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Abstract. Moduli of rings and quadrilaterals are frequently applied in geomet-
ric function theory, see e.g. the Handbook by Kühnau. Yet their exact values
are known only in a few special cases. Previously, the class of planar domains
with polygonal boundary has been studied by many authors from the point of
view of numerical computation. We present here a new hp-FEM algorithm for
the computation of moduli of rings and quadrilaterals and compare its accuracy
and performance with previously known methods such as the Schwarz-Christoffel
Toolbox of Driscoll and Trefethen.
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1. Introduction

Plane domains whose boundaries consist of piecewise-smooth curves occur in
applications to electronics circuit design, airfoil modelling in computational fluid
dynamics, computer vision and various other problems of engineering and science
[21, 22, 23, 27, 30, 32]. In order to specify the shape of the domain we assume that the
domain is bounded and that there are either one or two simple (and nonintersecting)
boundary curves. The domain is then either simply or doubly connected. For the
mathematical modelling of these domains it is usually convenient to map the domains
conformally onto “canonical domains” as simple as possible: the unit disk D = {z ∈
C : |z| < 1} or the annulus {z ∈ C : r < |z| < 1} . Sometimes a rectangle is
more preferable than the unit disk as a canonical domain. The existence of these
canonical conformal mappings is guaranteed by classical results of geometric function
theory but the construction of this mapping in a concrete application case is usually
impossible. Therefore one has to resort to numerical conformal mapping methods for
which there exists an extensive literature [17, 23, 26, 30]. The Schwarz-Christoffel
(SC) Toolbox of Driscoll [16], based on the software of Trefethen [34], is in wide use
for numerical conformal mapping applications.

In the doubly connected case, one might be interested in only knowing the inner
radius r of the canonical annulus. For instance this occurs if we wish to compute the
electric resistance of a ring condenser. In this situation the conformal mapping itself
is not needed if we are able to find the inner radius r by some other method. It is a
classical fact that the inner radius r can be obtained in terms of the solution of the
Dirichlét problem for the Laplace equation in the original domain with the boundary
value 0 on one boundary component and the boundary value 1 on the other one.
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This fact is just one way of saying that the modulus of a ring domain is conformally
invariant: for the canonical annulus {z ∈ C : r < |z| < 1} the modulus is equal to
log(1/r) . This idea reduces the problem of computing the number r to the problem
of numerical approximation of the solutions of Laplace equation in ring domains. In
the paper [9] this method was applied to several concrete examples of ring domains
for which numerical results were reported, too.

We next consider the case of simply connected plane domains. For such a domain
D and for a quadruple {z1, z2, z3, z4} of its boundary points we call (D; z1, z2, z3, z4) a
quadrilateral if z1, z2, z3, z4 occur in this order when the boundary curve is traversed
in the positive direction. The points zk, k = 1, .., 4 , are called the vertices and the
part of the oriented boundary between two successive vertices such as z1 and z2 is
called a boundary arc (z1, z2) . The modulus M(D; z1, z2, z3, z4) of the quadrilateral
(D; z1, z2, z3, z4) is defined to be the unique h > 0 for which there exists a conformal
mapping of D onto the rectangle with vertices 1 + ih, ih, 0, 1 such that the points
z1, z2, z3, z4 correspond to the vertices in this order. This conformal mapping is called
the canonical conformal mapping associated with the quadrilateral. As in the case of
doubly connected domains discussed above, it is well-known that the computation of
the modulus h of the quadrilateral may be reduced to solving the Dirichlét-Neumann
boundary value problem in the original domain D with the Dirichlét boundary values
1 on the boundary arc (z1, z2) and 0 on the arc (z3, z4) and Neumann boundary values
0 on the arcs (z3, z4) and (z4, z1) .

