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Finding Young Stellar Populations in Elliptical Galaxies from

Independent Components of Optical Spectra

Ata Kabán∗ Louisa A. Nolan† Somak Raychaudhury†

Abstract

Elliptical galaxies are believed to consist of a single pop-
ulation of old stars formed together at an early epoch
in the Universe, yet recent analyses of galaxy spectra
seem to indicate the presence of significant younger pop-
ulations of stars in them. The detailed physical mod-
elling of such populations is computationally expensive,
inhibiting the detailed analysis of the several million
galaxy spectra becoming available over the next few
years. Here we present a data mining application aimed
at decomposing the spectra of elliptical galaxies into
several coeval stellar populations, without the use of de-
tailed physical models. This is achieved by performing
a linear independent basis transformation that essen-
tially decouples the initial problem of joint processing
of a set of correlated spectral measurements into that of
the independent processing of a small set of prototypi-
cal spectra. Two methods are investigated: (1) A fast
projection approach is derived by exploiting the corre-
lation structure of neighboring wavelength bins within
the spectral data. (2) A factorisation method that takes
advantage of the positivity of the spectra is also in-
vestigated. The preliminary results show that typical
features observed in stellar population spectra of dif-
ferent evolutionary histories can be convincingly disen-
tangled by these methods, despite the absence of input
physics. The success of this basis transformation analy-
sis in recovering physically interpretable representations
indicates that this technique is a potentially powerful
tool for astronomical data mining.

1 Introduction

The optical spectrum of a galaxy is a linear superpo-
sition of the spectra of its billions of constituent stars.
Yet, since large populations of stars form in galaxies
at definite periods of its lifetime, and the atomic and
nuclear physics of the evolution of stellar populations,
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though complex, are well understood, the detailed mod-
elling of composite spectra of stellar populations can be
used to yield a wealth of information about the history
of a galaxy from its spectrum.

The spectrum of a star can be modelled as a
function of three parameters– its mass, its age and
its composition (since it is made mostly of hydrogen
and helium, the last parameter is characterised by the
relative abundance of other elements, and is known as
the “chemical abundance”). Elliptical galaxies, which
account for about 20% for all galaxies in the Universe,
are believed to consist predominantly of a single coeval
stellar population (e.g. [3, 12, 22]), all formed at
an early epoch in the Universe. This implies that
an elliptical galaxy can be modelled as a system of
stars, all of the same age and chemical abundance,
evolving together, if validated assumptions can be made
about the distribution of stellar masses. However, as
a result of detailed spectral studies conducted in the
last decade (e.g. [10]), it now transpires that elliptical
galaxies are more complex objects, at least some of
which have undergone more recent bursts of substantial
star formation, and consequently are likely to contain
more than one stellar population component.

The determination of the star formation history
of a galaxy has important implications for the still-
controversial issue of the formation and evolution of
galaxies. Until recently, the analysis of a large statistical
sample of stellar populations of galaxies would not
have been possible since only small ensembles of galaxy
spectra were available. However, the development of
data mining tools for automating parts of the analysis
is becoming more and more essential in the light of
the rapid increase in the availability of data that is
approaching.

Recent and ongoing galaxy spectral surveys (2dF-
GRS, www.mso.anu.edu.au/2dFGRS/ (completed in
2003) and SDSS, www.sdss.org/) will produce more
than two million galaxy spectra in the next few years,
which is to be integrated into a more ambitious
database of publicly-available astronomical data, in-
corporating Grid technology (the Virtual Observatory,
www.ivoa.net). Since the detailed physical modelling
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of stellar populations is numerically expensive, even a
simple question like “what fraction of elliptical galaxies
contain a significantly younger stellar population?” will
take years to address by conventional modelling tech-
niques using stellar population synthesis. The timely
extraction of useful knowledge, such as the characteris-
tics of the star formation history (ages, chemical abun-
dances and masses of the component stellar popula-
tions) of galaxies, from these data will largely depend on
developing appropriate data analysis tools that are able
to complement more specialised astrophysical analyses.

