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Abstract

Discrete tomography is concerned with the reconstruction of images that are defined on a

discrete set of lattice points from their projections in several directions. The range of values

that can be assigned to each lattice point is typically a small discrete set. In this paper we

present a framework for studying these problems from an algebraic perspective, based on Ring

Theory and Commutative Algebra. A principal advantage of this abstract setting is that a

vast body of existing theory becomes accessible for solving Discrete Tomography problems.

We provide proofs of several new results on the structure of dependencies between projections,

including a discrete analogon of the well-known Helgason-Ludwig consistency conditions from

continuous tomography.

1 Introduction

Discrete tomography (DT) is concerned with the reconstruction of discrete images from their
projections. According to [13, 14], the field of discrete tomography deals with the reconstruction
of images from a small number of projections, where the set of pixel values is known to have only
a few discrete values. On the other hand, when the field of discrete tomography was founded
by Larry Shepp in 1994, the main focus was on the reconstruction of (usually binary) images for
which the domain is a discrete set, which seems to be more natural as a characteristic property
of discrete tomography. The number of pixel values may be as small as two, but reconstruction
problems for more values are also considered. In this paper, we follow the latter definition of
discrete tomography.

Most of the literature on discrete tomography focuses on the reconstruction of lattice images,
that are defined on a discrete set of points, typically a subset of Z2. An image is formed by assigning
a value to each lattice point. The range of these values is usually restricted to a small, discrete
set. The case of binary images, where each point is assigned a value from the set {0, 1} is most
common in the DT literature. Projections of an image are obtained by summation of the point
values along sets of parallel discrete lines. For an individual line, such a sum is often referred to
as the line sum.

Discrete tomography problems have been studied in various fields of Mathematics, including
Combinatorics, Discrete Mathematics and Combinatorial Optimization. An overview of known
results is given in [9], at the end of Section 2. Already in the 1950s, both Ryser [20] and Gale [6]
considered the combinatorial problem of reconstructing a binary matrix from its row and column
sums. They provided existence and uniqueness conditions, as well as concrete reconstruction
algorithms. DT emerged as a field of research in the 1990s, motivated by applications in atomic
resolution electron microscopy [21, 16, 15]. Since that time, many fundamental results on the
existence, uniqueness and stability of solutions have been obtained, as well as a variety of proposed
reconstruction algorithms.

Besides purely combinatorial properties, integer numbers play an important role throughout
DT, due to their close connection with the concepts of reconstruction lattice, lattice line and line
sums. A link with the field of Algebraic Number Theory was established in [7], where Gardner and
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Gritzmann used Galois theory and p-adic valuations to prove that convex lattice sets are uniquely
determined by their projections in certain finite sets of directions. Hajdu and Tijdeman described
in [11] how a powerful extension of the binary tomography problem is obtained by considering
images for which each point is assigned a value in Z. The fact that both the image values and
the line sums are in Z allows for the application of Ring Theory, and in particular the Chinese
Remainder Theorem, for characterizing the set of switching components: images for which the
projections in all given lattice directions are 0. Their theory for the extended problem leads to
new insights in the binary reconstruction problem as well, as any binary solution must also be a
solution of the extended problem, and the binary solutions can be characterized as the solutions
of the extended problem that have minimal Euclidean norm.

More recently, techniques from Algebra and Algebraic Number Theory were used to obtain
Discrete Tomography results on stability [1], a link between DT and the Prouhet-Tarry-Escott
problem from Number Theory [2], and the reconstruction of quasicrystals [3, 10].

In this paper we present a comprehensive framework for the treatment of DT problems from
an algebraic perspective, based on general Ring Theory and Commutative Algebra. Modern alge-
bra is a mature mathematical field that provides a framework in which a wide range of problems
can be described, analyzed and solved. An important advantage of this abstract setting is that a
vast body of existing theory becomes accessible for solving discrete tomography problems. Based
on our algebraic framework, we provide proofs of several new results on the structure of depen-
dencies between the projections, including a discrete analogon of the well-known Helgason-Ludwig
consistency conditions from continuous tomography.

A principal aim of this paper is to create a bridge between the fields of Combinatorics and
classical Number Theory on one side, and the proposed abstract algebraic model on the other side.
To this end, the definitions and results we describe within our algebraic model will be followed by
concrete examples, illustrating their correspondences with existing results and concepts.

This paper is organized as follows. In Section 2 the basic DT problems are introduced in a
combinatorial setting. In Section 2.2 we recall an example from the literature. Section 3 introduces
the same concepts, but this time in our proposed algebraic framework. We also derive some basic
properties linking combinatorial notions to notions within the framework. Sections 4 and 5 set up
the algebraic theory, for images defined on Z2 (the global case). In Section 6 we revisit the example
from Section 2.2 from an algebraic perspective.

In the next sections, the attention is shifted towards images that are defined on a subset of
Z2. Section 7 introduces a relative setup, where a DT problem on a particular domain is related
to a problem on a subset of that domain. In Sections 8 and 9, we apply this relation to completely
describe the structure of line sums for finite convex sets. The Appendix collects some algebraic
results used in the paper.

The authors would like to expres their gratitude towards prof. H.W. Lenstra for the inter-
esting conversations that led to the development of our algebraic framework. In particular, prof.
Lenstra came up with Theorem A.9 in an effort to understand the global dependencies.

2 Classical definitions and problems

In this section we provide an overview of several important problems in discrete tomography, within
their original combinatorial context. For the most part, we follow the basic terminology from [13].

Let K ⊂ Z. We will call the elements of K colours. In discrete tomography, we often have
K = {0, 1}. Note that K does not have to be finite. A nonzero vector v = (a, b) ∈ Z2 such that
a ≥ 0 is called a lattice direction. If a and b are coprime, we call v a primitive lattice direction.
The set of all lattice directions is denoted by V . For any t ∈ Z2, the set ℓv,t = {λv + t |λ ∈ Z}
is called a lattice line parallel to v. The set of all lattice lines parallel to v is denoted by Lv. A
function f : Z2 → K with finite support is called a table. The set of all tables is denoted by F .
We prefer using the word table over the more common image, as the latter is also used to denote
the image of a map.

Definition 2.1. Let f ∈ F and v ∈ V . The function Pv(f) : Lv → Z defined by

Pv(f)(ℓ) =
∑

x∈ℓ

f(x)
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is called the projection of f in the direction v.

The values Pv(f)(ℓ) are usually called line sums. For v ∈ V , we denote the set of all functions
Lv → Z by Lv (the potential line sums for direction v).

For a finite ordered set D = {v1, . . . , vk} ⊂ V of distinct primitive lattice directions, we
define the projection of f along D by

PD(f) = Pv1(f)⊕ . . .⊕ Pvk(f),

where ⊕ denotes the direct sum. The map PD is called the projection map. Put LD = Lv1 ⊕ . . .⊕
Lvk , the set of potential line sums for directions D.

Most problems in discrete tomography deal with the reconstruction of a table f from its
projections in a given set of lattice directions. It is common that a set A ⊂ Z2 is given, such
that the support of f must be contained in A. We call the set A the reconstruction lattice. Put
A = {f ∈ F : x /∈ A =⇒ f(x) = 0}.

