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Abstract

A parallel splitting method is proposed for solving systems of coupled monotone inclusions
in Hilbert spaces and its convergence is established under the assumption that solutions exist.
Unlike classical alternating algorithms, which are limited to two variables and linear coupling,
our parallel method can handle an arbitrary number of variables as well as nonlinear coupling
schemes. The breadth and flexibility of the proposed framework is illustrated through applica-
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1 Problem statement

This paper is concerned with the numerical solution of systems of coupled monotone inclusions in
Hilbert spaces. A simple instance of this problem is to

find x1 ∈ H, x2 ∈ H such that

{

0 ∈ A1x1 + x1 − x2

0 ∈ A2x2 + x2 − x1,
(1.1)

where (H, ‖·‖) is a real Hilbert space, and where A1 and A2 are maximal monotone operators acting
on H. This formulation arises in various areas of nonlinear analysis [12]. For example, if A1 = ∂f1

and A2 = ∂f2 are the subdifferentials of proper lower semicontinuous convex functions f1 and f2

from H to ]−∞, +∞], (1.1) is equivalent to

minimize
x1∈H, x2∈H

f1(x1) + f2(x2) +
1

2
‖x1 − x2‖2. (1.2)

This joint minimization problem, which was first investigated in [1], models problems in disciplines
such as the cognitive sciences [4], image processing [26], and signal processing [28] (see also the
references therein for further applications in mechanics, filter design, and dynamical games). In
particular, if f1 and f2 are the indicator functions of closed convex subsets C1 and C2 of H, (1.2)
reverts to the classical best approximation pair problem [8, 11, 18, 29]

minimize
x1∈C1, x2∈C2

‖x1 − x2‖. (1.3)

On the numerical side, a simple algorithm is available to solve (1.1), namely,

x1,0 ∈ H and (∀n ∈ N)

{

x2,n = (Id +A2)
−1x1,n

x1,n+1 = (Id +A1)
−1x2,n.

(1.4)

This alternating resolvent method produces sequences (x1,n)n∈N and (x2,n)n∈N that converge weakly
to points x1 and x2, respectively, such that (x1, x2) solves (1.1) if solutions exist [12, Theorem 3.3].
In [3], the variational formulation (1.2) was extended to

minimize
x1∈H1, x2∈H2

f1(x1) + f2(x2) +
1

2
‖L1x1 − L2x2‖2

G , (1.5)

where H1, H2, and G are Hilbert spaces, f1 : H1 → ]−∞, +∞] and f2 : H2 → ]−∞, +∞] are proper
lower semicontinuous convex functions, and L1 : H1 → G and L2 : H2 → G are linear and bounded.
This problem was solved in [3] via an inertial alternating minimization procedure first proposed in
[4] for the case of the strongly coupled problem (1.2).

The above problems and their solution algorithms are limited to two variables which, in addition,
must be linearly coupled. These are serious restrictions since models featuring more than two
variables and/or nonlinear coupling schemes arise naturally in applications. The purpose of this
paper is to address simultaneously these restrictions by proposing a parallel algorithm for solving
systems of monotone inclusions involving an arbitrary number of variables and nonlinear coupling.
The breadth and flexibility of this framework will be illustrated through applications in the areas
of evolution inclusions, best approximation, and network flows.

We now state our problem formulation and our standing assumptions.
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Problem 1.1 Let (Hi)1≤i≤m be real Hilbert spaces, where m ≥ 2. For every i ∈ {1, . . . , m}, let
Ai : Hi → 2Hi be maximal monotone and let Bi : H1 × · · · × Hm → Hi. It is assumed that there
exists β ∈ ]0, +∞[ such that

(∀(x1, . . . , xm) ∈ H1 × · · · × Hm)(∀(y1, . . . , ym) ∈ H1 × · · · × Hm)
m

∑

i=1

〈Bi(x1, . . . , xm) − Bi(y1, . . . , ym) | xi − yi〉 ≥ β

m
∑

i=1

∥

∥Bi(x1, . . . , xm) − Bi(y1, . . . , ym)
∥

∥

2
. (1.6)

The problem is to

find x1 ∈ H1, . . . , xm ∈ Hm such that















0 ∈ A1x1 + B1(x1, . . . , xm)
...

0 ∈ Amxm + Bm(x1, . . . , xm),

(1.7)

under the assumption that such points exist.

In abstract terms, the system of inclusions in (1.7) models an equilibrium involving m variables
in different Hilbert spaces. The ith inclusion in this system is a perturbation of the basic inclusion
0 ∈ Aixi by addition of the coupling term Bi(x1, . . . , xm). Our analysis captures various linear and
nonlinear coupling schemes. If

(∀i ∈ {1, . . . , m}) Hi = H and (∀x ∈ H) Bi(x, . . . , x) = 0, (1.8)

then Problem 1.1 is a relaxation of the standard problem [20, 33] of finding a common zero of
the operators (Ai)1≤i≤m, i.e., of solving the inclusion 0 ∈ ⋂m

i=1 Aix. In particular, if m = 2,
H1 = H2 = H, B1 = −B2 : (x1, x2) 7→ x1 − x2, and β = 1/2, then Problem 1.1 reverts to
(1.1). On the other hand, if m = 2, A1 = ∂f1, A2 = ∂f2, B1 : (x1, x2) 7→ L∗

1(L1x1 − L2x2),
B2 : (x1, x2) 7→ −L∗

2(L1x1 − L2x2), and β = (‖L1‖2 + ‖L2‖2)−1, then Problem 1.1 reverts to (1.5).
Generally speaking, (1.7) covers coupled problems involving minimizations, variational inequalities,
saddle points, or evolution inclusions, depending on the type of the maximal monotone operators
(Ai)1≤i≤m.

The paper is organized as follows. In Section 2, we present our algorithm for solving Problem 1.1
and prove its convergence. Applications to systems of evolution inclusions are treated in Section 3.
Finally, Section 4 is devoted to variational formulations deriving from Problem 1.1 and features
applications to best approximation and network flows.