The astrophysical questions motivating this study
are:

1. Can we disentangle major stellar population com-
ponents of elliptical galaxies without the use of de-
tailed physical models?

2. How do the results from a data-driven analysis of
observed galaxy spectra correlate with the parame-
ters of star formation history determined via a com-
pletely independent model fitting technique used in
astrophysics?

These questions have not been addressed before in
a data driven manner — that is, based on the data
characteristics only, without any specialised physical
input.

1.1 Roadmap In this paper, we discuss and investi-
gate statistical methods that attempt to solve the de-
scribed inverse modelling problem by relating multivari-
ate observations to lower-dimensional vectors of statisti-
cally independent unobserved variables through the use
of a linear model. The required statistical assumptions
will be derived from general characteristics of the data,
in order to employ these methods in an appropriate
manner.

The preliminary results presented in the next sec-
tions are based on the data described in Section 2. A
projection approach that exploits the correlation struc-
ture of the spectra is presented in Section 3. In this
approach, the required assumption for solving the in-
verse modelling is derived from exploiting the corre-
lation structure between neighboring wavelength bins,
which comes naturally with spectral data. The indepen-
dent spectral components obtained turn out to be also
physically interpretable and exhibit typical features of
spectra of the young and mature stellar populations. We
then compare the results with a positivity-based single
stage approach, presented in Section 4, that has been
often employed for analysing spectral data in different
domains [9, 18]. We provide a simple probabilistic refor-
mulation of this method that highlights its implicit as-
sumptions, links it to the methods developed in [13] and

also allows us to potentially incorporate measurement
errors (if known from domain knowledge) into the algo-
rithm. In Section 5, the results are presented, discussed
and comparatively assessed, first in a data-driven man-
ner and then, more importantly, from the astrophysical
perspective. Finally, our conclusions are summarised in
the last section.

2 The data and model setting

The data we use here represent the observed optical
spectra of 21 nearby elliptical galaxies, compiled by
blending together 5855 measurements over the range
2000-8000 Å from various observatories on ground and
in space. These represent the following galaxies: NGC
0205, NGC 0224, NGC 1052, NGC 1400, NGC 1407,
IC 1459, NGC 1553, NGC 3115, NGC 3379, NGC
3557, NGC 3605, NGC 3904, NGC 3923, NGC 4374,
NGC 4472, NGC 4621, NGC 4697, NGC 5018, NGC
5102, NGC 7144 and NGC 7252. The spectra have
been corrected for redshift (i.e. converted from their
observed wavelengths to their emitted wavelengths),
and the fluxes are normalised to unity in the region
5020-5500 Å.

Since these spectra are compiled from sources with
varying spectral coverage, the resulting data matrix has
1453 missing values, which are first imputed using a
KNN imputation [21] from synthetic data. We preferred
this non-parametric procedure here, as the missing data
mechanism may not be random — an assumption made
by most of other imputation schemes. The validity
of the ’missing at random’ assumption in the case of
the analysed data set will need further study, simply
because in some wavelength regions it is consistently
hard or impossible to take a measurement.

In addition, for each measurement, an error value is
also provided from known instrumental characteristics
and uncertainty in calibration.

2.1 How many stellar populations? According to
existing domain knowledge, it is likely that there are
(at least) two components of interest [10]. However, the
first eigenvector explains more than 95% of the data.
Therefore, prior to deciding that a 2D representation
space is justified (i.e. that at the given noise levels there
is enough useful information in the data and we are not
attempting to model the noise in a second component),
we perform some simple, data-driven rank tests. We use
the error matrix to derive thresholds for these tests. As
shown on Figure 1, both a 2-norm test and an F-norm
test [19] suggest that at the given error levels, the ‘clean’
matrix of spectra has rank 2. Although it is known that
these perturbation bounds often tend to underestimate
the rank [19], there are no records of over-estimation, so



5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

2−norm based test
S

in
gu

la
r 

va
lu

es

5 10 15 20
0

2

4

6

8

10

12

F−norm based test

C
um

ul
at

iv
e 

su
m

 o
f e

ig
en

va
lu

es

Figure 1: Rank-tests for the matrix of stellar population
spectra. The threshold values represent the 2-norm
and the F-norm respectively of the matrix of known
measurement errors.

we proceed to searching for a suitable two-dimensional
latent representation space.