An outline of the structure of this paper now follows. First, in Section 2 we
describe the methods used in this paper. In Section 3 we discuss in detail the various
FEM methods used here, in particular the hp-method which was implemented and
applied to generate some of the results reported below. Another method we use is the
h-adaptive software package AFEM of K. Samuelsson, which implements an adaptive
FEM method and which was previously used in [9]. In the present paper we use the
AFEM method to compute the modulus of a quadrilateral whereas in [9] it was
used merely for the computation of the moduli of ring domains. In Section 4 a test
problem for quadrilaterals is described together with its analytic solution, following
[20]. This analytic solution requires, however, an application of a numerical root
finding program. Accordingly, this formula is analytic-numeric in its character. In
Section 5 we check several methods against this analytic formula in a test involving a
family of convex quadrilaterals. The methods discussed are the analytic formula from
[20], the Schwarz-Christoffel Toolbox of [16, 17], the AFEM method of Samuelsson [9]
and the present hp-method. On the basis of these experiments, an accuracy ranking
of the methods is given in Section 5. In Section 6 the more general case of polygonal
quadrilaterals is investigated, in particular L-shaped domains, and the results are
compared to the literature. A general observation about the literature seems to
be that reported numerical values of the moduli of concrete quadrilaterals (or ring
domains) are hard to find in the literature. Perhaps the longest list of numerical
results is given in [9] where pointers to earlier literature may be found. The recent
book [26] lists also many such numerical values. In our opinion a catalogue of these
numerical values in the simplest cases would be desirable for instance for reference
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purposes. The book [30] and the paper [27, p. 127] list certain engineering formulas
which have been applied in VLSI circuit design.

2. Methods

The following problem is known as the Dirichlét-Neumann problem. Let D be a
region in the complex plane whose boundary ∂D consists of a finite number of regular
Jordan curves, so that at every point, except possibly at finitely many points, of the
boundary a normal is defined. Let ∂D = A∪B where A,B both are unions of Jordan
arcs. Let ψA, ψB be a real-valued continuous functions defined on A,B, respectively.
Find a function u satisfying the following conditions:

(1) u is continuous and differentiable in D.
(2) u(t) = ψA(t), for all t ∈ A.
(3) If ∂/∂n denotes differentiation in the direction of the exterior normal, then

∂

∂n
u(t) = ψB(t), for all t ∈ B.

2.1. Modulus of a quadrilateral and Dirichlét integrals. One can express the
modulus of a quadrilateral (D; z1, z2, z3, z4) in terms of the solution of the Dirichlét-
Neumann problem as follows. Let γj, j = 1, 2, 3, 4 be the arcs of ∂D between (z4, z1) ,
(z1, z2) , (z2, z3) , (z3, z4), respectively. If u is the (unique) harmonic solution of the
Dirichlét-Neumann problem with boundary values of u equal to 0 on γ2, equal to 1
on γ4 and with ∂u/∂n = 0 on γ1 ∪ γ3 , then by [1, p. 65/Thm 4.5]:

(2.2) M(D; z1, z2, z3, z4) =

∫
D

|Ou|2 dm.

2.3. Modulus of a ring domain and Dirichlét integrals. Let E and F be two
disjoint compact sets in the extended complex plane C. Then one of the sets E, F is
bounded and without loss of generality we may assume that it is E . If both E and
F are connected and the set R = C \ (E ∪ F ) is connected, then R is called a ring
domain. In this case R is a doubly connected plane domain. The capacity of R is
defined by

capR = inf
u

∫
R

|Ou|2 dm,

where the infimum is taken over all nonnegative, piecewise differentiable functions u
with compact support in R∪E such that u = 1 on E. It is well-known that the har-
monic function on R with boundary values 1 on E and 0 on F is the unique function
that minimizes the above integral. In other words, the minimizer may be found by
solving the Dirichlét problem for the Laplace equation in R with boundary values 1
on the bounded boundary component E and 0 on the other boundary component F .
A ring domain R can be mapped conformally onto the annulus {z : e−M < |z| < 1},
where M = M(R) is the conformal modulus of the ring domain R . The modulus and
capacity of a ring domain are connected by the simple identity M(R) = 2π/capR. For
more information on the modulus of a ring domain and its applications in complex
analysis the reader is referred to [1, 21, 22, 26].

In [26, Chapter 3] N. Papamichael describes so called domain decomposition
method for the computation of the modulus of a quadrilateral which is designed
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to the case of elongated quadrilaterals and applies e.g. to polygonal quadrilaterals
that can be decomposed into simple pieces whose moduli can be estimated. As an
example he considers a spiraling quadrilateral that can be decomposed into a ”sum”
of 13 trapezoids and reports results that are expected to be correct up to 7 decimal
places. Therefore, this method seems very attractive for the computation of the
modulus of a special class of quadrilaterals. A key feature of the method is that it
reduces the numerical difficulties caused by the crowding phenomenon for this special
class of quadrilaterals.