Notation. Throughout, H and (Hi)1≤i≤m are real Hilbert spaces. Their scalar products are
denoted by 〈· | ·〉 and the associated norms by ‖ · ‖. The symbols ⇀ and → denote respectively
weak and strong convergence, Id denotes the identity operator, and L∗ denotes the adjoint of a
bounded linear operator L. The indicator function of a subset C of H is

ιC : x 7→
{

0, if x ∈ C;

+∞, if x /∈ C,
(1.9)

and the distance from x ∈ H to C is dC(x) = infy∈C ‖x − y‖; if C is nonempty closed and convex,
the projection of x onto C is the unique point PCx in C such that ‖x − PCx‖ = dC(x). We denote
by Γ0(H) the class of lower semicontinuous convex functions f : H → ]−∞, +∞] which are proper
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in the sense that dom f =
{

x ∈ H
∣

∣ f(x) < +∞
}

6= ∅. The subdifferential of f ∈ Γ0(H) is the
maximal monotone operator

∂f : H → 2H : x 7→
{

u ∈ H
∣

∣ (∀y ∈ H) 〈y − x | u〉 + f(x) ≤ f(y)
}

. (1.10)

We denote by graA =
{

(x, u) ∈ H ×H
∣

∣ u ∈ Ax
}

the graph of a set-valued operator A : H →
2H, by domA =

{

x ∈ H
∣

∣ Ax 6= ∅
}

its domain, and by JA = (Id +A)−1 its resolvent. If A is
monotone, then JA is single-valued and nonexpansive and, furthermore, if A is maximal monotone,
then domJA = H. For complements and further background on convex analysis and monotone
operator theory, see [5, 15, 44, 46, 48].

2 Algorithm

Let us start with a characterization of the solutions to Problem 1.1.

Proposition 2.1 Let (xi)1≤i≤m ∈ H1 × · · · × Hm, let (λi)1≤i≤m ∈ [0, 1[m, and let γ ∈ ]0, +∞[.
Then (xi)1≤i≤m solves Problem 1.1 if and only if

(∀i ∈ {1, . . . , m}) xi = λixi + (1 − λi)JγAi

(

xi − γBi(x1, . . . , xm)
)

. (2.1)

Proof. Let i ∈ {1, . . . , m}. Then, since Bi is single-valued,

0 ∈ Aixi + Bi(x1, . . . , xm) ⇔ xi − γBi(x1, . . . , xm) ∈ xi + γAixi

⇔ xi = JγAi

(

xi − γBi(x1, . . . , xm)
)

⇔ xi = xi + (1 − λi)
(

JγAi

(

xi − γBi(x1, . . . , xm)
)

− xi

)

, (2.2)

and we obtain (2.1).

The above characterization suggests the following algorithm, which constructs m sequences
((xi,n)n∈N)1≤i≤m. Recall that β is the constant appearing in (1.6).

Algorithm 2.2 Fix ε ∈ ]0, min{1, β}[, (γn)n∈N in [ε, 2β − ε], (λn)n∈N in [0, 1 − ε], and (xi,0)1≤i≤m

∈ H1 × · · · × Hm. Set, for every n ∈ N,



















x1,n+1 = λ1,nx1,n + (1 − λ1,n)
(

JγnA1,n

(

x1,n − γn(B1,n(x1,n, . . . , xm,n) + b1,n)
)

+ a1,n

)

...

xm,n+1 = λm,nxm,n + (1 − λm,n)
(

JγnAm,n

(

xm,n − γn(Bm,n(x1,n, . . . , xm,n) + bm,n)
)

+ am,n

)

,

(2.3)
where, for every i ∈ {1, . . . , m}, the following hold.

(i) (Ai,n)n∈N are maximal monotone operators from Hi to 2Hi such that

(∀ρ ∈ ]0, +∞[)
∑

n∈N

sup
‖y‖≤ρ

‖JγnAi,n
y − JγnAi

y‖ < +∞. (2.4)

(ii) (Bi,n)n∈N are operators from H1 × · · · × Hm to Hi such that
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(a) the operators (Bi,n−Bi)n∈N are Lipschitz-continuous with respective constants (κi,n)n∈N

in ]0, +∞[ satisfying
∑

n∈N
κi,n < +∞; and

(b) there exists z ∈ H1 × · · · × Hm, independent of i, such that (∀n ∈ N) Bi,nz = Biz.

(iii) (ai,n)n∈N and (bi,n)n∈N are sequences in Hi such that
∑

n∈N
‖ai,n‖ < +∞ and

∑

n∈N
‖bi,n‖ <

+∞.

(iv) (λi,n)n∈N is a sequence in [0, 1[ such that
∑

n∈N
|λi,n − λn| < +∞.

Conditions (i) and (ii) describe the types of approximations to the original operators (Ai)1≤i≤m

and (Bi)1≤i≤m which can be utilized. Condition (iii) quantifies the tolerance which is allowed in the
implementation of these approximations (see [25, 31, 32] for specific examples), while (iv) quantifies
that allowed in the agent-dependent departure from the global relaxation scheme. The parallel
nature of Algorithm 2.2 stems from the fact that the m evaluations of the resolvent operators in
(2.3) can be performed independently and, therefore, simultaneously on concurrent processors.

Our asymptotic analysis of Algorithm 2.2 will be based on Theorem 2.8 below on the convergence
of the forward-backward algorithm. First, we need to introduce the notion of demiregularity. This
notion captures various properties typically used to establish the strong convergence of dynamical
systems, e.g., compactness [18], bounded compactness [8, 21, 22], uniform monotonicity [22, 24, 48],
uniform convexity [26, 29, 34, 46], compactness of resolvents [30], and demicompactness [38, 47]. In
the case of at most single-valued operators, demiregularity captures standard regularity properties
used in nonlinear analysis [48, Definition 27.1].

Definition 2.3 An operator A : H → 2H is demiregular at y ∈ domA if, for every sequence
((yn, vn))n∈N in graA and every v ∈ Ay, we have

{

yn ⇀ y

vn → v
⇒ yn → y. (2.5)

Proposition 2.4 Let A : H → 2H, let y ∈ domA, and let C be the set of all nondecreasing functions
from [0, +∞[ to [0, +∞] that vanish only at 0. Suppose that one of the following holds.

(i) A is uniformly monotone at y, i.e., there exists φ ∈ C such that

(∀v ∈ Ay)(∀(x, u) ∈ graA) 〈x − y | u − v〉 ≥ φ(‖x − y‖). (2.6)

(ii) A is uniformly monotone, i.e., there exists φ ∈ C such that (2.6) holds for every y ∈ dom A.

(iii) A is strongly monotone, i.e., there exists ρ ∈ ]0, +∞[ such that A − ρ Id is monotone.