Similar to Chapter 1 of [13], we introduce three basic problems of DT: Consistency, Recon-
struction and Uniqueness:

Problem 1 (Consistency). Let K and A be given. Let D = {v1, . . . , vk} ⊂ V be a finite set of
distinct primitive lattice directions and p ∈ LD be a given map of potential line sums. Does there
exist a table f ∈ A such that PD(f) = p?

Problem 2 (Reconstruction). Let K and A be given. Let D = {v1, . . . , vk} ⊂ V be a finite set of
distinct primitive lattice directions and p ∈ LD be a given map of potential line sums. Construct
a table f ∈ A such that PD(f) = p, or decide that no such table exists.

Problem 3 (Uniqueness). Given a solution f of Problem 2, is there another solution g 6= f of
Problem 2?

In the most common reconstruction problem in the DT literature, A is a finite rectangular
set of points and K = {0, 1}. In that case, a table f is usually considered as a rectangular binary
matrix. For the case D = {(1, 0), (0, 1)}, the three basic problems were solved by Ryser in the
1950s. It was proved by Gardner et al. that the reconstruction problem for more than two lattice
directions is NP-hard [8]. Several variants of the reconstruction problem that make additional
assumptions about the table f , such as convexity or periodicity, can be solved effectively if more
projections are given [4, 5].

Tijdeman and Hajdu considered the case that A is a rectangular set and K = Z. They
show that the resulting problems are strongly connected to the binary case: if the reconstruction
problem for K = Z has a binary solution, the set of binary solutions is exactly the set of tables
over Z for which the Euclidean norm is minimal. In [11], they characterized the set of switching
components, tables for which the projection is 0 in all given lattice directions. In particular, this
provides a (partial) solution for the uniqueness problem, which also has consequences for the case
K = {0, 1}.

2.1 Dependencies

The theory of Hajdu and Tijdeman also provides insight in the dependencies between the projec-
tions of a table, defined below.

If the reconstruction lattice A is finite, the set of lines along directions in D intersecting with
A is also finite. Denote the number of such lines by n(A,D). A map p ∈ LD of potential line sums
can now be represented by an n(A,D)-dimensional vector over Z, where we only consider the line
sums for lines that intersect with A. In the remainder of this section, we use this representation
for the projection of a table.

Definition 2.2 (Dependency). Let A ⊂ Z2 be a finite reconstruction lattice. Let D ⊂ V be a
finite set of distinct primitive lattice directions. A dependency is a vector c ∈ Zn(A,D) such that
for all f ∈ F : PD(f) · c = 0, where · denotes the vector inner product.
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The vector c is called the coefficient vector of the dependency. Intuitively, dependencies are
relations that must always hold between the set of projections of an object. The simplest such
relation corresponds to the fact that for all lattice directions v1, v2 ∈ V :

∑

ℓ∈Lv1

Pv1(f)(ℓ) =
∑

ℓ∈Lv2

Pv2(f)(ℓ) =
∑

x∈A

f(x)

More complex dependencies can be formed between sets of three or more projections. We call
a set of dependencies independent if the corresponding coefficient vectors are linearly independent.
Note that the dependencies form a linear subspace of Zn(A,D).

2.2 Example

In [11], the dependencies were systematically investigated for the case K = Q, A = {(i, j) ∈ Z2 :
0 ≤ i < m, 0 ≤ j < n} and
D = {(1, 0), (0, 1), (1, 1), (1,−1)}. Put

rj =
m−1
∑

i=0

f(i, j) 0 ≤ j ≤ n− 1, the row sums,

ci =
n−1
∑

j=0

f(i, j) 0 ≤ i ≤ m− 1, the column sums,

th =
∑

j=i+h

(i,j)∈A

f(i, j) −m+ 1 ≤ h < n, the diagonal sums,

uh =
∑

j=−i+h

(i,j)∈A

f(i, j) 0 ≤ h < m+ n− 1, the anti-diagonal sums.

Then the following seven dependencies hold for the line sums:

n−1
∑

j=0

rj =

m−1
∑

i=0

si =

n−1
∑

h=−m+1

th =

m+n−2
∑

h=0

uh,

n−1
∑

h=−m+1
h is odd

th =

m+n−2
∑

h=0
h is odd

uh,

−

n−1
∑

j=0

jrj +

m−1
∑

i=0

isi =

n−1
∑

h=−m+1

hth,

n−1
∑

j=0

jrj +
m−1
∑

i=0

isi =
m+n−2
∑

h=0

huh,

2

n−1
∑

j=0

j2rj + 2

m−1
∑

i=0

i2si =

n−1
∑

h=−m+1

h2th +

m+n−2
∑

h=0

h2uh.

If A is sufficiently large, these dependencies form an independent set. It was shown in [11]
that these relations form a basis of the space of all dependencies over Q. Although Hajdu and
Tijdeman described the complete set of dependencies for this particular set of directions, they
did not provide a characterization of dependencies for general sets of directions. They derived a
formula for the dimension of the space of dependencies, for any rectangular set A and any set of
directions.

Several properties of the given example deserve further attention. The coefficients of the
vectors describing the dependencies have the structure of polynomials in i, j and h. The degree of
these polynomials is at most two (for the last dependency), and this degree appears to increase along
with the number of directions. In particular, the maximum degree of the polynomials describing
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the coefficients in this example is two, for the dependency involving all four directions, whereas
the maximum degree for a dependency involving any subset of three directions is one, and the
maximum degree for the pairwise dependencies is zero.

For this setD, all of the 7 independent dependencies can be defined for the case A = Z2, such
that for smaller reconstruction lattices the same relations hold, restricted to the lines intersecting
A. In this paper, we will denote such dependencies by the term global dependencies.

For other sets of directions, such as D = {(1, 1), (1, 2)}, there can also be dependencies
such as the one shown in Fig. 1. Two corner points of the reconstruction lattice belong to
a line in both directions, leading to trivial dependencies between the corresponding line sums.
Such dependencies depend on the shape of the reconstruction lattice and cannot be extended to
dependencies on A = Z2. We refer to such dependencies as local dependencies. An analysis of the
dependencies for the case of a rectangular reconstruction lattice A is given in [22].

(0,0)

Figure 1: At corners of the reconstruction lattice, there can be local dependencies between line
sums in two or more directions.

There is a strong analogy between the concept of dependencies between line sums in discrete
tomography, and so-called consistency conditions in continuous tomography. Ludwig [18] and
Helgason [12] described a set of relations between the projections of a continuous function defined
on R2. Moreover, if a set of one-dimensional functions satisfies these relations, this is also a
sufficient condition for correspondence to a projected function.

In the remainder of this paper, we provide a characterization of the dependencies between
projections in discrete tomography, based on our algebraic framework. As dependencies indicate
relations that must hold for any set of projections, they provide a necessary condition for the
consistency problem. We prove that for a particular class of discrete tomography problems, a set
of projections satisfies the dependency relations if and only if it corresponds to a table. This leads
to a discrete analogon of the consistency conditions from continuous tomography.

3 Algebraic framework

In this section we introduce the basic concepts and definitions used in our algebraic formulation
of discrete tomography. For a thorough introduction to terminology and concepts of Algebra, we
refer to [17]. The Appendix of this paper covers some of the properties used in detail.

Let A ⊂ Z2 be non-empty and let k be a commutative ring that is not the zero ring. We let

T (A, k) = k(A) = {f : A → k | f(x) = 0 for all but finitely many x ∈ A}

be the space of k-valued tables on A. It is a free k-module with a basis indexed by the elements of
A. We will identify the elements of A with the elements of this basis.