2.4. Classification of methods for numerical computing. For the computation
of the modulus of a quadrilateral or of a ring domain there are two natural approaches

(1) methods based on the definition of the modulus and on the use of a conformal
mapping onto a canonical rectangle or annulus,

(2) methods that give only the modulus, not the canonical conformal map.

In some sense, methods of class (1) give a lot of extra information, namely the
conformal mapping – all we want is a single real number. Methods of class (2) rely
on solving the Dirichlét-Neumann boundary value problem or Dirichlét problem for
the Laplace equation as described above.

In this paper we will mainly use methods of type (2) that make use of adaptive
FEM methods for solving the Laplace equation.

2.5. Review of the literature on numerical conformal mapping. With the ex-
ception of a few special cases, both of the above methods lead to extensive numerical
computation. For both classes of methods there are several options in the literature,
see for instance the bibliography of [9]. Various aspects of the theory and practice of
numerical conformal mapping are reviewed in the monographs [17, 26, 23, 30]. See
also the authoritative surveys [19, 25, 35, 36].

Recently numerical conformal mappings have been studied from various points of
view and in various applications by many authors, see e.g. [2, 6, 12, 13, 14, 24, 28, 29].

2.6. Crowding phenomenon. The so called crowding phenomenon is a well-doc-
umented difficulty in numerical conformal mapping discussed by several authors.
The underlying difficulties become clear when considering the conformal mapping
of an elongated rectangle onto the unit disk. The difficulties are so severe that the
total failure of the numerical procedure may result. For example, considering the
quadrilateral (Q; 1 + ih, ih, 0, 1) and its conformal map f onto the unit disk with
f(1 + ih) = −f(0), f(ih) = −f(1) we have that the minimal distance of the image
points f(1 + ih), f(ih), f(0), f(1) is less than 3.4 · 10−16 for h = 1/24 by [26, p. 132].
Due to the constraints of the floating point arithmetic, it is difficult to even sort the
image points in the right order.

Very recently, L. Banjai [6] has devised some methods to alleviate the difficulties
caused by the crowding at least in some cases.

3. p-, and hp-finite element method

In the paper [9] the modulus of a ring domain was computed with the help of
the software package AFEM of K. Samuelsson, based on an h-adaptive finite element
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method. It may be easily applied to compute the modulus of a quadrilateral, too,
and some results will be reported below. Here the AFEM package will be adopted
also to compute the modulus of a quadrilateral.

In this section we describe the high-order p-, and hp-finite element methods and
report the results of numerical computation of the moduli of a number of quadrilat-
erals. The paper of Babuška and Suri [5] gives an accessible overview of the method,
for a more detailed exposition we refer to Schwab [31], and for those familiar with
engineering approach the book by Szabo and Babuška [5] is recommended.

In the h-version or standard finite element method, the unknowns or degrees
of freedom are associated with values at specified locations of the discretization of
the computational domain, that is, the nodes of the mesh. In the p-method, the
unknowns are coefficients of some polynomials that are associated with topological
entities of the elements, nodes, sides, and interior. Thus, in addition to increasing
accuracy through refining the mesh, we have an additional refinement parameter, the
polynomial degree p.

Let us next define a p-type quadrilateral element. The construction of triangles
is similar and can be found from the references given above.

3.1. Shape functions. Many different selections of shape functions are possible. We
follow Szabo and Babuška [33] and present the so-called hierarchic shape functions.

Legendre polynomials of degree n can be defined using a recursion formula

(3.2) (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, P0(x) = 1.

The derivatives can similarly be computed using a recursion

(3.3) (1− x2)P ′n(x) = −nxPn(x) + nPn−1(x).

For our purposes the central polynomials are the integrated Legendre polyno-
mials

(3.4) φn(ξ) =

√
2n− 1

2

∫ ξ

−1

Pn−1(t) dt, n = 0, 1, . . .

which can be rewritten as linear combinations of Legendre polynomials

(3.5) φn(ξ) =
1√

2(2n− 1)
(Pn(ξ)− Pn−2(ξ)) , n = 0, 1, . . .