2.2 The model Each stellar population spectrum is
essentially a vector over a binned wavelength range,
that represents the flux (in arbitrary units) per unit
wavelength in the bin centered on the wavelength. The
data matrix, having T spectra in rows will be denoted
by Y ∈ RT×N . Single elements of this matrix will
be referred to as ytn, the t-th row is denoted by yt or
more explicitly yt,1:N and likewise, the n-th column is
denoted by yn or y

1:T,n. The whole matrix Y will also
be referred to as y1:N . Similar notational convention
will also apply to other variables in the model.

To account for the generation mechanism described
in the previous section, namely that the observed optical
spectrum of a galaxy is a linear superposition of the
stars in the galaxy, a linear factor model will be assumed
in this study. That is, we hypothesise that the T
observations can be explained as a superposition of
K < T latent underlying component spectra sk ∈ RK

(sometimes termed also as factors or hidden causes
[17, 13, 6]) that are not observable directly but only
through an unknown linear mapping A ∈ RT×N .
Formally, this can be written as the following.

(2.1) yn = Asn + ǫ

In eq. (2.1), the first term of the r.h.s. is the so called
systematic component and ǫ is the noise term or the
stochastic component of this model. The noise term ǫ

is assumed to be zero-mean i.i.d. Gaussian, where the

diagonal structure of the covariance accounts for the
notion that all dependencies that exist in Y should be
explained by the underlying hidden components.

The K components will be assumed statistically in-
dependent, this being a standard assumption of inde-
pendent factor models [6, 13]. In the present applica-
tion, this assumption is also cosmologically plausible,
as there is little (no) interaction between stellar popu-
lations at different ages in a galaxy. The linearity of the
mixture is physically justified as the fluxes of the hy-
pothesised different subpopulations mix in an additive
way.

3 Independent projections of stellar population

spectra

A projection based approach is presented in this sec-
tion. This will be accomplished in stages. A linear
dimensionality reduction will first be performed. We
then proceed at identifying independent directions in
the low-dimensional projection space. This multi-stage
projection approach is well-suited as a first attempt. It
allows us to formulate sub-tasks in statistical terms, and
given the 2D nature of the problem, it also allows us to
benefit from a visual control over the data representa-
tion obtained at various stages.

3.1 Dimensionality reduction using SVD Di-
mensionality reduction is a useful preprocessing stage
for both computational convenience and de-noising. It is
well known from linear algebra [4, 19] that the best rank-
K approximation of a matrix under any unitarily invari-
ant norm is its rank-K SVD (Singular Value Decompo-
sition) approximation. This is given by Y ≈ UDV T ,
where U is the T × K matrix of left singular vectors,
D is the K × K diagonal matrix of singular values,
V is the N × K matrix of right singular vectors, and
UTU = V TV = IK , where IK is the K-dimensional
identity matrix. The projection is then simply obtained
as X = UTY .

It should be pointed out that the scope of an SVD-
based projection is to identify an optimal (in the sense
of any unitarily invariant norm) subspace of the data
space. However, generally, individual singular vectors
or eigenvectors are not interpretable separately, as they
are not independent from each other. The same is true
for PCA [17], for much the same reasons.

3.2 Finding non-orthogonal informative direc-

tions using contextual ICA We now turn to the key
part of our analysis, where the directions of indepen-
dent projection need to be found. Approaches with this
aim are known under the name of Independent Compo-
nent Analysis (ICA) [7, 6, 14]. A vast number of ICA



algorithms have been developed over the last decade,
each having different built-in assumptions. In general
terms, we can write the data likelihood of the desired
basis transformation as the following

(3.2) p(x1:N |B) =

∫

ds1:Np(x1:N |s1:N ,B)p(s1:N ).

whereB is the K×K unknown linear mapping (squared
mixing matrix) that transforms the latent components
S into X. That is, as standard in ICA, instead of
inferring S from Y , it is easier to infer them from X.