Let d ∈ Z2 \ {0} be a direction and p ∈ Z2 be a point. Recall that the (lattice) line through
p in the direction d is the set {p+ λd | λ ∈ Z}. Two points p and q are on the same line in
direction d precisely if they differ by an integer multiple of d. The quotient group Z2/ 〈d〉 therefore
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parametrises all the lines in the direction d. For A ⊂ Z2 write Ld(A) for the image of A in Z2/ 〈d〉,
i.e. the set of lines in the direction d that intersect A.

We call (a, b) ∈ Z2 \ {0} with gcd (a, b) = 1 a primitive direction. Whenever d is a primitive
direction, the quotient Z2/ 〈d〉 is isomorphic to Z. This means we can label the lines in direction
d with integers, starting with 0 for the line through the origin.

We fix once and for all pairwise independent directions d1, . . . , dt ∈ Z2 \ {0} and write
Li(A) = Ldi(A) for the lines in direction di that meet A. Let

Li(A, k) = k(Li(A))

be the space of potential line sums in direction di and let

L(A, k) =

t
⊕

i=1

Li(A, k)

be the full space of potential line sums. These are all free k-modules. A basis for Li(A, k) is given
by Li(A) and so a basis for L(A, k) is given by L(A) :=

∐t
i=1 Li(A).

Definition 3.1. The line sum map

σA,k : T (A, k)−→L(A, k)

is defined as the k-linear map that sends x ∈ A to the vector (ℓi)
t
i=1, where ℓi ∈ Li(A) is the line

in direction di through x.

The line sum map is the direct sum of the component maps σi,A,k : T (A, k) → Li(A, k).
The kernel of the line sum map,

ker (σA,k) = {t ∈ T (A, k) | σA,k(t) = 0} ,

identifies the space of switching components of the discrete tomography problem: two tables have
the same vector of line sums if and only if they differ by an element of ker (σA,k). We will use the
cokernel

cok (σA,k) = L(A, k)
/

im (σA,k)

to gain insight in the structure of the set of possible line sums of tables within the full space of
potential line sums. In particular, the cardinality of the cokernel ‘measures’ the difference between
these sets.

Definition 3.2. A k-linear dependency between line sums is a k-linear map

r : L(A, k)−→ k

such that r ◦ σA,k is the zero map.

Note that such a map gives rise to a map r̄ : cok (σA,k) → k and that conversely any k-linear
map cok (σA,k) → k gives rise to a dependency. In other words, there is an inclusion

Homk (cok (σA,k) , k) ⊂ Homk (L(A, k), k)

whose image is precisely the set of dependencies. We will write Dep (A, k) for this subspace.

Remark 3.3. The natural map

W : Homk (L(A, k), k) −→ {c : L(A) → k}
φ 7−→ [ℓ 7→ φ(ℓ)]

is a bijection.

For a φ ∈ Homk (L(A, k), k) we can think of W (φ) as the weight that φ assigns to each
line in L(A). For dependencies this corresponds to the concept of a coefficient vector introduced
in Section 2.1. If r ∈ Dep (A, k) is a dependency then W (r) corresponds to the vector c from
Definition 2.2.

The next lemma gives an example of the link between algebraic properties of the cokernel
and questions concerning the discrete tomography problem.
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Lemma 3.4. Let A ⊂ Z2 and let k be a commutative ring that is not the zero ring. Suppose that
cok (σA,k) is a free k-module of finite rank n. Then Dep (A, k) is also a free k-module of rank n
and for any l ∈ L(A, k) we have l ∈ im (σA,k) if and only if d(l) = 0 for all d ∈ Dep (A, k).

Proof. Let c1, . . . cn be a basis for cok (σA,k). We can write any x ∈ cok (σA,k) uniquely as x1c1 +
· · · + xncn. The maps ei : x 7→ xi are elements of Dep (A, k) = Homk (cok (σA,k) , k). We claim
that the ei are a basis for Dep (A, k). Let r be in Dep (A, k). For any x =

∑

xici in cok (σA,k) we
have

r(x) = d(
∑

xici) =
∑

xir(ci).

Put ri = r(ci). Then we have r =
∑

riei. So the ei generate Dep (A, k). Note that the ri are
uniquely determined by r. We conclude that the ei are a basis of Dep (A, k).

Note that for all x ∈ cok (σA,k), we have x =
∑

ei(x)ci, so if d(x) = 0 for all d ∈ Dep (A, k),
then x = 0. When we apply this to x = l̄ for some l ∈ L(A, k), we see that r(l) = 0 for all
r ∈ Dep (A, k) if and only if l̄ = 0, i.e. l ∈ im (σA,k).

The lemma that we have just proved can be interpreted as follows. Whenever we find for
some A that cok (σA,k) is a free k-module of finite rank, we have the following: A vector of potential
line sums comes from a table precisely if it satisfies all dependencies. As the space of dependencies
is also free and of finite rank, it in fact suffices to check finitely many dependencies.

4 The global case

In this section we consider the case A = Z2. We will show that in this case, the objects defined
in the previous section have the structure of rings and modules, and their homomorphisms. This
allows us to completely describe the kernel and cokernel of the line sum map.

The following three k-modules are isomorphic in a natural way:

T (Z2, k) ∼= k[Z2] ∼= k[u, u−1, v, v−1].

For some basic properties of group rings such as k[Z2], see the appendix of this article. The
isomorphisms are

T (Z2, k) −→ k[Z2]
[c : Z2 → k] 7−→

∑

x∈Z2 c(x)x

and
k[Z2] −→ k[u, u−1, v, v−1]

∑

x∈Z2 λxx 7−→
∑

(a,b)∈Z2 λ(a,b)u
avb.

Note that k[Z2] and k[u, u−1, v, v−1] are both k-algebras and that the second isomorphism is an
isomorphism of k-algebras. We also view T (Z2, k) as a k-algebra via these isomorphisms.

In the same way there is a natural isomorphism of k-modules

Li(Z
2, k) ∼= k

[

Z2
/

〈di〉

]

which puts a ring structure on the spaces of potential line sums. By Lemma A.2 we have an
isomorphism k[Z2/ 〈di〉] ∼= k[Z2]/(di−1). Viewed in this way, the line sum map σi,Z2,k : T (Z2, k) →
Li(Z

2, k) is the quotient map
k[Z2] → k[Z2]

/

(di − 1).

Taking sums, we find a k-algebra structure on L(Z2, k) such that the line sum map σZ2,k :
T (Z2, k) → L(Z2, k) is a k-algebra map which is the direct sum of quotient maps. We will now
study the structure of these quotient maps from an algebraic perspective using the ideas outlined
in the last part of the appendix.

Lemma 4.1. Let d, e ∈ Z2 be independent directions. Then d − 1 is weakly coprime (see A.6 in
the appendix) to e− 1 in k[Z2].
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Proof. By Lemma A.2 we can see k[Z2]/(d− 1) as the group ring k[Z2/ 〈d〉]. Suppose we have

f =
∑

x∈Z2/〈d〉

fxx ∈ k
[

Z2
/

〈d〉

]

such that (e− 1)f = 0. When we expand

0 = (e− 1)f =
∑

x∈Z2/〈d〉

(fx−e − fx)x,

we see that fx+ke = fx for all x ∈ Z2/ 〈d〉 and k ∈ Z. As d and e are independent, all x+ ke are
different in Z2/ 〈d〉. We conclude that we must have fx = 0 for all x ∈ Z2/ 〈d〉, as only finitely
many coefficients of f are non-zero.