The normalizing coefficients are chosen so that

(3.6)

∫ 1

−1

dφi(ξ)

dξ

dφj(ξ)

dξ
dξ = δij, i, j ≥ 2.

We can now define the shape functions for a quadrilateral reference element.
The shape functions are divided into three categories: nodal shape functions, side
modes, and internal modes.
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3.7. Nodal shape functions. There are four nodal shape functions.

N1(ξ, η) =
1

4
(1− ξ)(1− η),

N2(ξ, η) =
1

4
(1 + ξ)(1− η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η),

N4(ξ, η) =
1

4
(1− ξ)(1 + η).

Taken alone, these shapes define the standard four-node quadrilateral finite element.

3.8. Side shape functions. There are 4(p−1) side modes associated with the sides
of a quadrilateral (p ≥ 2).

N
(1)
i (ξ, η) =

1

2
(1− η)φi(ξ), i = 2, . . . , p,

N
(2)
i (ξ, η) =

1

2
(1 + ξ)φi(η), i = 2, . . . , p,

N
(3)
i (ξ, η) =

1

2
(1 + η)φi(η), i = 2, . . . , p,

N
(4)
i (ξ, η) =

1

2
(1− ξ)φi(ξ), i = 2, . . . , p.

3.9. Internal shape functions. For the internal modes we have two options. The
so-called trunk space has (p− 2)(p− 3)/2 shapes

(3.10) N0
k (ξ, η) = φi(ξ)φj(η), i, j ≥ 2, i+ j = 4, 5, . . . ,

whereas the full space has (p− 1)(p− 1) shapes

(3.11) N0
k (ξ, η) = φi(ξ)φj(η), i = 2, . . . , p, j = 2, . . . , p,

where in both cases the index k depends on the chosen convention. In this paper
we always use the full space. The internal shape functions are often referred to as
bubble-functions.

3.12. Parity problem. The Legendre polynomials have the property Pn(−x) =
(−1)nPn(x). In 2D all internal edges of the mesh are shared by two different ele-
ments. We must ensure that each edge has the same global parameterization in both
elements. This additional book-keeping is not necessary in the standard h-FEM.

3.13. Resource requirements. We have seen that the number of unknowns in a
p-type quadrilateral is (p + 2)(p + 3)/2 or 4p + (p − 1)2 if the internal modes are
from trunk or full space, respectively. To compensate this, the number of elements
is naturally taken to be as small as possible. Indeed, when the mesh is adapted in
a suitable way, the dimension of the overall linear system can be significantly lower
than in the corresponding h-method. However, the matrices tend to be denser in the
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Figure 1. Geometric mesh for a general quadrilateral

p-method, so the space requirements in relation to the dimension of the linear system
are greater for the p-method.

3.14. Proper grading of the meshes For a certain class of problems it can be
shown that if the mesh and the elemental degrees have been set optimally, we can
obtain exponential convergence. A geometric mesh is such that each successive layer
of elements changes in size with some geometric factor, scaling factor α, toward some
point of interest. In this case, the points of interest are always corner points.

The following theorem is due to Babuška and Guo [7]. Note that construction
of appropriate spaces is technical. For rigorous treatment of the theory involved see
Schwab [31], Babuška and Guo [8] and references therein.

3.15. Theorem. Let Ω ⊂ R2 be a polygon, v the FEM-solution, and let the weak
solution u0 be in a suitable countably normed space where the derivatives of arbritarily
high order are controlled. Then

inf
v
‖uo − v‖H1(Ω) ≤ C exp(−b 3

√
N),

where C and b are independent of N , the number of degrees of freedom. Here v is
computed on a proper geometric mesh, where the orders of individual elements depend
on their originating layer, such that highest layers have smallest orders.

Result also holds for constant polynomial degree distribution.

Let us denote the number of highest layer with ν, the nesting level. Using this
notation we can refer to geometric meshes as (α, ν)-meshes.

In Figure 1 we show a geometric mesh template for a non-convex quadrilateral.
Here we require that each node lies at the end point of an edge and so are content if
the lines follow the guidelines of the geometric meshes.