(iv) A = ∂f , where f ∈ Γ0(H) is uniformly convex at y [46, Section 3.4], i.e., there exists φ ∈ C

such that

(∀α ∈ ]0, 1[)(∀x ∈ dom f)

f
(

αx + (1 − α)y
)

+ α(1 − α)φ(‖x − y‖) ≤ αf(x) + (1 − α)f(y). (2.7)

(v) A = ∂f , where f ∈ Γ0(H) is uniformly convex, i.e., there exists φ ∈ C such that (2.7) holds
for every y ∈ dom f .
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(vi) A = ∂f , where f ∈ Γ0(H) is strongly convex, i.e., there exists ρ ∈ ]0, +∞[ such that f−ρ‖·‖2/2
is convex.

(vii) A = ∂f , where f ∈ Γ0(H) and the lower level sets of f are boundedly compact.

(viii) JA is compact, i.e., for every bounded set C ⊂ H, the closure of JA(C) is compact.

(ix) domA is boundedly relatively compact, i.e., the intersection of its closure with every closed
ball is compact.

(x) H is finite-dimensional.

(xi) A : H → H is single-valued with a single-valued continuous inverse.

(xii) A is single-valued on dom A and Id −A demicompact [38], [47, Section 10.4], i.e., for every
bounded sequence (xn)n∈N in dom A such that (Axn)n∈N converges strongly, (xn)n∈N admits a
strong cluster point.

Then A is demiregular at y.

Proof. Let ((yn, vn))n∈N be a sequence in gra A and let v ∈ Ay be such that yn ⇀ y and vn → v.
We must show that yn → y.

(i): By (2.6), there exists φ ∈ C such that (∀n ∈ N) 〈yn − y | vn − v〉 ≥ φ(‖yn − y‖). However,
since yn ⇀ y and vn → v, we have 〈yn − y | vn − v〉 → 0. Therefore, appealing to the properties of
φ, we conclude that ‖yn − y‖ → 0.

(ii)⇒(i): Clear.

(iii)⇒(ii): Indeed, A is uniformly monotone with φ : t 7→ ρt2.

(iv)⇒(i): See [46, Section 3.4].

(v)⇒(iv): Clear.

(vi)⇒(v): Indeed, f is uniformly convex with φ : t 7→ ρt2/2.

(vii): Since 〈yn − y | vn〉 → 0, there exists ρ ∈ ]0, +∞[ such that supn∈N 〈yn − y | vn〉 ≤ ρ. Hence,
since y ∈ dom ∂f ⊂ dom f , (1.10) yields (∀n ∈ N) f(yn) ≤ f(y) + 〈yn − y | vn〉 ≤ f(y) + ρ < +∞.
Altogether, (yn)n∈N is bounded and lies in a lower level set of f . It therefore lies in a compact set.
However, since weak convergence and strong convergence coincide for sequences in compact sets,
we conclude that yn → y.

(viii): We have (∀n ∈ N) (yn, vn) ∈ graA ⇒ (vn + yn) − yn ∈ Ayn ⇒ yn = JA(vn + yn). Since
(vn + yn)n∈N converge weakly, it lies in a bounded set C. Thus, (yn)n∈N lies in JA(C), which has
compact closure. Hence yn ⇀ y ⇒ yn → y.

(ix)⇒(viii): Let C ⊂ H be bounded. Then JA(C) ⊂ JA(H) = domA and, by nonexpansivity of
JA [5, Proposition 3.5.3], JA(C) is bounded. Altogether, JA(C) has compact closure.

(x)⇒(ix): Clear.

(xi): Since Ayn = vn → v = Ay, we have yn = A−1vn → A−1v = y.
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(xii): Since (yn)n∈N converges weakly, it is bounded. In addition, (Ayn)n∈N = (vn)n∈N converges
strongly. Hence, by demicompactness of Id −A, (yn)n∈N has a strong cluster point x and, since
yn ⇀ y, we must have x = y. Now suppose that yn 6→ y. Then, there exist ε ∈ ]0, +∞[ and a
subsequence (ykn

)n∈N such that
(∀n ∈ N) ‖ykn

− y‖ ≥ ε. (2.8)

However, since ykn
⇀ y and (Aykn

)n∈N converges strongly, arguing as above, we can extract a
further subsequence (ylkn

)n∈N such that ylkn
→ y, which contradicts (2.8). Therefore, yn → y.

Next, we recall the notion of cocoercivity.

Definition 2.5 Let χ ∈ ]0, +∞[. An operator B : H → H is χ-cocoercive if χB is firmly nonex-
pansive, i.e.,

(∀x ∈ H)(∀y ∈ H) 〈x − y | Bx − By〉 ≥ χ‖Bx − By‖2. (2.9)

Firmly nonexpansive operators include resolvents of maximal monotone operators, proximity
operators, and projectors onto nonempty closed convex sets. In addition, the Yosida approximation
of a maximal monotone operator of index χ is χ-cocoercive [2] (further examples of cocoercive
operators can be found in [49]). It is clear from (2.9) that, if B is χ-cocoercive, then it is χ−1-
Lipschitz continuous. The next lemma, which provides a converse implication, supplies us with
another important instance of cocoercive operator (see also [27]).

Lemma 2.6 [7, Corollaire 10] Let ϕ : H → R be a differentiable convex function and let τ ∈ ]0, +∞[.
Suppose that ∇ϕ is τ -Lipschitz continuous. Then ∇ϕ is τ−1-cocoercive.

We shall also use the following fact.

Lemma 2.7 [22, Lemma 2.3] Let χ ∈ ]0, +∞[, let B : H → H be a χ-cocoercive operator, and let
γ ∈ ]0, 2χ[. Then Id − γB is nonexpansive.

We are now ready to record some convergence properties of the forward-backward algorithm,
which are of interest in their own right. The forward-backward algorithm finds its roots in the
projected gradient method [34] and certain methods for solving variational inequalities [6, 16, 35, 43]
(see also the bibliography of [22] for more recent developments).

Theorem 2.8 Let (H, ||| · |||) be a real Hilbert space, let χ ∈ ]0, +∞[, let A : H → 2H be a maximal
monotone operator, and let B : H → H be a χ-cocoercive operator such that

Z = (A + B)−1(0) 6= ∅. (2.10)

Fix ε ∈ ]0, min{1, χ}[ , let (γn)n∈N be a sequence in [ε, 2χ−ε], let (λn)n∈N be a sequence in [0, 1 − ε],
and let (an)n∈N and (bn)n∈N be sequences in H such that

∑

n∈N
|||an||| < +∞ and

∑

n∈N
|||bn||| <

+∞. Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = λnxn + (1 − λn)
(

JγnA(xn − γn(Bxn + bn)) + an

)

. (2.11)

Then the following hold for some x ∈ Z.