Assuming that the SVD projection performed as
described in the previous section has removed the noise,
then the noise term is a delta function

(3.3) p(x1:N |s1:N ,B) = δ(x1:N −Bs1:N )

where B is a squared K×K parameter matrix (mixing
matrix) that contains the desired new bases in its
columns and s1:N are the independent representations
in the new basis — both having to be estimated from
the data. Thus, (3.2) reduces to the simple form below

p(x1:N ) = | detB|−N

K
∏

k=1

p(sk,1:N )(3.4)

= | detB−1|N
K
∏

k=1

p((B−1)kx1:N ).(3.5)

Standard in squared ICA problems, it is easier
to optimise for the inverse of B. That is, instead
of the ‘top-down’, or ‘generative’ transform B, we
estimate the ‘bottom-up’ or ‘projection’ transformB−1.
However, without knowing p(s1:N ), this is still an ill-
posed problem. Clearly, a mechanical application of
any ICA algorithm, out of the hundreds of existing ones,
would produce different results, although any of these
would be somewhat arbitrary. What we need is a well
motivated prior distribution p(s1:N ). However, as in
most data mining applications of ICA, there is no such
information explicitly available.

3.2.1 Exploiting correlations within the spec-

tral data Let us observe, however, that in spectral
data, there is a natural correlation structure between
flux values in neighbouring wavelength bins. This is
what we exploit here, by capturing it in a form of a

contextual (predictive) model.

p(sk,1:N ) =

N
∏

n=1

p(skn|sk,1:n−1)

=

N
∏

n=1

p(skn − E[skn|sk,1:n−1])

=
N
∏

n=1

p((B−1)k(xn − E[xn|x1:n−1]))

∀k = 1 : K. The advantage of doing so is that now we
only need to specify the form of density of the residual
projections. Assuming a good enough predictor, then
the residual is likely to have a heavy tailed (termed also
super-Gaussian [7] or kurtotic) form of density. Indeed,
using just the simplest first order predictor, which is an
identity function

(3.6) E[skn|sk,1:n−1] ≡ sk,n−1, ∀k = 1 : K

the difference process xn − xn−1 of the data already
becomes highly kurtotic, as shown on Figure 2.

A similar approach has been previously taken and
successfully demonstrated in the context of face image
separation [5], where neighbouring pixel values of an
image do also exhibit significant correlations.
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Figure 2: Histograms of the difference process. Kurtosis
values are 11.0503 and 33.9364 respectively.

Let us denote rn = xn − E[xn|x1:n−1] and ukn =
skn − E[skn|sk,1:n−1]. The data likelihood is then the
following.

(3.7) p(x1:N ) = | detB−1|N
∏

n

∏

k

p((B−1)krn)

where now we know that p(ukn) is a super-Gaussian
density. Maximisation of this likelihood can now be



accomplished by employing any standard ICA algorithm
— over r1:N rather than x1:N . As the predictor may
not be very accurate (we just used an identity predictor
in our experiments), it is preferable to chose a robust
approximation of the generalised exponential density,
that grows relatively slowly in |ukn|. Following the
arguments in [7], in our experiments we have used the
following:

(3.8) log p(uk) ∝ exp(−u2

k/2),

and the optimisation has been performed using the New-
ton method implemented in the FastICA routines [6],
employing the faster deflationary approach. This has a
cubic convergence [7]. Indeed, highly kurtotic indepen-
dent projections have been found (kurtosis: 33.8796 and
12.7484 respectively) on the data investigated, in about
ten iterations only.

A geometric illustration of the procedure just de-
scribed is shown on Fig. 3. The SVD-compressed data
are shown as dots and indeed, informative directions
would be difficult to determine directly from the data.
The scatter-plot of the difference process is shown as
crosses. A star-like structure is apparent, with two
main, non-orthogonal linear directions of high data den-
sity. These are the new bases (columns of B) that are
determined by the ICA procedure. Indeed, the two di-
rections defined by the new bases found by the algo-
rithm are highlighted on the plot as dark lines. The
PCA axes of the data are also shown on the same plot
for comparison. Interestingly, one of the axes is almost
identical to one of the independent directions. The sec-
ond is, however, just orthogonal to the first, while the
ICA axes are not orthogonal to each other but do follow
the two main directions of high density in the data.