In Figure 2 a sequence of real p-type meshes is shown. The template mesh serves
also as a pure p-type mesh where the approximation properties are changed only by
varying the polynomial degree. In the following two meshes the number of elements
is the same because the nesting level is the same, only the scaling factor changes.
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Figure 2. Graded meshes: Effect of the scaling factor. From left to
right, template mesh, (α, ν) = (1/2, 3), (α, ν) = (1/6, 3).

Figure 3. Three sample meshes used in numerical experiments below.
Note the triangles isolating the corners.

3.16. Generating geometric meshes. Here we consider generation of geometric
meshes in polygonal domains. We use the following two-phase algorithm:

(1) Generate a minimal mesh (triangulation) where the corners are isolated with
a fixed number of triangles depending on the interior angle, θ:
• θ ≤ π/2: one triangle,
• π/2 < θ ≤ π: two triangles, and
• π < θ: three triangles.

(2) Every triangle attached to a corner is replaced by a refinement, where the
edges incident to the corner are split as specified by the scaling factor α. This
process is repeated recursively until the desired nesting level ν is reached.
Note that the mesh may include quadrilaterals after refinement.

In Figure 3 three minimal meshes and in Figure 4 one final mesh are shown.

4. Convex quadrilateral

In this section our goal is to introduce a test problem, whose solution is de-
termined by a transcendental equation. This equation can be numerically solved
to the desired accuracy and we will use this to check the validity of the numerical
methods we use as well as to obtain an experimental estimate for their accuracy.
The test problems we consider are convex polygonal quadrilaterals. The simplest
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Figure 4. Final geometric or (0.15, 12)-mesh. Due to small α only
first two levels are visible.

such quadrilateral consists of the four vertices and the line segments joining the ver-
tices. Let z1, z2, z3, z4 ∈ C be distinct points and suppose that the polygonal line
that results from connecting these points by segments in the order z1, z2, z3, z4, z1

forms the positively oriented boundary of a domain Q. For simplicity, we denote by
QM(z1, z2, z3, z4) the modulus M(Q; z1, z2, z3, z4). Then the modulus is a conformal
invariant in the following sense: If f : Q→ fQ is a conformal mapping onto a Jordan
domain fQ, then f has a homeomorphic extension to the closure Q (also denoted by
f) and

M(Q; z1, z2, z3, z4) = M(fQ; f(z1), f(z2), f(z3), f(z4)) .

It is clear by geometry that the following reciprocal identity holds:

(4.1) M(Q; z1, z2, z3, z4)M(Q; z2, z3, z4, z1) = 1.

If h : C→ C is a translation, rotation, or stretching, then the piecewise linear nature
of the boundary is preserved and we can write the conformal invariance simply as

QM(z1, z2, z3, z4) = QM(f(z1), f(z2), f(z3), f(z4)) .

There are two particular cases, where we can immediately give QM(z1, z2, z3, z4).
The first cases occurs, when all the sides are of equal length (i.e. the quadrilat-
eral is a rhombus) and in this case the modulus is 1 , see [20]. In the second case
(Q; z1, z2, z3, z4) is (Q; 1 + ih, ih, 0, 1), h > 0, and QM(1 + ih, ih, 0, 1) = h.

4.2. Basic identity. In [20, 2.11] some identities satisfied by the function QM(a, b, 0, 1)
were pointed out. We will need here the following one, which is the basic reciprocal
identity (4.1) rewritten for the expression QM :

(4.3) QM(a, b, 0, 1) ·QM((b− 1)/(a− 1), 1/(1− a), 0, 1) = 1 .

We shall consider here the following particular cases of this reciprocal identity:
(a) parallelogram, (b) trapezoid with angles (π/4, 3π/4, π/2, π/2), and (c) a convex
polygonal quadrilateral. Note that for the cases (a) and (b) the formula is less
complex than for the general case (c).
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4.4. The hypergeometric function and complete elliptic integrals. Given
complex numbers a, b, and c with c 6= 0,−1,−2, . . ., the Gaussian hypergeometric
function is the analytic continuation to the slit plane C \ [1,∞) of the series

(4.5) F (a, b; c; z) = 2F1(a, b; c; z) =
∞∑
n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1 .