(i) xn ⇀ x.
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(ii) Bxn → Bx.

(iii) xn − JγnA(xn − γnBxn) → 0.

(iv) Suppose that one of the following is satisfied.

(a) A is demiregular at x (see Proposition 2.4 for special cases).

(b) B is demiregular at x (see Proposition 2.4 for special cases).

(c) intZ 6= ∅.

Then xn → x.

Proof. For every n ∈ N, set

T 1,n = JγnA, T 2,n = Id − γnB,

e1,n = an, e2,n = −γnbn, µn = 1 − λn, β1,n = 2, and β2,n =
2χ

γn
. (2.12)

Then
∑

n∈N
µn|||e1,n||| < +∞,

∑

n∈N
µn|||e2,n||| < +∞, and, by [22, Equation (6.5)], Z =

⋂

n∈N
FixT 1,nT 2,n. Moreover, as seen in [22, Section 6], (1−β1,n)Id + β1,nT 1,n and (1−β2,n)Id +

β2,nT 2,n are nonexpansive, and (2.11) can be rewritten as

xn+1 = xn + µn

(

T 1,n

(

T 2,nxn + e2,n

)

+ e1,n − xn

)

, (2.13)

which is precisely the iteration governing [22, Algorithm 1.2], where m = 2.

(i): [22, Corollary 6.5].

(ii)&(iii): We derive from (2.13), [22, Remark 3.4], and our assumptions on (λn)n∈N and (γn)n∈N

that (Id −T 2,n)xn − (Id −T 2,n)x → 0 and, in turn, that Bxn → Bx. Likewise, [22, Remark 3.4]
yields xn − T 1,nT 2,nxn → 0 and, therefore, xn − JγnA(xn − γnBxn) → 0.

(iv)(a): Set v = −Bx and

(∀n ∈ N)

{

yn = JγnA

(

xn − γnBxn

)

vn = γ−1
n (xn − yn) − Bxn.

(2.14)

On the one hand, we have (∀n ∈ N) (yn, vn) ∈ graA. On the other hand, we derive from (i) and
(iii) that yn ⇀ x. Furthermore, since

(∀n ∈ N) |||vn − v||| ≤ |||xn − yn|||
γn

+ |||Bxn − Bx|||, (2.15)

it follows from (ii), (iii), and the condition infn∈N γn > 0 that vn → v. It then results from
Definition 2.3 that yn → x and, in turn, from (iii) that xn → x.

(iv)(b): Set v = Bx and (∀n ∈ N) vn = Bxn. Then (i) yields xn ⇀ x and (ii) yields vn → v.
It thus follows from Definition 2.3 that xn → x.

(iv)(c): This follows from (i) and [22, Theorem 3.3(i) & Lemma 2.8(iv)].

The main results of this section are the following theorems. Let us start with weak convergence.
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Theorem 2.9 Let ((xi,n)n∈N)1≤i≤m be sequences generated by Algorithm 2.2. Then, for every
i ∈ {1, . . . , m}, (xi,n)n∈N converges weakly to a point xi ∈ Hi, and (xi)1≤i≤m is a solution to
Problem 1.1.

Proof. Throughout the proof, a generic element x in the Cartesian product H1 × · · · × Hm will be
expressed in terms of its components as x = (xi)1≤i≤m. We shall show that our algorithmic setting
reduces to the situation described in Theorem 2.8(i) in the Hilbert direct sum H = H1 ⊕ · · · ⊕ Hm

obtained by endowing H1 × · · · × Hm with the scalar product

〈〈· | ·〉〉 : (x, y) 7→
m

∑

i=1

〈xi | yi〉, (2.16)

with associated norm

||| · ||| : x 7→

√

√

√

√

m
∑

i=1

‖xi‖2. (2.17)

To this end, we shall show that the iterations (2.3) can be cast in the form of (2.11). First, define

A : H → 2H : x 7→
m×

i=1
Aixi and (∀n ∈ N) An : H → 2H : x 7→

m×
i=1

Ai,nxi. (2.18)

It follows from the maximal monotonicity of the operators (Ai)1≤i≤m, condition (i) in Algorithm 2.2,
(2.16), and (2.18) that

A and (An)n∈N are maximal monotone, (2.19)

with resolvents

JA : H → H : x 7→ (JAi
xi)1≤i≤m and (∀n ∈ N) JAn

: H → H : x 7→ (JAi,n
xi)1≤i≤m, (2.20)

respectively. Moreover, for every ρ ∈ ]0, +∞[, we derive from (2.17), (2.20), and condition (i) in
Algorithm 2.2 that

∑

n∈N

sup
|||y|||≤ρ

|||JγnAn
y − JγnAy||| =

∑

n∈N

sup
|||y|||≤ρ

√

√

√

√

m
∑

i=1

‖JγnAi,n
yi − JγnAi

yi‖2

≤
∑

n∈N

sup
|||y|||≤ρ

m
∑

i=1

‖JγnAi,n
yi − JγnAi

yi‖

≤
m

∑

i=1

∑

n∈N

sup
‖yi‖≤ρ

‖JγnAi,n
yi − JγnAi

yi‖

< +∞. (2.21)

Now define

B : H → H : x 7→ (Bix)1≤i≤m and (∀n ∈ N) Bn : H → H : x 7→ (Bi,nx)1≤i≤m. (2.22)

Then (1.7) is equivalent to
find x ∈ Z = (A + B)−1(0). (2.23)

Moreover, in the light of (2.16), (2.17), and (2.22), (1.6) becomes

(∀x ∈ H)(∀y ∈ H) 〈〈x − y | Bx − By〉〉 ≥ β|||Bx − By|||2. (2.24)
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In other words, B is β-cocoercive. Next, let n ∈ N and set

cn = (ai,n)1≤i≤m and dn = (bi,n)1≤i≤m. (2.25)

We deduce from (2.17) and condition (iii) in Algorithm 2.2 that

∑

k∈N

|||ck||| ≤
∑

k∈N

√

√

√

√

m
∑

i=1

‖ai,k‖2 ≤
m

∑

i=1

∑

k∈N

‖ai,k‖ < +∞ (2.26)

and, likewise, that
∑

k∈N

|||dk||| < +∞. (2.27)