To obtain the component spectra from the ICA pro-
cedure described, we simply compute the projections of
the individual flux values of all galaxies at all wave-
length bins onto the new bases (which is the composi-
tion of the two linear transforms performed during the
analysis process described):

(3.9) s1:N = Bx1:N = Ay
1:N

where B and A now denote the recovered mixing pa-
rameters. Specifically, after B is found, A is computed
as the matrix product UB.

The component-wise reconstruction of the 21 indi-
vidual stellar population spectra from their independent
components are shown on Figure 4. The physical inter-
pretability of these components will be assessed in Sec-
tion 5, however, as a data-driven observation, it is inter-
esting to note that the recovered spectral components
turned out to be positive valued — although positivity

has not been artificially imposed at this stage during the
analysis process. We note that indeed negative values
of the flux would be difficult to interpret, therefore in
the next section we discuss a different approach, where
the required latent density p(s1:N ) is derived from a
positivity constraint.

4 A Positivity-based approach

The use of positive factorisation of positive matrices to
replace PCA for analysing positive data, such as spec-
tral data dates back to work reported in [9]. Positive
(more exactly non-negative) factor models have been
further developed in [18]. However, in the absence of ei-
ther a density-based or a geometric interpretation, the
implicit assumptions are not clear and therefore the in-
terpretation of the results may not be straightforward.
Somewhat related, in [13], a fully Bayesian formulation
of a positive factorisation model is given and variants
with sparse positive priors are applied to synthetic stel-
lar population spectra in a different context of investi-
gations than ours. Retaining the probabilistic frame-
work, that allows us to make all assumptions explicit,
we present a simpler version of their algorithm, based
on maximum a posteriori (MAP) / maximum likelihood
(ML) estimation, which will highlight the link with pos-
itive factorisation algorithms [18]. A MAP or ML es-
timation is sufficient for our purposes as we are con-
cerned with a data explanation task for a fixed data
set only. Once the most appropriate model is found,
the full Bayesian machinery remains available to derive
fully generative models that are able to better generalise
on new data.

Retaining the positivity of the representation, and
the fact that the overall transform in the approach
adopted in the last section has been linear, the following
linear model can be formulated.

(4.10) p(yn|A,En) =

∫

dsp(yn|As,En)p(s)

A Gaussian measurement noise will be assumed. Fur-
thermore, according to prior knowledge about the lev-
els of imprecision of the physical instruments, which
vary independently for each stellar population and each
wavelength bin, we will have individual diagonal vari-
ances E2

n at each wavelength bin n, p(yn|s,A,En) ∼
N (yn|Asn,E

2

n). In rest, we use the same notation as
before, yn refers to the relative flux values observed at
the n-th wavelength bin, A is the unknown mixing ma-
trix parameter and p(s) is the distribution of the latent
components.

Now the latent prior needs to be specified. Apart
from its positive support we don’t have much informa-
tion in this respect. Therefore we formulate a vague
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Figure 3: Geometric illustration of the described ICA procedure. The number of points shown as dots equals the
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of the fluxes at one of these bins. The differences between these 2D vectors at consecutive wavelength bins are
marked with ’×’. The PCA basis of the data is superimposed (in light color) and also translated to the origin for
comparison with the ICA basis found on the difference process. The ICA basis is shown in dark color.

exponential prior, that is

(4.11) p(s) ∝
∏

k

exp(−αkn|sk|)

where αkn = α, ∀k, n is a small positive constant. If
α → 0, then the prior becomes non-informative but
also improper and in this case the MAP estimation
procedure given below becomes ML.

To obtain a MAP estimate, the posterior needs to
be maximised p(sn|yn,A,En) ∝ p(yn|sn,A,En)p(sn)
which is proportional to the complete data likelihood.

Positivity of the elements of both A and S are
then imposed by adding Lagrangian terms [20] to the
complete data log likelihood.