Theorem 4.2. The kernel of σZ2,k is given by

ker
(

σZ2,k

)

= (d1 − 1) · · · (dt − 1)k[Z2].

The cokernel cok
(

σZ2,k

)

is a free k-module of rank

∑

1≤i<j≤t

|det(di, dj)|.

Proof. By Lemma 4.1, di− 1 is weakly coprime to dj − 1 in k[Z2] whenever i 6= j. So we can apply
Theorem A.9 to the map

σZ2,k : k[Z2]−→

t
⊕

i=0

Z2
/

di − 1.

This immediately gives us the formula for the kernel given in the theorem. For the cokernel, we
note that by Lemma A.2 we have

k[Z2]
/

(di − 1, dj − 1) = k
[

Z2
/

〈di, dj〉

]

,

which is a free k-module of rank | det(di, dj)|. In particular, all the successive quotients of the
filtration on the cokernel are free k-modules. Therefore all the quotients are split (see, e.g., [17,
Ch. III.3, Prop. 3.2]) and we conclude that

cok
(

σZ2,k

)

∼=
⊕

1≤i<j≤t

k
[

Z2
/

〈di, dj〉

]

.

This result leads to a (partial) discrete analogon of the Helgason-Ludwig consistency condi-
tions from continuous tomography, providing a necessary and sufficient condition for consistency
of a vector of potential line sums:

Corollary 4.3. A vector of potential line sums in L(Z2, k) comes from a table in T (Z2, k) if and
only if it satisfies all dependencies. Moreover, we only have to check this for a set of

∑

1≤i<j≤t |det(di, dj)|
independent dependencies.

Proof. Theorem 4.2 shows that we can apply Lemma 3.4 to the global cokernel.

Looking at example 2.2 we compute
∑

1≤i<j≤4 |det(di, dj)| = 7. This tells us that the list of
7 independent dependencies we had is complete, in the sense that at least when k is a field, they
will form a basis of Dep

(

Z2, k
)

.
For a full discrete analogon of the continuous consistency conditions, one should also pro-

vide a charaterization of the structure of the individual dependencies. The next section provides
additional insight into the coefficient structure of the dependencies.
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5 The global line sum map as an extension of rings

We now focus our attention more on the ring theoretic aspect of the line sum map. We can view
L(Z2, k) as an extension of its subring im

(

σZ2,k

)

. Both these rings have relative dimension 1 over
k. This is a situation that has been extensively studied because of its relation to Algebraic Number
Theory. An important object in this context is the conductor of the extension, the largest ideal of
L(Z2, k) that is also an ideal of im

(

σZ2,k

)

.

Lemma 5.1. Put Di =
∏

j 6=i(dj − 1). The conductor of L(Z2, k) over im
(

σZ2,k

)

is given by

fk = D1k[Z
2]
/

d1 − 1⊕ · · · ⊕Dtk[Z
2]
/

dt − 1.

Proof. Note that Di reduces to 0 in k[Z2]/(dj − 1) for all j 6= i. We conclude that the ideal
(D1, . . . , Dt) of k[Z2] is mapped by σZ2,k onto fk. In particular, this implies that fk is indeed an
im

(

σZ2,k

)

ideal.

Conversely, suppose I ⊂ im
(

σZ2,k

)

is an ideal that is also closed under multiplication by
L(Z2, k). We want to show that I ⊂ fk. Let x = (x1, . . . , xt) ∈ I. As I is an L(Z2, k) ideal,
we must also have (0, . . . , xi, . . . , 0) ∈ I. As I ⊂ im

(

σZ2,k

)

there is an x̃i ∈ k[Z2] such that
σZ2,k(x̃i) = (0, . . . , xi, . . . , 0). We have x = σZ2,k(x̃1+ · · ·+ x̃t), so we are done if we can show that
x̃i is a multiple of Di for all i.

To show this, we apply Theorem 4.2 to the directions dj with j 6= i. Note that x̃i maps to 0
under the line sum map in this case. The theorem tells us that the kernel of this map is generated
by Di, so that indeed x̃i is a multiple of Di for all i.

Note that the quotient module L(Z2, k)/fk is a free k-module of dimension
∑

i6=j | det(di, dj)|.

This is twice the dimension of cok
(

σZ2,k

)

= L(Z2, k)/im
(

σZ2,k

)

. We see that im
(

σZ2,k

)

sits
precisely in the middle between L(Z2, k) and fk. This is not a surprise, it happens in this situation
whenever the rings are ‘sufficiently nice,’ e.g. when they are Gorenstein rings.

We have not yet fully explored the implications of this ring theoretic view for the structure
of cok

(

σZ2,k

)

, but we believe it warrants further investigation. To illustrate its use, we will derive

the following result on the coefficient functions of dependencies in Dep
(

Z2, k
)

.
For the remainder of this section, we assume that all the di are primitive directions. This

means that Z2/ 〈di〉 is isomorphic to Z. For the rest of this section we also fix isomorphisms
Z2/ 〈di〉 ∼= Z. What this means is that the lines in each direction di can be numbered in sequence.
The choice of isomorphisms comes down to picking whether we number from left to right or the
other way around.

Recall from Remark 3.3 that a dependency r ∈ Dep
(

Z2, k
)

can be represented by a function
W (r) from L(Z2) to k. From the choices we have just made, L(Z2) is identified with t copies of Z.
This means that to represent a dependency by a set of t two-sided infinite sequences

Wi(r) : Z−→ k.

Theorem 5.2. With the assumptions above, each sequence Wi(r) satisfies a non-trivial linear
recurrence relation that does not depend on r.

Proof. The isomorphism Z2/ 〈di〉 ∼= Z gives rise to an isomorphism

k[Z2]
/

di − 1 ∼= k
[

Z2
/

〈di〉

]

∼= k[x, x−1]

of Li(Z
2, k) with the Laurent polynomial ring k[x, x−1]. Write Di =

∑

n anx
n in k[x, x−1].

Let r ∈ Dep
(

Z2, k
)

be a dependency. We consider the map ri : Li(Z
2, k) → k induced by

r. As im
(

σZ2,k

)

is in the kernel of r, we have fk ⊂ ker (r). As x ∈ k[x, x−1] is a unit, we see that

xnDi must be in ker (ri) for all integers n.
Write c for the weight function Wi(r) from Z to k. From the definitions, we have for all

n ∈ Z that ri(x
n) = c(n). Let m ∈ Z. Then we must have

0 = ri(x
mDi) = ri(

∑

n

anx
m+n) =

∑

n

anc(m+ n).

9



This is saying precisely what we want, namely that c satisfies a linear recurrence relation whose
coefficients are the an. Clearly, these an do not depend on r, only on Di and maybe on k.

In fact, one computes that for i = 1, . . . t we have

Di =
∏

j 6=i

(xdet(di,dj) − 1).

From this, one easily sees that the leading and trailing coefficients of Di are ±1. Therefore, no
matter what k is, the recurrence relation can be used to uniquely determine the sequence from
any sufficiently large set of consecutive coefficients. In fact, all the coefficient functions can be
expressed in a closed form

[Wi(r)](s) = fs mod m(s)

where the f are polynomials. The maximal degrees of these polynomials and the value ofm depend
only on the di and the characteristic of k.