Now set
xn = (xi,n)1≤i≤m and Λn : H → H : x 7→ (λi,nxi)1≤i≤m. (2.28)

It follows from (2.17) and condition (iv) in Algorithm 2.2 that

|||Λn||| = max
1≤i≤m

λi,n ≤ 1 and |||Id − Λn||| = 1 − min
1≤i≤m

λi,n ≤ 1. (2.29)

Hence,
|||Λn||| + |||Id − Λn||| = 1 + max

1≤i≤m
(λi,n − λn) − min

1≤i≤m
(λi,n − λn) ≤ 1 + τn, (2.30)

where
τn = 2 max

1≤i≤m
|λi,n − λn|. (2.31)

We observe that, by virtue of condition (iv) in Algorithm 2.2,

∑

k∈N

τk = 2
∑

k∈N

max
1≤i≤m

|λi,k − λk| ≤ 2
m

∑

i=1

∑

k∈N

|λi,k − λk| < +∞. (2.32)

Moreover, in view of (2.20), (2.22), (2.25), and (2.28), the iterations (2.3) are equivalent to

xn+1 = Λnxn + (Id − Λn)
(

JγnAn

(

xn − γn(Bnxn + dn)
)

+ cn

)

. (2.33)

Now define
Dn = Bn − B. (2.34)

It follows from condition (ii)(a) in Algorithm 2.2, (2.17), and (2.22) that Dn is Lipschitz continuous

with constant κn =
√

∑m
i=1 κ2

i,n and that

∑

k∈N

κk =
∑

k∈N

√

√

√

√

m
∑

i=1

κ2
i,k ≤

m
∑

i=1

∑

k∈N

κi,k < +∞. (2.35)

Furthermore, set
bn = Dnxn + dn (2.36)

and let x ∈ Z. Then

|||bn||| ≤ |||Dnxn||| + |||dn|||
≤ |||Dnxn − Dnx||| + |||Dnx − Dnz||| + |||dn|||
≤ κn(|||xn − x||| + |||x − z|||) + |||dn|||, (2.37)
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where z is provided by assumption (ii)(b) in Algorithm 2.2. We now set

T n = Id − γnB and en = JγnAn

(

T nx
)

− x. (2.38)

On the one hand, the inequality supk∈N γk ≤ 2β yields

|||T nx||| ≤ ρ, where ρ = |||x||| + 2β|||Bx|||. (2.39)

On the other hand, since x is a solution to Problem 1.1, Proposition 2.1, (2.20), and (2.22) supply

x = JγnA(T nx). (2.40)

Therefore, (2.38), (2.39), and (2.21) imply that

∑

k∈N

|||ek||| =
∑

k∈N

|||JγkAk
(T kx) − x||| =

∑

k∈N

|||JγkAk
(T kx) − JγkA(T kx)||| < +∞. (2.41)

In addition, (2.34), (2.36), and (2.38) yield

JγnAn

(

xn − γn(Bnxn + dn)
)

− x = JγnAn

(

T nxn − γnbn

)

− JγnAn
(T nx) + en. (2.42)

Since JγnA is nonexpansive as a resolvent (see [5, Proposition 3.5.3] or [15, Proposition 2.2.iii)]) and
T n is nonexpansive by Lemma 2.7, we derive from (2.42) and (2.37) that

|||JγnAn

(

xn − γn(Bnxn + dn)
)

− x||| ≤ |||JγnAn

(

T nxn − γnbn

)

− JγnAn
(T nx)||| + |||en|||

≤ |||T nxn − γnbn − T nx||| + |||en|||
≤ |||xn − x||| + γn|||bn||| + |||en|||
≤ |||xn − x||| + 2β|||bn||| + |||en|||
≤ (1 + 2βκn)|||xn − x||| + 2βκn|||x − z|||

+ 2β|||dn||| + |||en|||. (2.43)

Thus, it results from (2.33), (2.43), (2.30), and (2.29) that

|||xn+1 − x||| = |||Λn(xn − x) + (Id − Λn)
(

JγnAn

(

xn − γn(Bnxn + dn)
)

− x + cn

)

|||
≤ |||Λn||| |||xn − x||| + |||Id − Λn||| |||cn|||

+ |||Id − Λn||| |||JγnAn

(

xn − γn(Bnxn + dn)
)

− x|||
≤ |||Λn||| |||xn − x||| + |||Id − Λn||| |||cn|||

+ |||Id − Λn|||
(

(1 + 2βκn)|||xn − x||| + 2βκn|||x − z|||
+ 2β|||dn||| + |||en|||

)

≤
(

|||Λn||| + |||Id − Λn|||
)

|||xn − x||| + |||Id − Λn|||
(

|||cn||| + 2βκn|||xn − x|||
+ 2βκn|||x − z||| + 2β|||dn||| + |||en|||

)

≤ (1 + τn)|||xn − x||| + |||cn||| + 2βκn|||xn − x|||
+ 2βκn|||x − z||| + 2β|||dn||| + |||en|||

≤ (1 + αn)|||xn − x||| + δn, (2.44)

where
αn = τn + 2βκn and δn = |||cn||| + 2βκn|||x − z||| + 2β|||dn||| + |||en|||. (2.45)
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In turn, it follows from (2.32), (2.35), (2.26), (2.27), and (2.41) that
∑

k∈N
αk < +∞ and

∑

k∈N
δk <

+∞. Thus, (2.44) and [39, Lemma 2.2.2] yield

sup
k∈N

|||xk − x||| < +∞ (2.46)

and, using (2.35) and (2.27), we derive from (2.37) that

∑

k∈N

|||bk||| < +∞. (2.47)

In view of (2.36) and (2.38), (2.33) is equivalent to

xn+1 = Λnxn + (Id − Λn)
(

JγnA(T nxn − γnbn) + hn

)

, (2.48)

where
hn = JγnAn

(T nxn − γnbn) − JγnA(T nxn − γnbn) + cn. (2.49)

Now set µ = supk∈N |||xk −x|||+ ρ + 2β supk∈N |||bk|||. Then it follows from (2.46), and (2.47) that
µ < +∞. Moreover, we deduce from the nonexpansivity of T n and (2.39) that

|||T nxn − γnbn||| ≤ |||T nxn − T nx||| + |||T nx||| + 2β|||bn|||
≤ |||xn − x||| + ρ + 2β|||bn|||
≤ µ. (2.50)

Hence, appealing to (2.21) and (2.26), we infer from (2.49) that

∑

k∈N

|||hk||| < +∞. (2.51)