L =
∑

n

{log p(yn|sn,A,En) + log p(sn)}

+ TrLT
1
A+ TrLT

2
S

where L1 and L2 are a set of non-negative Lagrange
multipliers and Tr denotes the trace of a matrix.

From the stationary equations w.r.t. A and S the
Lagrange multipliers are obtained.

L1 =
∑

n

E−2

n Asns
T
n −

∑

n

E−2

n yns
T
n

L2 =
∑

n

ATE−2

n Asn −
∑

n

ATE−2

n yn + α

Now from the Karush-Kuhn-Tucker conditions [20]
LtkAtk = 0 and Lknskn = 0, ∀t, k, n, we have two fixed
point equations which provide the convergent alternat-
ing iterative algorithm of the multiplicative form below.

A = A⊙ (E−2 ⊙ Y )ST ⊘ [E−2 ⊙AS]ST

S = S ⊙AT (E−2 ⊙ Y )⊘
{

AT [E−2 ⊙AS] + α
}

where ⊙ denotes element-wise multiplication and ⊘
denotes element-wise division. If α = 0, the iterative
algorithm above is identical to the least-squares based
non-negative factorisation algorithm proposed in [18]
from a non-probabilistic starting point, with the only
difference that now we also have the E terms to account
for known measurement errors.

5 Evaluation

5.1 Data driven evaluation Here we assess the
effectiveness of the methods presented above according
to two indicators: (1) data reconstruction and (2) the
mutual information (MI) between the components of the
representation created.

Method Min Median Max
SVD, cICA 0 3.36× 10−4 0.294

NMF 10−10 3.64× 10−4 0.317
NMFe 0 4.08× 10−4 0.351

Table 1: Data reconstruction errors under the L2 norm.
cICA = contextual ICA, NMF = Non-negative matrix
factorisation with α=0, NMFe = NMF with exponential
prior having α = 0.1

Table 1 shows the data reconstruction results across
all N×T measurements for the various methods. These
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Figure 4: The reconstruction of stellar population spectra using the projection based contextual ICA. Here, our
algorithm has decomposed the observed spectrum of each galaxy into two inferred populations (blue and dark
green — the two darkest colors, in black-and-white printing), whose sum is given in red, superimposed with the
data in light green (intermediate grey and light grey respectively, in black-and-white printing). In many cases
(e.g. #1,9,10,18), a significant younger stellar population is found, which is confirmed by our detailed physical
modelling. The numbering of the spectra corresponds to the enumeration order of the corresponding galaxies as
given in Section 2.



are measured as the squared distances between the data
and the reconstruction, which is in accordance with the
Gaussian noise assumption. The reconstruction error
of cICA are identical to that of the SVD, since the
ICA transform does not reduce the dimensionality fur-
ther. For NMF and NMFe, 15 randomly initialised runs
were performed and the one with the highest likelihood
value was selected in this evaluation, in order to avoid
the possibility of getting trapped in a local optimum.
Indeed, note that the positivity-based single stage ap-
proach involves a non-convex optimisation whereas the
SVD-based preprocessing is a convex problem. The me-
dian of the error appears to be the smallest in the case
of SVD+cICA, however, a pairwise application of the
non-parametric Wilcoxon rank sum test to the whole
sample distribution of the individual T ×N reconstruc-
tion errors returned that the difference of the medians
for cICA and NMF is not statistically significant at the
0.05% level. In the case of all other pairs, the differences
between medians were found statistically significant —
as expected, the additional term that enforces the la-
tent prior distribution in NMFe causes a slight increase
in data reconstruction error. However, this small dif-
ference on its own would not be a practically concern-
ing issue here, as we deliberately formulated constraints
in our models in order to obtain representations that
are statistically independent to a higher degree — in
the hope that these may then be interpretable and ca-
pable of being independently further processed. More
interesting is therefore to evaluate to what extent do
these methods achieve statistically independent repre-
sentations.

