% features are

selected, i.e., there is no feature selection, both

algorithms degrade to the same method.

It can be seen that our CP algorithm runs much faster

than the join approach. The breakdown of the running

time shows that the major gain is on the time needed for

joining the data. As explained earlier, the join approach

has to join a much larger dataset, taking a long time,

whereas we only need a fraction of that time joining

much less features. The experiments also show that our

class propagation process is very fast and efficient,

giving us the benefit of doing feature selection before

join at very little cost.

For Mondial dataset, the accuracy difference is

significant between 40% and 50% feature subsets,

suggesting that some attributes are very helpful in

identifying the class label, although they may not be

ranked very high. In general, when more of data privacy

is preserved (with less features revealed to other parties),

classification accuracy starts to decrease. However, if

the user has very strict privacy requirements, then we

can only select less features to satisfy such constraint.

For Yeast Gene dataset, a small number of features

provide very accurate classification and all other

features are irrelevant. It is shown by the perfect

accuracy starting from 5% feature subset. When more

features are selected, it simply prolongs the running

time without changing accuracy. On the other hand, the

total running time of the Join approach without feature

selection is less than the total time with 10% or more

feature selection. This is because the effect of feature

selection on classification time is offset by the time

spent for feature selection itself. However, this is not

the case for our CP algorithm, as the time of our feature

selection is much shorter and the total running time

always benefits from feature selection.

Mondial Dataset Yeast Gene Dataset

Features selected (%) Features selected (%) Running Time (seconds)

20 30 40 50 100 5 10 20 50 100

Join 137 137 137 137 137 1099 1099 1099 1099 1099

Feature Selection 9.1 10.6 11.7 14.7 0 1265 1587 1879 2549 0

Building Classifier 32.1 41.2 50.1 53.5 119 50 176 370 1001 1739
Join

Total 178.2 188.8 198.8 205.2 256 2414 2862 3348 4649 2838

Class Propagation 1.2 1.2 1.2 1.2 0 9 9 9 9 0

Feature Selection 0.4 0.5 0.5 0.5 0 130 144 158 228 0

Join 1 1 1 1 137 67 118 226 589 1099

Building Classifier 32.1 41.2 50.1 53.5 119 50 176 370 1001 1739

CP

Total 34.7 43.9 52.8 56.2 256 256 447 763 1827 2838

Accuracy (%) 71.5 72.1 69.2 98.1 98.5 100 100 100 100 100

Table 1. Comparison of Running Time / Accuracy

6. DISCUSSION

In this paper, we present a way of selecting features in

multiple data sources without join. With a clever

propagation of class vectors, each local data source

receives the same class distribution information as

produced by a join approach. Features can then be

evaluated locally. Thus the resulted feature selection

scheme is highly scalable, while limiting the amount of

information disclosed to other data sources.

The idea of class propagation can be used to develop

more complex feature selection solutions. For example,

we can incorporate the privacy constraints directly into

feature evaluation by defining privacy score (from 0 to

1) for each feature. Features with higher privacy scores

should have less chance to be selected. Since such score

is available at each local data source, we can design

some complex measure to evaluate the features based

on not only the relevance to the class label, but also

such privacy constraints.

7. REFERENCES

[1] A. Atramentov, H. Leiva and V. Honavar, A Multi-

Relational Decision Tree Learning Algorithm –

Implementation and Experiments. ILP 2003.

[2] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,

Classification and Regression Trees. Wadsworth:

Belmont, 1984.

[3] M. Dash and H. Liu, Feature Selection for classification.

Intelligent Data Analysis – An International Journal,

Elsevier, 1(3), 1997.

[4] J. Gehrke, R. Ramakrishnan and V. Ganti, RainForest: a

Framework for Fast Decision Tree Construction of

Large Datasets. The 24th VLDB conference, 1998.

[5] G. Hulten, P. Domingos and Y. Abe, Mining Massive

Relational Databases, 18th International Joint

Conference on AI - Workshop on Learning Statistical

Models from Relational Data, Acapulco, Mexico, 2003.

[6] KDD Cup 2002,
http://www.biostat.wisc.edu/~craven/kddcup/train.html

[7] H. Liu and H. Motoda, Feature selection for knowledge

discovery and data mining. Kluwer Academic Publishers,

1998.

[8] L. C. Molina, L. Belanche and A. Nebot, Feature

Selection Algorithms: A Survey and Experimental

Evaluation. ICDM 2002.

[9] J.R. Quinlan, C4.5: Programs for Machine Learning.

Morgan Kaufmann, 1993

[10] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A

midterm report. In Proc. 1993 European Conf. Machine

Learning, Vienna, Austria, 1993.

[11] R. Ramakrishnan and J. Gehrke, Database Management

Systems. McGraw-Hill, 2003.

[12] The Mondial Database, http://dbis.informatik.uni-

goettingen.de/Mondial/#Oracle

[13] X. Yi, J. Han, J. Yang, and P. Yu. Crossmine: efficient

classification across multiple database relations. ICDE

2004.