Here (a, 0) = 1 for a 6= 0, and (a, n) is the shifted factorial function or the Appell
symbol

(a, n) = a(a+ 1)(a+ 2) · · · (a+ n− 1)

for n ∈ N \ {0}, where N = {0, 1, 2, . . .} and the elliptic integrals K(r),K′(r) are
defined by

K(r) =
π

2
F (1/2, 1/2; 1; r2), K′(r) = K(r′), and r′ =

√
1− r2.

Some basic properties of these functions can be found in [4].

4.6. Parallelogram. For t ∈ (0, π) and h > 0 let

g(t, h) ≡ QM(1 + heit, heit, 0, 1).

An analytic expression for this function has been given in [3, 2.3]:

(4.7) g(t, h) = K′(rt/π)/K(rt/π),

where

(4.8) ra = µ−1
a

(
πh

2 sin(πa)

)
, for 0 < a ≤ 1/2,

and the decreasing homeomorphism µa : (0, 1)→ (0,∞) is defined by

(4.9) µa(r) ≡
π

2 sin(πa)

F (a, 1− a; 1; 1− r2)

F (a, 1− a; 1; r2)
.

4.10. Theorem. [20] Let 0 < a, b < 1, max{a + b, 1} ≤ c ≤ 1 + min{a, b}, and let
Q be the quadrilateral in the upper half plane H = {z ∈ C : Im z > 0} with vertices
0, 1, A and B, the interior angles at which are, respectively, bπ, (c− b)π, (1−a)π and
(1 + a− c)π. Then the conformal modulus of Q is given by

QM(A,B, 0, 1) ≡ M(Q) = K(r′)/K(r),

where r ∈ (0, 1) satisfies the equation

(4.11) A− 1 =
Lr′2(c−a−b)F (c− a, c− b; c+ 1− a− b; r′2)

F (a, b; c; r2)
,

say, and

L =
B(c− b, 1− a)

B(b, c− b)
e(b+1−c)iπ.
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For a fixed complex number b with Im (b) > 0 define the following function
g(x, y) = QM(x + i · y, b, 0, 1) for x ∈ R, y > 0 . This is well-defined only if the
polygonal domain with vertices x + i · y, b, 0, 1 is positively oriented. This holds
e.g. if Re (b) < 0 and x > 0. It is a natural question to study the level sets of
the function g . This function tells us how the modulus of a polygonal quadrilateral
changes when three vertices are kept fixed and the fourth one is moving. For instance,
it was shown in [18] that the function decreases when we move the fourth vertex into
certain directions.

4.12. Trapezoid (Burnside [11]). In [9, pp. 237-239] so called square frame, the
domain between two concentric squares with parallel sides, was considered. Such a
domain can be split into 8 similar quadrilaterals, and we shall study here one such
quadrilateral with vertices 1 + hi, (h− 1)i, 0, and 1, h > 1. When h > 1 we have by
[10, pp. 103-104], [11]

(4.13) M(Q; 1 + hi, (h− 1)i, 0, 1) ≡M(h) ≡ K(r)/K(r′)

where

r =

(
t1 − t2
t1 + t2

)2

, t1 = µ−1
1/2

( π
2c

)
, t2 = µ−1

1/2

(πc
2

)
, c = 2h− 1 .

Therefore, the quadrilateral can be conformally mapped onto the rectangle 1+iM(h),
iM(h), 0, 1, with the vertices corresponding to each other. It is clear that h − 1 ≤
M(h) ≤ h . The formula (4.11) has the following approximative version

M(h) = h+ c+O(e−πh), c = −1/2− log 2/π ≈ −0.720636 ,

given in [27]. As far as we know there is neither an explicit nor asymptotic formula
for the case when the angle π/4 of the trapezoid is replaced by an angle equal to
α ∈ (0, π/2) .

4.14. Numerical computation of elliptic integrals. The computation of the
elliptic integrals is efficiently carried out by classical methods available in most pro-
gramming environments (see [4] for details.) The same holds true for the hypergeo-
metric functions. The numerical computation of µ1/2(r) and its inverse function can
be carried out by standard procedures. See e.g. [4, 3.22, 5.32] and [20, 2.11].