The information theoretic quantity that measures
the degree of statistical dependence is the Mutual In-
formation (MI) [1]. This is a non-negative value that
vanishes if the component densities are perfectly inde-
pendent (the smaller the MI the better). It can be
shown [14] that maximising the ICA log likelihood in
the noise-free case is equivalent to minimising MI be-
tween the representation components. Here we compute
the sample-based MI of the components, as estimated
according to the procedure described in [2]. The com-
parative values obtained by various methods for this
data are shown in Table 2. For the contextual ICA
method, that works on predictive residuals, two values
are given: the first value is computed from the projec-
tions of the residuals whereas the second value is com-
puted from the projections of the data, taken as it was
iid. (just for obtaining a value to compare with those
obtained with the rest of the methods). It is apparent
from the table that in both cases the contextual ICA
model achieves lower MI (greater independence of the
components). The positivity-based method with non-

Method MI
NMF 0.5923
NMFe 0.6019
cICA (u) 0.00010394

(s) 0.5583
PCA 1.0931

Table 2: Sample-based mutual information estimates of
the two components obtained with the various methods
for the set of stellar population spectra investigated.
Smaller values signify higher independence achieved
after the estimated basis transform.

informative improper prior is the next best performing
method, whereas employing sparse priors (greater α val-
ues) does not lead to components that are more inde-
pendent, for this data. PCA is used as a baseline, as
we know that it doesn’t produce an independent rep-
resentation. Visually, the positivity based components
do not look much different from the ones obtained from
cICA (Fig. 4), although they are slightly more noisy.
The PCA-based decomposition, however, in general, are
theoretically not guaranteed to be interpretable, as al-
ready discussed in Section 3.1 (see [17] for details). We
now turn to evaluate the interpretability of the obtained
results from the astrophysical perspective.

5.2 Astrophysical evaluation Here, we compare
the results from the linear independent basis transfor-
mation analysis with an entirely independent determi-
nation of the star formation history, based on detailed
astrophysical models of the evolution of stellar popula-
tions.

The 21 observed spectra have been analysed by
matching them with synthetic stellar population spec-
tra. For each of the observed spectra, a two-stellar
population component model [8] was fitted. The age,
chemical abundance and relative mass fraction of each
component were allowed to vary freely. The best fit in
each case was determined by a minimum χ2 test [15, 11].

The principle for creating synthetic stellar popu-
lation spectra is simple, although the input physics is
complex. The spectral energy distribution of a star
evolves according to its initial mass and chemical abun-
dance. If the initial mass distribution and the chemical
abundance of a stellar population is known, and the
spectral evolution of each individual star in this initial
population may be modelled, the stellar spectra may be
summed over the mass distribution at any point in time
to give the integrated spectrum of the population at that
age. The ingredients for a stellar population model are
therefore: stellar evolutionary tracks; a library of stellar



Figure 5: Comparison of the derived components with physical models of the stellar population spectra. Top two
plots: Synthetic stellar population spectra according to the physical models of [8]. Right: Spectra of a population
of age 10 Gyr, where chemical abundance, from bottom to top, 0.2, 1.0 and 2.5 times solar; Left: age = 0.7 Gyr,
same chemical abundances. The dotted lines mark some of the absorption features in the spectrum which are
typically strong in young stellar populations, and the dashed lines mark some of the absorption features which
are typically strong in old stellar populations. From left to right, the absorption line species are: MgII (2799 Å),
Hε (3970 Å), Hδ (4102 Å), Hγ (4340 Å), Hβ (4861 Å), Mgb (5175 Å), NaD (5893 Å), Hα (6563 Å), TiO (7126
Å). Bottom two plots: the 2 components found from the various different linear independent basis transformation
analyses, from bottom to top: cICA, NMF, NMFe, PCA. (The spectra are shifted along the vertical axis for
the sake of clarity.) The recovered spectra are convincingly disentangled into one component with young stellar
population features (MgII, Hε, Hδ, Hγ, Hβ, Hα: dotted lines) and shape, and a second with the features (Mgb,
NaD, TiO: dashed lines) and shape of an old, high chemical abundance stellar population.

spectra; a method of calibrating the theoretical lumi-
nosity and effective temperature, determined from the
evolutionary sequence, so that the appropriate atmo-
sphere may be assigned to each star at each time-step
in its evolution. In contrast, the linear independent ba-
sis transformation method employs no knowledge of the
underlying physics in the observed spectra.