6 An example

We revisit the example from [11] that was discussed in Section 2.2. It concerns the directions
d1 = (1, 0), d2 = (0, 1), d3 = (1, 1) and d4 = (1,−1). For simplicity, we take k = Q, but we will
make some comments on how to deal with the case k = Z.

We identify T (Z2, k) with k[x, x−1, y, v−1]. Note that for each i, we have Z2/ 〈d〉 ∼= Z. We
pick isomorphisms Li(Z

2, k) = k[z, z−1] in such a way that the components of the line sum map
are the maps k[x, x−1, y, y−1] → k[z, z−1] given by

i map x 7→ y 7→
1 r 1 z
2 c z 1
3 t z z−1

4 u z z

The line sum map is given by

σ = (r, c, t, u) : k[x, x−1, y, y−1]−→
(

k[z, z−1]
)4

The maps r, c, t and u are related to the line sums described in Section 2.2 in a straightfor-
ward manner. Let f and the ri, ci, ti and ui be as in that section. Put F =

∑

i,j f(i, j)x
iyj. Then

we have r(F ) =
∑

i riz
i and likewise for the other maps.

We compute

D1 = (y − 1)(xy − 1)(xy−1 − 1) r(D1) = −z−1(z − 1)3

D2 = (x− 1)(xy − 1)(xy−1 − 1) c(D2) = (z − 1)3

D3 = (x− 1)(y − 1)(xy−1 − 1) t(D3) = (z − 1)3(z + 1)
D4 = (x− 1)(y − 1)(xy − 1) u(D4) = (z − 1)3(z + 1)

Let M = M1 ⊕ · · · ⊕M4 be the quotient vector space

M =
k[z, z−1]

r(D1)
⊕

k[z, z−1]

c(D2)
⊕

k[z, z−1]

t(D3)
⊕

k[z, z−1]

u(D4)

and π = (π1, . . . , π4) be the quotient map (k[z, z−1])4 → M . As discussed in the previous section,
there is a surjective map M → cok (σ). This means we can realize Dep

(

Z2, k
)

as a subspace of
Hom (M,k).

A basis for Hom
(

k[z, z−1]/(z − 1)3, k
)

is given by the maps

v1 : zi 7→ 1 v2 : zi 7→ i v3 : zi 7→ i2.

10



Let e : Z 7→ Z be the map that sends n to 0 if n is odd, and to 1 if it is even. A basis for
Hom

(

k[z, z−1]/(z − 1)3(z + 1), k
)

is given by

w1 : zi 7→ e(i) w2 : zi 7→ 1− e(i) w3 : zi 7→ i w4 : zi 7→ i2.

These maps together give a basis for Hom (M,k) consisting of 14 elements:

• v1,1, v1,2 and v1,3 acting on the first coordinate;

• v2,1, v2,2 and v2,3 acting on the second coordinate;

• w1,1, . . . , w1,4 acting on the third coordinate and

• w2,1, . . . , w2,4 acting on the fourth coordinate.

These maps correspond to the sums of line sums that also come up in Section 2.2. For example
v1,1 sends F to

∑

i ri and w2,3 sends F to
∑

i i
2ui.

The dependencies form a subvector space of Hom (M,k) of dimension 7. What we still have
to do is to determine which linear combinations of vi,j ’s and wi,j ’s correspond to dependencies.
One way to do this is to write down the restrictions coming from the fact that tables of the form
xiyj must be sent to 0 by a dependency. We will see in Section 8 that we only have to check finitely
many such tables before we have a complete set of restrictions.

Another way to find these restriction is to consider the compositions of the v’s and w’s with
π ◦σ, i.e., the maps they induce in Hom

(

k[x, x−1, y, y−1], k
)

. The dependencies are precisely those
relations that go to 0 under this composition. The maps we obtain in this way are

map xiyj 7→ map xiyj 7→
v1,1 1 v2,1 1
v1,2 i v2,1 j
v1,3 i2 v2,1 j2

w1,1 e(i− j) w2,1 e(i+ j)
w1,2 1− e(i− j) w2,2 1− e(i+ j)
w1,3 i− j w2,3 i+ j
w1,3 (i − j)2 w2,3 (i + j)2

From this table, one easily reads off a basis for the dependencies. For example, we can take

v1,1 = v2,1 = w1,1 + w1,2 = w2,1 + w2,2

w1,1 = w2,1

v1,2 − v2,2 = w1,3

v1,2 + v2,2 = w2,3

2v1,3 + 2v2,3 = w1,4 + w2,4.

These correspond to the dependencies described in Section 2.2.
If we want to write down a basis for the dependencies not over Q but over Z or some

other ring, we have to be a little more careful. The maps v1, . . . v3 do not form a basis of
Hom

(

k[z, z−1]/(z − 1)3, k
)

if k = Z. The map sending zi to 1
2 i(i − 1) is in this module, but

it is equal to 1
2 (v3 − v2), which is not a Z-linear combination of the v’s.

A basis that works regardless of the ring k is found as follows. Note that

k[z, z−1]
/

(z − 1)3 = k · 1⊕ k · z ⊕ k · z2

This choise of a basis also gives a basis for the k-dual. This basis works independently of k. The
price we pay for this more general approach is that the formulas that come out aren’t as nice,
making it harder to find the dependencies by hand. The linear algebra involved does not become
more difficult.
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7 The comparison sequence

Let A ⊂ B ⊂ Z2. Our aim in this section is to compare the kernels and cokernels of σA,k and σB,k.

Put T (B/A, k) = k(B\A) and L(B/A, k) =
⊕t

i=1 k
(Li(B)\Li(A)). Looking at the bases for the

spaces involved, it is clear that there are direct sum decompositions T (B, k) = T (A, k)⊕T (B/A, k)
and L(B, k) = L(A, k)⊕ L(B/A, k).

This means we can represent σB,k as a two-by-two matrix of k-linear maps

σB,k =

(

p q
r s

)

,

where p : T (A, k) → L(A, k), q : T (B/A, k) → L(A, k), r : T (A) → L(B/A, k), and s :
T (B/A, k) → L(B/A, k) are the restrictions and projections of σB,k to the appropriate subspaces.
The usual matrix multiplication rule

(

p q
r s

)(

x
y

)

=

(

u
v

)

holds when we have x ∈ T (A, k), y ∈ T (B/A, k), u ∈ L(A, k), and v ∈ L(B/A, k) such that
σB,k(x⊕ y) = u⊕ v.

As L(B/A, k) consists precisely of those lines through B that do not intersect A, we have
r = 0. Similarly, p is just the map sending tables on A to their line sums, so p = σA,k. The other
two maps, q and s encode interesting information about the relative situation, so we will give them
more descriptive names

σB/A,k : T (B/A, k)−→L(B/A, k) (the relative line sum map)

and
δB/A,k : T (B/A, k)−→L(A, k) (the interference map).

Lemma 7.1 (The comparison sequence). There is a long exact sequence

0 → ker (σA,k) → ker (σB,k) → ker
(

σB/A,k

)

→ cok (σA,k) → cok (σB,k) → cok
(

σB/A,k

)

→ 0.

The map δB/A,k : ker
(

σB/A,k

)

→ cok (σA,k) comes from the interference map δB/A,k defined above.

Proof. This is an application of the Snake Lemma (See, for example, [17, Ch. III.9, Lemma
9.1.]).