Note that, upon introducing

an = hn +
1

1 − λn
(Λn − λnId )

(

xn − JγnA(T nxn − γnbn) − hn

)

, (2.52)

we can rewrite (2.48) in the equivalent form (2.11), namely

xn+1 = λnxn + (1 − λn)
(

JγnA(xn − γn(Bxn + bn)) + an

)

. (2.53)

Using (2.40) and the nonexpansivity of JγnA and T n, we get

|||xn − JγnA(T nxn − γnbn) − hn||| ≤ |||xn − x||| + |||JγnA(T nx) − JγnA(T nxn − γnbn)|||
+ |||hn|||

≤ 2|||xn − x||| + 2β|||bn||| + |||hn|||. (2.54)

Therefore, we derive from (2.46), (2.47), and (2.51) that

ν = sup
k∈N

|||xk − JγkA(T kxk − γkbk) − hk||| < +∞, (2.55)

and hence, from (2.52) and the inequality λn ≤ 1 − ε, that

|||an||| ≤ |||hn||| +
1

1 − λn
|||Λn − λnId ||| |||xn − JγnA(T nxn − γnbn) − hn|||

≤ |||hn||| +
ν

ε
max

1≤i≤m
|λi,n − λn|. (2.56)
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Thus, using (2.51) and arguing as in (2.32), we get

∑

k∈N

|||ak||| < +∞. (2.57)

However, Theorem 2.8(i) asserts that, under (2.19), (2.24), (2.47), (2.57), and the hypotheses on
(γn)n∈N and (λn)n∈N in Algorithm 2.2, the sequence (xn)n∈N generated by (2.53) converges weakly
to a point in Z. Since (2.53) is equivalent to (2.3) and (2.23) is equivalent to (1.7), the proof is
complete.

We conclude this section with the following theorem, in which we describe instances of strong
convergence derived from Theorem 2.8.

Theorem 2.10 Let ((xi,n)n∈N)1≤i≤m and (xi)1≤i≤m be as in Theorem 2.9. Then the following hold.

(i) Suppose that, for some i ∈ {1, . . . , m}, Ai is demiregular at xi (see Proposition 2.4 for special
cases). Then xi,n → xi.

(ii) Suppose that the operator (yj)1≤j≤m 7→
(

Bi(yj)1≤j≤m

)

1≤i≤m
is demiregular at (xi)1≤i≤m (see

Proposition 2.4 for special cases). Then, for every i ∈ {1, . . . , m}, xi,n → xi.

(iii) Suppose that the set of solutions to Problem 1.1 has a nonempty interior. Then, for every
i ∈ {1, . . . , m}, xi,n → xi.

Proof. We use the same product space setting and notation as in the proof of Theorem 2.9. In
particular, we set x = (x1, . . . , xm) and H = H1 ⊕ · · · ⊕ Hm, and we define

A : H → 2H : y 7→
m×

i=1
Aiyi and B : H → H : y 7→ (Biy)1≤i≤m. (2.58)

(i): Set vi = −Bi(x1, . . . , xm) and

(∀n ∈ N)

{

yi,n = JγnAi

(

xi,n − γnBi(x1,n, . . . , xm,n)
)

vi,n = γ−1
n (xi,n − yi,n) − Bi(x1,n, . . . , xm,n).

(2.59)

It follows from Theorem 2.8(i) that
xi,n ⇀ xi, (2.60)

from Theorem 2.8(ii) that

‖Bi(x1,n, . . . , xm,n) − Bi(x1, . . . , xm)‖ = ‖Bixn − Bix‖ ≤ |||Bxn − Bx||| → 0, (2.61)

and from Theorem 2.8(iii) and (2.20) that

‖xi,n − yi,n‖ ≤ |||xn − JγnA(xn − γnBxn)||| → 0. (2.62)

Combining (2.60) and (2.62), we obtain

yi,n ⇀ xi. (2.63)

Next, we derive from (2.59) that

(∀n ∈ N) (yi,n, vi,n) ∈ graAi (2.64)
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and that

(∀n ∈ N) ‖vi,n − vi‖ ≤ ‖xi,n − yi,n‖
γn

+ ‖Bi(x1,n, . . . , xm,n) − Bi(x1, . . . , xm)‖. (2.65)

Hence, it follows from (2.62), the condition infn∈N γn > 0, and (2.61), that

vi,n → vi. (2.66)

Altogether, (2.63), (2.64), (2.66), and Definition 2.3 yield yi,n → xi. In turn, appealing to (2.62),
we conclude that xi,n → xi.

(ii)&(iii): As seen in the proof of Theorem 2.9, the convergence properties of (xn)n∈N =
((xi,n)n∈N)1≤i≤m follow from those listed in Theorem 2.8 and applied to the operators defined
in (2.58); moreover, the set of solutions to Problem 1.1 is Z = (A+B)−1(0). Therefore, (ii) follows
from Theorem 2.8(iv)(b), and (iii) from Theorem 2.8(iv)(c).

3 Coupling evolution inclusions

Evolution inclusions arise in various fields of applied mathematics [30, 42]. In this section, we
address the problem of solving systems of coupled evolution inclusions with periodicity conditions.

Let us recall some standard notation [15, 48]. Fix T ∈ ]0, +∞[ and p ∈ [1, +∞[. Then D(]0, T [)
is the set of infinitely differentiable functions from ]0, T [ to R with compact support in ]0, T [.
Given a real Hilbert space H, C([0, T ];H) is the space of continuous functions from [0, T ] to H

and Lp([0, T ];H) is the space of classes of equivalences of Borel measurable functions x : [0, T ] →
H such that

∫ T

0 ‖x(t)‖p
H
dt < +∞. L2([0, T ];H) is a Hilbert space with scalar product (x, y) 7→

∫ T

0 〈x(t) | y(t)〉
H
dt. Now take x and y in L1([0, T ];H). Then y is the weak derivative of x if

∫ T

0 φ(t)y(t)dt = −
∫ T

0 (dφ(t)/dt)x(t)dt for every φ ∈ D(]0, T [), in which case we use the notation
y = x′. Moreover,

W 1,2([0, T ];H) =
{

x ∈ L2([0, T ];H)
∣

∣ x′ ∈ L2([0, T ];H)
}

, (3.1)

equipped with the scalar product (x, y) 7→
∫ T

0 〈x(t) | y(t)〉
H
dt +

∫ T

0 〈x′(t) | y′(t)〉
H
dt, is a Hilbert

space.