Model spectra [8] for a young (0.7 Gyr) and an old
(10 Gyr) stellar population, with three different chemi-
cal abundances (0.2, 1.0 and 2.5 times solar abundance)
are shown in Fig. 5, together with the spectra recov-

ered from the linear independent basis transformation
analyses. The similarity is most apparent. The data-
driven linear analyses, whilst not reproducing any of the
physical model spectra precisely (which would not be
expected anyway), extract many of the important iden-
tifying characteristics of these two categories of model
spectra, which are indeed quite different from each other
both in their overall shape and details. Some of the
most important features, the so-called absorption-lines,
are marked with dashed (Mgb, NaD and TiO, typically
strong features in old, high chemical abundance stel-



lar population spectra) and dotted (MgII, Hε, Hδ, Hγ,
Hβ and Hα, typically strong in the spectra of young (<∼
1 Gyr) stellar populations) vertical lines on the figure
(Fig. 5), which demonstrate the physical interpretability
of the representations created by the basis transforma-
tion analyses.

We correlate the star formation history parameters
derived from fitting the two-component model spectra
to the observed spectra (i.e. a physical analysis ap-
proach) with the weight of the contributions from the
linear basis transformation analyses, by defining these
weights as ck = atk/

∑

k′ atk′ for any given spectrum t.
Here, atk is the (t, k)-th element of the matrix A of the
new basis and k = 1 : 2. Fig. 6 shows the results of the
correlations, and Fig. 7 graphically shows some of these
correlations.

From Figs. 6 and 7 we can conclude that, for
the ICA and NMF analyses, c1 (and hence also c2,
as c1 + c2 = 1) correlates with the proportion of
young (<∼ 1 Gyr) stellar population component present
in the observed spectrum, regardless of their chemical
abundance.

6 Conclusions

We have presented a scientific data mining application
that searches for linear independent basis transforma-
tions of galaxy spectra to find the spectra of individual
stellar populations characterised by age and chemical
abundance. We have shown that characteristic stel-
lar population components of elliptical galaxies can be
disentangled from the observed spectra of these galax-
ies, without the use of detailed physical models. The
components returned by the linear basis transforma-
tion analyses are clearly physically interpretable, with
one component displaying the shape and many of the
absorption-line features typical of a young stellar pop-
ulation, and the second component having the over-all
shape and typical absorption features of an old, high
chemical abundance stellar population. The weights of
the contributions from the linear basis transformation
analyses correlate well with both the ages of the younger
stellar populations and the mass fractions of the smaller
stellar populations determined from the (completely in-
dependent) detailed physical modelling of the observed
galaxy spectra.

The computational demand of the projection ap-
proach presented is essentially that of the SVD compu-
tation, so it is expected that the method is easily ap-
plicable to large sets of measurements as they become
available. The positivity based approach, per iteration,
has a comparable scaling, however, in all our experi-
ments the number of iterations to convergence was of an
order of magnitude larger for the positivity based single

stage approach. Further study is necessary to investi-
gate models with other types of positively supported
priors as well as refining the best performing models
and algorithms to be able to deal with previously un-
seen data.

The use of the data analysis presented in this
paper, integrated with the more complex process of
astrophysical analysis will be detailed elsewhere [16].
We intend to investigate the effectiveness of these data-
driven methods on larger sets of UV-optical spectra
as they become available, where more comprehensive
statistical evaluation will be possible. From the analysis
of large archives of galaxy spectra using this technique,
we hope to address some of the fundamental questions
in astrophysics, that of when and how galaxies form and
evolve.
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Figure 7: Scatter-plots showing the correlation of (top) the age of the younger stellar population and (bottom)
the mass fraction of the smaller stellar population determined from the model spectra fitting with the weight of
the first component of the various linear basis transformation analyses (c1). A high value (low for PCA) of c1
clearly corresponds to a substantial young (<∼ 1 Gyr) stellar population.
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