The extension B/A is called non-interfering if it satisfies the following (equivalent) condi-
tions:

1. the map δB/A,k is the zero map;

2. the map ker (σB,k) → ker
(

σB/A,k

)

is surjective;

3. the map cok (σA,k) → cok (σB,k) is injective.

8 Finite, convex A

A subset C ⊂ R2 is called convex if for any x, y ∈ C the line segment between x and y is completely
contained in C. The convex hull of a subset S ⊂ R2 is the smallest convex subset C of R2 containing
S. We write H(S) for the convex hull of S. We call A ⊂ Z2 convex if A = H(A) ∩ Z2.

We call C ⊂ R2 a convex polygon if C = H(S) for some finite S ⊂ R2. The set of corners
of a convex polygon C is the smallest set S such that H(S) = C.

Let C1, C2 ⊂ R2 be convex polygons. Then

C1 + C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}
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is also a convex polygon. Let s be a corner of C1 +C2. Then s can be written in a unique way as
s1 + s2 with s1 ∈ C1 and s2 ∈ C2. Moreover, s1 and s2 are corners of C1 and C2 respectively.

Let f ∈ k[Z2] and write f =
∑

x∈Z2
fxx. Then the support of f is the set

supp(f) =
{

x ∈ Z2 | fx 6= 0
}

.

Note that supp(f) is always a finite set. The polygon of f is

P (f) = H(supp(f)).

It is a convex polygon. Let s be a corner of P (f), then we say that s is a strong corner of P (f) if
fs is not a zero divisor. We say that f has strong corners if all corners of P (f) are strong.

Lemma 8.1. Let f, g ∈ k[Z2] and suppose that f has strong corners. Then

P (fg) = P (f) + P (g).

If g also has strong corners, fg has strong corners.

Proof. The inclusion P (fg) ⊂ P (f) +P (g) is obvious. For the other inclusion, suppose that s is a
corner of P (f) + P (g). Then the coefficient of fg at s is

∑

a+b=s

fagb = fsf gsg ,

where sf and sg are the unique corners of P (f) and P (g) respectively such that s = sf + sg. We
see that this coefficient is non-zero as fsf is not a zero divisor, so s ∈ P (fg). This shows that
P (f) + P (g) ⊂ P (fg). Moreover, if g also has strong corners, gsg is also not a zero divisor and so
fsf gsg is not a zero divisor.

Lemma 8.2. The generator of ker
(

σZ2,k

)

,

D = (d1 − 1) · · · (dt − 1),

has strong corners. Moreover, ∆ = P (D) does not depend on k.

Proof. The polygon of di − 1 is a 2-gon with coefficients ±1 at the corners, so di − 1 has strong
corners. The previous lemma then implies that D has strong corners.

Let DZ = (d1 − 1) · · · (dt − 1) ∈ Z[Z2], then D is the image of DZ under the natural map
Z[Z2] → k[Z2]. Note that the corners of DZ will have coefficients ±1, as this is true for all the
factors d1 − 1. This means that P (D) = P (DZ) does not depend on k, as ±1 never maps to 0 in
k.

Theorem 8.3. Let A ⊂ Z2 be finite and convex. Then ker (σA,k) and cok (σA,k) are free k-modules
of finite rank. The ranks of these modules do not depend on k.

Proof. Note that σA,k is the restriction of σZ2,k to A, and so we have

ker (σA,k) = ker
(

σZ2,k

)

∩ T (A, k).

Using this, we compute

ker (σA,k) = ker
(

σZ2,k

)

∩ T (A, k)
= Dk[Z2] ∩ T (A, k)
=

{

f ∈ Dk[Z2] | supp(f) ⊂ A
}

=
{

f ∈ Dk[Z2] | P (f) ⊂ H(A)
}

=
{

fD | f ∈ k[Z2], P (fD) ⊂ H(A)
}

=
{

fD | f ∈ k[Z2], P (f) + ∆ ⊂ H(A)
}

.

The latter is clearly a free k-module of finite rank with a basis indexed by the x ∈ Z2 such that
x + ∆ ⊂ H(A). By Lemma 8.2, this basis is independent of k. Therefore the rank of ker (σA,k)
does not depend on k.
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This proves the result for the kernel. The result for the cokernel now follows from algebraic
generalities. It suffices to show that cok (σA,Z) is a free Z-module of finite rank, as taking cokernels
commutes with taking tensor products (see e.g. [17, Ch. XVI.2, Prop. 2.6].) Since it is clearly
finitely generated, we must show that it is torsion-free [17, Ch. I.8, Thm. 8.4]. We do this by
comparing the ranks over Fp for p prime to the rank over Z.

From the sequence

0 → ker (σA,Z) → T (A,Z) → L(A,Z) → cok (σA,Z) → 0

we see that

rkZ (cok (σA,Z)) = rkZ (ker (σA,Z))−#A+

t
∑

i=1

#Li(A).

In the same way, we have for any prime p

dimFp

(

cok
(

σA,Fp

))

= dimFp

(

ker
(

σA,Fp

))

−#A+

t
∑

i=1

#Li(A).

By the result about the kernel, we know that rkZ (ker (σA,Z)) = dimFp

(

ker
(

σA,Fp

))

. Using the
formulas above this implies

rkZ (cok (σA,Z)) = dimFp

(

cok
(

σA,Fp

))

.

But if cok (σA,Z) has any p-torsion, the Fp-dimension would be strictly bigger. We conclude that
cok (σA,Z) is torsion-free.

Similar to the global case (A = Z2), this result allows to state a necessary and sufficient
condition for consistency of a vector of potential line sums in the case of finite convex A:

Corollary 8.4. Let A ⊂ Z2 be finite and convex. A vector of potential line sums in L(A, k) comes
from a table in T (A, k) if and only if it satisfies all dependencies.

Proof. Theorem 8.3 shows that we can apply Lemma 3.4 to the cokernel of the line sum map.

9 Local and global dependencies

Let A ⊂ Z2. From the comparison sequence we have a map cok (σA,k) → cok
(

σZ2,k

)

. This map
induces a map on the k-duals

Dep
(

Z2, k
)

−→Dep (A, k) .

We call the image of this map the global dependencies on A. When this map is injective, the
dependencies on Z2 all restrict to different dependencies on A. Our intuition is that this should
happen whenever A is ‘sufficiently large.’

Lemma 9.1. Suppose there is an x ∈ Z2 such that x+∆ ⊂ H(A). Then cok (σA,k) → cok
(

σZ2,k

)

is surjective and so
Dep

(

Z2, k
)

−→Dep (A, k)

is injective.

The geometric line through p ∈ R2 in the direction d ∈ R2 \ {0} is the set

{p+ λd | λ ∈ R} ∩ Z2,

provided this set contains at least two points.
Let d = (a, b) ∈ Z2 \ {0} and put g = gcd (a, b). Then any geometric line in direction d is

the union of g lines. If l is a geometric line in direction d and p, q ∈ H(l) are at least |d| apart,
then the line segment from p to q contains at least one point of every line through l.
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Proof of Lemma 9.1. Without loss of generality we restrict ourselves to A = ∆ ∩ Z2. We want
to show that for any l ∈ L(Z2, k), there is an l′ ∈ L(A, k) that maps to the same element in
cok

(

σZ2,k

)

. That is, we must show

L(Z2, k) = im
(

σZ2,k

)

+ L(A, k).