5. Validation of algorithms: convex quadrilaterals

Validation of the algorithms for the modulus of a quadrilateral will be discussed
in two main cases: convex quadrilaterals and the case of a general polygonal quadri-
lateral. In this section the case of a convex quadrilateral will be discussed for the
following three algorithms: (a) the SC Toolbox in MATLAB written by Driscoll [16],
(b) the AFEM software due to Samuelsson [9], (c) the hp-method of the present pa-
per implemented in the Mathematica language. The reference computation is carried
out by the algorithm of [20], implemented in [20] in the Mathematica language (the
algorithm QM[A,B] implementing the formula in Theorem 4.10). This implementa-
tion makes use of multiple precision arithmetic for root finding of a transcendental
equation involving the hypergeometric function.
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5.1. Setup of the validation test. All our tests were carried out in the same
fashion using the reciprocal identity (4.3) and considering a quadrilateral with the
vertices a, b, 0, 1 with Im a > 0, Im b > 0, and the line segments joining the vertices
as the boundary arcs. The vertices b, 0, 1 were kept fixed and the vertex a varied over
a rectangular region in the complex plane. The numerical value b = −0.2+ i ·1.2 was
used and the lower left (upper right) corner of the rectangular region was 0.5 + i · 0.2
(1.5 + i · 1.2).

5.2. The reference computation. We used the Mathematica script of [20] for
solving the equation in Theorem 4.10 for the computation of QM(a, b, 0, 1) in order
to carry out the test. The conclusion was that the amplitude of the error was roughly
10−17 i.e. there was practically no error. Note that the quadrilateral here is not always
convex. On the basis of numerical experiments, it seems that the reference method
does also work in non-convex cases, but this has not been rigorously proved.

5.3. The SC Toolbox. This test was carried out by a test program and the error
was usually approximately 10−9 .

5.4. The AFEM package. This test was carried out by the test program and the
error was usually approximately 10−10 .

5.5. The hp-FEM software. The test was based on the implementation of the
hp-method due to the first author. The error was usually 10−8 . for p = 8, 10−11 for
p = 13 and 10−14 for p = 20, using (0.15, 12)-meshes.

5.6. Ranking of the methods. The reference method gives by a clear margin the
least error in the test setup. The next is the hp-method. The AFEM method is
nearly as effective as the SC Toolbox.

6. Validation: polygonal quadrilaterals

In this section we will consider the validation of the algorithms for the modulus
of a quadrilateral in the case of polygonal domains with q > 4 vertices. In the
case considered in the previous section there was a reference computational method,
providing the reference value for the moduli. There is no similar formula available
for the general polygonal case.

6.1. Setup of the validation test. All our tests were carried out in the same
fashion as in the previous section, using the reciprocal identity (4.3). We selected a
quadruple of points {z1, z2, z3, z4} , which is a subset of the set of vertices defining
the polygon D , and assume that these are positively oriented. Thus (D; z1, z2, z3, z4)
is a quadrilateral to which the reciprocal identity (4.3) applies.

6.2. The notation cmodu(w, k1, k2) and modu(w, k1, k2) . Suppose that w is a
vector of p complex numbers such that the points w1, . . . , wq, q ≥ 5, are the vertices
of a polygon D and that they define a positive orientation of the boundary. Choose
indices k1, k2 ∈ {1, . . . , p − 1} with k1 < k2 and set z1 = wk1 , z2 = wk1+1, z3 = wk2 ,
z4 = wk2+1 . Then we define

cmodu(w, k1, k2) = M(D; z1, z2, z3, z4) , modu(w, k1, k2) = M(D; z2, z3, z4, z1) .
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Figure 5. Logarithm of errors over the domain [0.1, 2]× [0.1, 2], cor-
responding to values of p = 8, 13, 20 starting from above.

By the reciprocal relation (4.1) we have

(6.3) cmodu(w, k1, k2) ·modu(w, k1, k2) = 1 .

6.4. L-shaped region. The L-shaped region:

L(a, b, c, d) = L1 ∪ L2, L1 = {z ∈ C : 0 < Re (z) < a, 0 < Im (z) < b},

L2 = {z ∈ C : 0 < Re (z) < d, 0 < Im (z) < c} , 0 < d < a, 0 < b < c ,

is a standard domain considered by several authors for various computational tasks.
In the context of computation of the moduli it was investigated by Gaier [19] and we
will compare our results to his results. In the test cases all the vertices had integer
coordinates in the range [1, 4] .