Problem 3.1 Let (Hi)1≤i≤m be real Hilbert spaces and let T ∈ ]0, +∞[. For every i ∈ {1, . . . , m},
set

Wi =
{

x ∈ C([0, T ];Hi) ∩ W 1,2([0, T ];Hi)
∣

∣ x(T ) = x(0)
}

, (3.2)

let fi ∈ Γ0(Hi), and let Bi : H1 × · · · × Hm → Hi. It is assumed that there exists β ∈ ]0, +∞[ such
that

(∀(x1, . . . , xm) ∈ H1 × · · · × Hm)(∀(y1, . . . , ym) ∈ H1 × · · · × Hm)
m

∑

i=1

〈Bi(x1, . . . , xm) − Bi(y1, . . . , ym) | xi − yi〉Hi
≥ β

m
∑

i=1

∥

∥Bi(x1, . . . , xm) − Bi(y1, . . . , ym)
∥

∥

2

Hi
. (3.3)

The problem is to

find x1 ∈ W1, . . . , xm ∈ Wm such that

(∀i ∈ {1, . . . , m}) 0 ∈ x′
i(t) + ∂fi(xi(t)) + Bi(x1(t), . . . , xm(t)) a.e. on ]0, T [ , (3.4)

under the assumption that such solutions exist.
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Algorithm 3.2 Fix ε ∈ ]0, min{1, β}[, (γn)n∈N in [ε, 2β − ε], and (λn)n∈N in [0, 1 − ε]. Let, for
every n ∈ N and every i ∈ {1, . . . , m}, yi,n be the unique solution in Wi to the inclusion

xi,n(t) − yi,n(t)

γn
−

(

Bi(x1,n(t), . . . , xm,n(t)) + bi,n(t)
)

∈ y′i,n(t) + ∂fi(yi,n(t)) + ei,n(t) a.e. on ]0, T [ (3.5)

and set
xi,n+1 = λi,nxi,n + (1 − λi,n)yi,n (3.6)

where, for every i ∈ {1, . . . , m}, the following hold.

(i) xi,0 ∈ W 1,2([0, T ];Hi).

(ii) (bi,n)n∈N and (ei,n)n∈N are sequences in L2([0, T ];Hi) such that

∑

n∈N

√

∫ T

0
‖bi,n(t)‖2

Hi
dt < +∞ and

∑

n∈N

√

∫ T

0
‖ei,n(t)‖2

Hi
dt < +∞. (3.7)

(iii) (λi,n)n∈N is a sequence in [0, 1[ such that
∑

n∈N
|λi,n − λn| < +∞.

In (3.5), bi,n(t) models the error tolerated in the computation of Bi(x1,n(t), . . . , xm,n(t)), while
ei,n(t) models the error tolerated in solving the inclusion with respect to ∂fi(yi,n(t)).

We now examine the weak convergence properties of Algorithm 3.2 (strong convergence condi-
tions can be derived from Theorem 2.10).

Theorem 3.3 Let ((xi,n)n∈N)1≤i≤m be sequences generated by Algorithm 3.2. Then, for every i ∈
{1, . . . , m}, (xi,n)n∈N converges weakly in W 1,2([0, T ];Hi) to a point xi ∈ Wi, and (xi)1≤i≤m is a
solution to Problem 3.1.

Proof. For every i ∈ {1, . . . , m}, set Hi = L2([0, T ];Hi) and

Ai : Hi → 2Hi

x 7→
{

{

u ∈ Hi

∣

∣ u(t) ∈ x′(t) + ∂fi(x(t)) a.e. in ]0, T [
}

, if x ∈ Wi;

∅, otherwise.

(3.8)

Let us first show that the operators (Ai)1≤i≤m are maximal monotone. For this purpose, let i ∈
{1, . . . , m}, (x, u) ∈ graAi, and (y, v) ∈ graAi. It follows from (3.8) that, almost everywhere on
]0, T [, u(t)−x′(t) ∈ ∂fi(x(t)) and v(t)−y′(t) ∈ ∂fi(y(t)). Therefore, by monotonicity of ∂fi, we have

∫ T

0

〈

x(t) − y(t) |
(

u(t) − x′(t)
)

−
(

v(t) − y′(t)
)〉

Hi
dt ≥ 0. (3.9)
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Hence,

〈x − y | u − v〉 =

∫ T

0
〈x(t) − y(t) | u(t) − v(t)〉

Hi
dt

=

∫ T

0

〈

x(t) − y(t) |
(

u(t) − x′(t)
)

−
(

v(t) − y′(t)
)〉

Hi
dt

+

∫ T

0

〈

x(t) − y(t) | x′(t) − y′(t)
〉

Hi
dt

≥ 1

2

∫ T

0

d ‖x(t) − y(t)‖2
Hi

dt
dt

=
1

2

(

‖x(T ) − y(T )‖2
Hi

− ‖x(0) − y(0)‖2
Hi

)

= 0. (3.10)

Thus, Ai is monotone. To prove maximality, set gi = (1/2)‖ · ‖2
Hi

+ fi. Then gi ∈ Γ0(Hi) and
∂gi = Id +∂fi. Moreover, since fi ∈ Γ0(Hi), it follows from the Fenchel-Moreau theorem that it
is minorized by a continuous affine functional, say fi ≥ 〈· | v〉

Hi
+ η for some v ∈ Hi and η ∈ R.

Now, let y ∈ dom fi = dom gi and take (x, u) ∈ gra ∂gi. Then (1.10) and Cauchy-Schwarz imply the
coercivity property

〈x − y | u〉
Hi

‖x‖Hi

≥ gi(x) − gi(y)

‖x‖Hi

=
‖x‖Hi

2
+

fi(x) − gi(y)

‖x‖Hi

≥ ‖x‖Hi

2
− ‖v‖Hi

+
η − gi(y)

‖x‖Hi

→ +∞ as ‖x‖Hi
→ +∞. (3.11)

Therefore, [15, Corollaire 3.4] asserts that for every w ∈ Hi there exists z ∈ Wi such that

w(t) ∈ z′(t) + ∂gi(z(t)) = z′(t) + z(t) + ∂fi(z(t)) a.e. on ]0, T [ , (3.12)

i.e., by (3.8), such that w − z ∈ Aiz. This shows that the range of Id +Ai is Hi and hence, by
Minty’s theorem [5, Theorem 3.5.8], that Ai is maximal monotone.