Recall that the conductor

fk = D1k[Z
2]
/

d1 − 1⊕ · · · ⊕Dtk[Z
2]
/

dt − 1

is the largest L(Z2, k) ideal that is contained in im
(

σZ2,k

)

. It is therefore sufficient to show that
L(Z2, k) = fk + L(A, k), or, equivalently, that

k(Li(A)) −→ k[Z2]
/

(di − 1, Di)

is surjective for all i.
Let l be a geometric line in direction di such that H(l) intersects ∆. As we have ∆ =

P (Di)+P (di− 1), the intersection is a segment of width at least |di|, so every line in the direction
di that lies in l is in Li(A). Let S ⊂ Z2 be the union of all the lines in Li(A).

Note that P (Di) does not have a side parallel to di, as all the directions are pairwise
independent. It follows that P (Di) has maximal points in the directions orthogonal to di. These
points are nescesarily corners. The coefficients on these corners are ±1. It follows that for any
f ∈ k[Z2], there is a g ∈ k[Z2] such that supp(g) ⊂ S and f − g ∈ Dik[Z

2].
By the above, this implies that

k(Li(A)) +Dik[Z
2]
/

di − 1 = k[Z2]
/

di − 1

and so
k(Li(A)) −→ k[Z2]

/

(di − 1, Di)

is surjective.

Let A be finite and convex. We define the rounded part of A to be the subset

A′ =
(

⋃

(x+∆)
)

∩ Z2

where the union runs over all x ∈ Z2 such that x+∆ ⊂ H(A). We call A rounded if it is non-empty
and A′ = A.

Theorem 9.2. Let A be finite, convex and rounded. Then cok (σA,k) is equal to cok
(

σZ2,k

)

and
so we have

Dep (A, k) = Dep
(

Z2, k
)

.

Proof. Note that by Lemma 9.1 the map

cok (σA,k)−→ cok
(

σZ2,k

)

is surjective, so we just have to show it is injective. The strategy for this is to construct

A = A0 ⊂ A1 ⊂ A2 ⊂ · · ·

such that Ai+1/Ai is non-interfering for all i ≥ 0 and
⋃

i≥0 Ai is all of Z
2. Suppose that l ∈ L(A, k)

such that l = σZ2,k(t) for some t ∈ T (Z2, k). Then t ∈ T (Ai, k) for some i, so l maps to 0 in
cok (σAi,k). By the non-interference, cok (σA,k) maps injectively to cok (σAi,k), so it follows that l
maps to 0 in cok (σA,k), as required.

Pick a point p in the interior of H(A) in sufficiently general position (we will make this more
precise later on). For λ ∈ R≥1 let H(λ) be the point multiplication of the set H(A) with factor λ
and center p. Let A(λ) = H(λ) ∩ Z2. Note that the union of all H(λ) is the entire plane, so we
have

⋃

λ≥1

A(λ) = Z2.
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As Z2 ⊂ R2 is countable and discrete, the set of λ’s such that

A(λ) 6=
⋃

1≤µ<λ

A(µ)

is a countable and discrete subset of R≥1. Let (λi)
∞
i=0 be the sequence of these λ’s in increasing

order. Put Ai = A(λi).
For all λ ∈ R≥1 one sees that

⋃

1≤µ<λ

H(µ)

is the boundary of H(λ). Therefore, any point in Ai+1 \ Ai is on the boundary of H(λi). This
means that these points lie on finitely many line segments: the edges of the polygon H(λi+1).

In fact, by choosing the point p outside a countable union of lines, one can ensure that for
every i there is a single edge li of the polygon H(λi+1) such that all the points in Ai+1 \Ai lie on
that edge.

Suppose that li does not lie in one of the directions d1, . . . dt. Then ∆ has a maximal point
m in the direction orthogonal to li, which is a corner and so the corresponding coefficient of D
is ±1. Let p ∈ Ai+1 \ Ai. As A is rounded, the translate of ∆ such that m coincides with p is
contained entirely in Ai+1. It follows that the map

ker
(

σAi+1,k

)

−→ k(Ai+1\Ai)

is surjective, so Ai+1/Ai is non-interfering.
Suppose that li lies in the direction dj . The edge of H(A) in direction dj is at least |dj |

long, as A is rounded. So the edge li of H(λi+1) has length λi+1|dj | > |dj |. Therefore, every line
in the direction dj that lies inside the geometric line containing li meets Ai+1. Note that ∆ has an
edge in direction dj and that the intersection of supp(D) with the geometric line through that edge
consists precisely of the two corner points, both of which have coefficient ±1. These two points are
adjacent points within the same line on that geometric line. As A is rounded, every translate of
∆ such that the edge in direction dj lies between on li, lies completely within H(A). From these
observations we can conclude that

σAi+1/Ai,k : T (Ai+1/Ai, k)−→L(Ai+1/Ai, k)

is onto and that its kernel is generated by the intersections of the correct translates of D with
T (Ai+1/Ai, k). Therefore the map

ker
(

σAi+1,k

)

−→ ker
(

σAi+1/Ai,k

)

is onto, that is, Ai+1/Ai is non-interfering.

Theorem 9.3. Let A be finite and convex and suppose that A′ is non-empty. Then Dep (A, k)
decomposes in a natural way as a direct sum

Dep (A, k) = Dep
(

Z2, k
)

⊕Homk

(

cok
(

σA/A′,k

)

, k
)

.

We call the second summand the local dependencies on A.

Proof. From the comparison sequence for A/A′ we have

cok (σA′,k) −→
fA/A′

cok (σA,k)−→ cok
(

σA/A′,k

)

−→ 0.

Lemma 9.1 shows fA : cok (σA,k) → cok
(

σZ2,k

)

is surjective and Theorem 9.2 shows fA′ :

cok (σA′,k) → cok
(

σZ2,k

)

is bijective. Note that fA′ = FA ◦ fA/A′ . We conclude that fA/A′ is

injective (so A/A′ is non-interfering) and that f−1
A′ ◦ fA is a splitting map of fA/A′ . It follows that

cok (σA,k) = cok (σA′,k)⊕ cok
(

σA/A′,k

)

.

This implies the required result (recall that Dep (A′, k) = Dep
(

Z2, k
)

.)
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10 Conclusions

To conclude this paper, we summarize the main results obtained within our algebraic framework,
and their interpretation from the classical combinatorial perspective.

Lemma 3.4 relates an algebraic property of the cokernel of the line sum map to the consis-
tency problem. Theorem 4.2 states that for the case A = Z2, the cokernel actually satisfies this
property. In addition, a characterization of the switching components is provided for this case.
This results in a strong statement concerning the consistency problem for the case A = Z2: a set
of linesums corresponds to a table if and only if it satisfies a certain number of independent depen-
dencies (Corollary 4.3). In Section 5, properties are derived on the structure of the coefficients in
the separate dependencies. Section 6 relates the material from Section 3, 4 and 5 to the example
from the Combinatorial DT literature, given in Section 2.2.

The next sections, starting with Section 7, focus on cases where A is a true subset of Z2. A
relative setup is introduced in Section 7, where a DT problem on a particular domain is related
to a problem on a subset of that domain. In Sections 8 and 9, this relation is applied to describe
the structure of line sums for finite convex sets. Corollary 4.3 provides a necessary and sufficient
condition for consistency in the case of a finite, convex reconstruction domain. Theorem 9.2 shows
that if A is finite, convex and rounded, the dependencies are exactly those that also apply to the
global case A = Z2. Finally, Theorem 9.3 considers the decomposition of the dependencies for the
general finite convex case into global and local dependencies.