6.5. Tests of (6.3) with AFEM. The error range was [−7.10 ·10−10,−1.80 ·10−10] .

6.6. Tests of (6.3) with SC Toolbox. The error range was [−1.37 · 10−08, 9.92 ·
10−09] .

6.7. Tests of (6.3) with hp-method. The error ranges were for p = 12, [4.0091 ·
10−11, 1.58978 · 10−10], for p = 16, [8.03357 · 10−13, 2.28306 · 10−12], and for p = 20,
[5.97744 · 10−13, 1.80145 · 10−12], using (0.15, 12)-meshes.
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7. Ring domains

In this section, we compare hp-FEM with exact values and with AFEM in certain
ring domains. The reference values are from [9].

7.1. Square in square. We compute here the capacity of the ring domain with
plates E = [−a, a]× [−a, a] and F = C∞ \ ((−1, 1)× (−1, 1)), 0 < a < 1. The results
with AFEM and the hp-method with (0.15, 12)-meshes are summarized in Table
1. For computation of the capacity, the ring domain is first split into four similar
quadrilaterals. For the potential function, see Figure 7. Note that in this case, the
exact values of the potential are known, see (4.13) and the related trapezoid type
quadrilateral example.

7.2. Cross in square. Let Gab = {(x, y) : |x| ≤ a, |y| ≤ b} ∪ {(x, y) : |x| ≤ b, |y| ≤
a}. and Gc = {(x, y) : |x| < c, |y| < c}, where a < c and b < c. We compute
the capacity of the ring domain R = Gc \ Gab. The results with AFEM and the
hp-method with (0.15, 16)-meshes are summarized in Table 2. For computation of
the capacity, the ring domain is again first split into four similar quadrilaterals. The
mesh for the quadrilaterals is given in Figure 6, and the potential function is given in
Figure 7. The exact values are not known in this case but results can be compared
with AFEM.

Since the underlying mesh topology remains constant in both examples above
we have computed the results using exactly the same mesh template for every sub-
problem, e.g. Figure 6 for Cross in square, a = 0.5, b = 1.2, c = 1.5. Thus, the results
also measure the robustness of the method with respect to element distortion. Also,
in both cases due to symmetry we have graded the mesh only to the reentrant corners
of the domain.

Table 1. Table for Square in Square, p = 16

a Capacity Error Exact value
0.1 2.83978 1.7 · 10−9 2.8397774191
0.2 4.13449 8.4 · 10−12 4.1344870242
0.5 10.2341 3.1 · 10−12 10.2340925694
0.7 20.9016 1.4 · 10−10 20.9015816794
0.8 34.2349 5.6 · 10−13 34.2349151988
0.9 74.2349 5.9 · 10−10 74.2349151988

Acknowledgments. The authors are indebted to Prof. N. Papamichael for
helpful comments on this paper.
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Table 2. Table for cross in square, p = 16

a b c Capacity Difference
0.5 1.2 1.5 21.9472192 1.5 · 10−8

0.5 1.0 1.5 14.0027989 1.0 · 10−8

0.2 0.7 1.2 9.1869265 1.0 · 10−8

0.1 0.8 1.1 11.2565821 1.9 · 10−8

0.5 0.6 1.5 7.3232695 1.2 · 10−8

0.1 1.2 1.3 23.1386139 3.4 · 10−8

Figure 6. Meshing setup for cross in square

Figure 7. Potential functions: square in square and cross in square
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[33] B. Szabo and I. Babuška, Finite Element Analysis, Wiley, 1991.
[34] L.N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation.

SIAM J. Sci. Statist. Comput. 1 (1980), no. 1, 82–102.
[35] L.N. Trefethen and T. A. Driscoll, Schwarz-Christoffel mapping in the computer

era. Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998).
Doc. Math. 1998, Extra Vol. III, 533–542.

[36] R. Wegmann, Methods for numerical conformal mapping, Handbook of complex analy-
sis: geometric function theory. Vol. 2, (ed. by R. Kühnau), Elsevier, Amsterdam, 351–477,
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