The results on the structure of dependencies between the line sums in discrete tomography
problems can either be viewed as a collection of new research results, or as an illustration of the
power of applying Ring Theory and Commutative Algebra to this combinatorial problem. We
expect that a range of additional results can be obtained within the context of this algebraic
framework.

A Tools from algebra

A.1 Group rings

We begin by recalling some results on group rings. See for example [17, Ch. II.3] for a short
introduction or [19] for more results on these rings.

Definition A.1. Let k be a commutative ring and G be a group. The group ring k[G] is the
k-algebra which as a k-module is the free with basis G,

k[G] =
⊕

g∈G

k[g]

and whose multiplication is given by

[g] · [h] = [gh] for all g, h ∈ G
[g] · λ = λ[g] for all g ∈ G, λ ∈ k.

When there is no confusion possible we will drop the brackets around elements of G, writing
a typical element of k[G] simply as

∑

g∈G λgg with λg = 0 for almost all g ∈ G.
A ring homomorphism k−→ k′ induces a unique ring homomorphism

k[G]−→ k′[G].

A group homomorphism G−→H induces a unique k-algebra homomorphism

k[G]−→ k[H ].

Lemma A.2. Let G be a group and N be a normal subgroup. Let IN be the ideal of k[G] generated
by all elements of the form n− 1 with n ∈ N . Then there is a short exact sequence

0−→ IN −→ k[G]−→ k[G
/

N ]−→ 0.
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A.2 Filtrations

We continue with some generalities on filtrations.

Definition A.3. Let R be a commutative ring and M an R-module. A filtration of M is a
collection of submodules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M.

The quotient modules Mi+1/Mi are called the successive quotients of the filtration.

Lemma A.4. Let R be a commutative ring and let M ′ and M ′′ be filtered R-modules. Suppose
we have a short exact sequence

0 → M ′ → M → M ′′ → 0.

Then M admits a filtration whose successive quotients are those of M ′ followed by those of M ′′

Lemma A.5. Let R be a commutative ring, let A,B and C be R-modules and suppose f : A → B
and g : B → C are injective morphisms. Then there is a short exact sequence

0 → cok (f) → cok (gf) → cok (g) → 0.

A.3 Weak coprimality

The rest of this appendix is devoted to a generalisation of the concept of coprimality and the
Chinese Remainder Theorem.

Definition A.6. Let R be a commutative ring and let f, g ∈ R. We say that f is weakly coprime
to g if multiplication by f is an injective map on R

/

g.

The common notion of coprimality, namely that the ideal (f, g) generated by f and g be all
of R, implies that multiplication by f is a bijective map on R

/

g.

Lemma A.7. Let R be a commutative ring and let f, g ∈ R such that f is weakly coprime to g.
Then there is a short exact sequence

0 → R
/

fg → R
/

f ⊕R
/

g → R
/

(f, g) → 0.

Proof. Straightforward verification.

If two elements are coprime in the common (strong) sense, then in the sequence above we
have R/(f, g) = 0, so the first map is an isomorphism. This fact is commonly refered to as the
Chinese Remainder Theorem.

Lemma A.8. Let R be a commutative ring and let f1, f2 and g be in R. Suppose that f1 and f2
are weakly coprime to g. Then there is a short exact sequence

0 → R
/

(f1, g) → R
/

(f1f2, g) → R
/

(f2, g) → 0.

Proof. Apply lemma A.5 to the multiplication by f1 and by f2 maps on R/g.

Theorem A.9 (Weak Chinese Remainder Theorem). Let R be a commutative ring and let x1, · · · , xt ∈
R have the property that xi is weakly coprime to xj whenever i < j. Then the natural map

φ : R
/

x1 · · ·xt
−→ R

/

x1
⊕ · · · ⊕R

/

xt

is injective. Its cokernel admits a filtration whose successive quotients are isomorphic to R
/

(xi, xj)
for 1 ≤ i < j ≤ t.
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Proof. We proceed by induction on t. For t = 2 the result is that of Lemma A.7. Let t ≥ 3 and
assume that the theorem holds for any smaller number of xi’s.

We write φ as a composition of two maps. Let φ1 be the natural map

φ1 : R
/

x1 · · ·xt −→R
/

x1 · · ·xt−1 ⊕R
/

xt

and φ2 the natural map

φ2 : R
/

x1 · · ·xt−1
−→R

/

x1
⊕ · · · ⊕R

/

xt−1
.

Then we have φ = (φ2 ⊕ idR/xt
) ◦ φ1.

Note x1 · · ·xt−1 is weakly coprime to xt as a composition of injective maps is again injective.
So Lemma A.7 applies to φ1. In particular φ1 is injective. By the induction hypothesis, φ2 is also
injective. We conclude that φ is injective.

By Lemma A.7 the cokernel of φ1 is R/(x1 · · ·xt−1, xt). By repeatedly applying Lemma
A.8, this module admits a filtration whose successive quotients are R/(xi, xt) for 1 ≤ i ≤ t− 1.

Furthermore, we have cok
(

φ2 ⊕ idR/xt

)

= cok (φ2), which by the induction hypothesis has
a filtration whose successive quotients are isomorphic to R/(xi, xj) with 1 ≤ i < j ≤ t− 1.

We apply Lemma A.5 to the maps φ1 and φ2 ⊕ idR/xt
and conclude that the cokernel of φ

has the required filtration.

References

[1] A. Alpers and P. Gritzmann. On stability, error correction, and noise compensation in discrete
tomography. SIAM J. Discrete Math., 20(1):227–239, 2006.

[2] A. Alpers and R. Tijdeman. The two-dimensional ProuhetTarryEscott problem. J. Number
Theory, 123:403–412, 2007.

[3] M. Baake, P. Gritzmann, C. Huck, B. Langfeld and K. Lord. Discrete tomography of planar
model sets. Acta Cryst., 62:419–433, 2006.

[4] E. Barcucci, A. Del Lungo, M. Nivat, and R. Pinzani. Reconstructing convex polyominoes
from horizontal and vertical projections. Theoret. Comp. Sci., 155:321–347, 1996.

[5] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, and M. Nivat. Reconstruction of 4-
and 8-connected convex discrete sets from row and column projections. Linear Algebra Appl.,
339:37–57, 2001.

[6] D. Gale. A theorem on flows in networks. Pacific J. Math., 7:1073–1082, 1957.

[7] R. J. Garnder and P. Gritzmann. Discrete tomography: determination of finite sets by X-rays.
Trans. Am. Math. Soc., 349(6):2271–2295, 1997.

[8] R. J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of
reconstructing lattice sets from their X-rays. Discrete Math., 202:45–71, 1999.

[9] R. J. Gardner. Geometric Tomography, 2nd edition. Cambridge University Press, 2006.

[10] P. Gritzmann and B. Langfeld. On the index of Siegel grids and its application to the tomog-
raphy of quasicrystals. European J. Combin., 29:1894–1909, 2008.

[11] L. Hajdu and R. Tijdeman. Algebraic aspects of discrete tomography. J. Reine Angew. Math.,
534:119–128, 2001.

[12] S. Helgason. The Radon transform. Birkhäuser, Boston, 1980.
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