Next, for every i ∈ {1, . . . , m} and every (x1, . . . , xm) ∈ H1×· · ·×Hm, define almost everywhere

Bi(x1, . . . , xm) : [0, T ] → Hi : t 7→ Bi(x1(t), . . . , xm(t)). (3.13)

Now let (x1, . . . , xm) ∈ H1 × · · · × Hm and set (∀i ∈ {1, . . . , m}) bi = Bi(0, . . . , 0). Then it follows
from (3.3) and Cauchy-Schwarz that, almost everywhere on [0, T ],

β
m

∑

j=1

‖Bj(x1(t), . . . , xm(t)) − bj‖2
Hj

≤
m

∑

j=1

〈Bj(x1(t), . . . , xm(t)) − bj | xj(t) − 0〉
Hj

≤
m

∑

j=1

‖Bj(x1(t), . . . , xm(t)) − bj‖Hj
‖xj(t)‖Hj

≤

√

√

√

√

m
∑

j=1

‖Bj(x1(t), . . . , xm(t)) − bj‖2
Hj

√

√

√

√

m
∑

j=1

‖xj(t)‖2
Hj

. (3.14)
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Therefore, for every i ∈ {1, . . . , m},

‖Bi(x1, . . . , xm)(t)‖2
Hi

≤ 2
(

‖bi‖2
Hi

+ ‖Bi(x1, . . . , xm)(t) − bi‖2
Hi

)

≤ 2

(

‖bi‖2
Hi

+
m

∑

j=1

‖Bj(x1(t), . . . , xm(t)) − bj‖2
Hj

)

≤ 2

(

‖bi‖2
Hi

+
1

β2

m
∑

j=1

‖xj(t)‖2
Hj

)

a.e. on ]0, T [ , (3.15)

which yields
∫ T

0
‖Bi(x1, . . . , xm)(t)‖2

Hi
dt ≤ 2T‖bi‖2

Hi
+

2

β2

m
∑

j=1

‖xj‖2, (3.16)

so that we can now claim that Bi : H1 × · · · × Hm → L2([0, T ];Hi) = Hi. In addition, upon
integrating, we derive from (3.3) and (3.13) that, for every (y1, . . . , ym) ∈ H1 × · · · × Hm,

m
∑

i=1

〈Bi(x1, . . . , xm) − Bi(y1, . . . , ym) | xi − yi〉 ≥ β

m
∑

i=1

∥

∥Bi(x1, . . . , xm) − Bi(y1, . . . , ym)
∥

∥

2
. (3.17)

We have thus established (1.6).

Let us now make the connection between Algorithm 3.2 and Algorithm 2.2. For every n ∈ N and
every i ∈ {1, . . . , m}, it follows from (3.5), (3.8), (3.13), and the maximal monotonicity of Ai that
yi,n is uniquely defined and can be expressed as

yi,n = JγnAi

(

xi,n − γn

(

Bi(x1,n, . . . , xm,n) + bi,n

)

)

+ ai,n , (3.18)

where

ai,n = JγnAi

(

− γnei,n + xi,n − γn

(

Bi(x1,n, . . . , xm,n) + bi,n

)

)

− JγnAi

(

xi,n − γn

(

Bi(x1,n, . . . , xm,n) + bi,n

)

)

, (3.19)

and we therefore deduce from (3.5) and (3.6) that

xi,n+1 = λi,nxi,n + (1 − λi,n)
(

JγnAi

(

xi,n − γn

(

Bi(x1,n, . . . , xm,n) + bi,n

)

)

+ ai,n

)

. (3.20)

We observe that (3.20) derives from (2.3), where Ai,n ≡ Ai and Bi,n ≡ Bi. On the other hand, for
every i ∈ {1, . . . , m}, by nonexpansivity of the operators (JγnAi

)n∈N, we deduce from (3.19) and
(3.7) that

∑

n∈N

‖ai,n‖ ≤
∑

n∈N

γn‖ei,n‖ ≤ 2β
∑

n∈N

‖ei,n‖ < +∞. (3.21)

As a result, all the hypotheses of Algorithm 2.2 are satisfied and hence Theorem 2.9 asserts that, for
every i ∈ {1, . . . , m}, (xi,n)n∈N converges weakly in Hi = L2([0, T ];Hi) to a point xi, and (xi)1≤i≤m

satisfies
(∀i ∈ {1, . . . , m}) 0 ∈ Aixi + Bi(x1, . . . , xm). (3.22)

Accordingly,
σ = max

1≤i≤m
sup
n∈N

‖xi,n‖ < +∞ (3.23)
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and (∀i ∈ {1, . . . , m}) xi ∈ domAi ⊂ Wi. Moreover since, in view of (3.8) and (3.13), (3.22) reduces
to (3.4), (xi)1≤i≤m is a solution to Problem 3.1.

To complete the proof, let i ∈ {1, . . . , m}. To show that (xi,n)n∈N converges weakly to xi in
W 1,2([0, T ];Hi), it remains to show that (x′

i,n)n∈N converges weakly to x′
i in L2([0, T ];Hi). We first

observe that (xi,n)n∈N lies in W 1,2([0, T ];Hi). Indeed, it follows from (3.8) that

(∀n ∈ N)(∀z ∈ Hi) JγnAi
z ∈ dom(γnAi) ⊂ Wi ⊂ W 1,2([0, T ];Hi). (3.24)

As a result, we deduce from (3.19) that (ai,n)n∈N lies in W 1,2([0, T ];Hi). On the other hand,
by construction, (yi,n)n∈N lies in Wi ⊂ W 1,2([0, T ];Hi). In view of (3.6) and (i) in Algorithm 3.2,
(xi,n)n∈N is therefore in W 1,2([0, T ];Hi). Next, let us show that (x′

i,n)n∈N is bounded in L2([0, T ];Hi).
To this end, let n ∈ N and set

wi,n(t) =
xi,n(t) − yi,n(t)

γn
−Bi(x1,n(t), . . . , xm,n(t))− bi,n(t)− y′i,n(t)− ei,n(t) a.e. on ]0, T [ . (3.25)

Then we derive from (3.5) that

wi,n(t) ∈ ∂fi(yi,n(t)) a.e. on ]0, T [ . (3.26)

Hence, since wi,n ∈ Hi, it follows from [15, Lemme 3.3] that

d(fi ◦ yi,n)(t)

dt
=

〈

wi,n(t) | y′i,n(t)
〉

Hi
a.e. on ]0, T [ . (3.27)

On the other hand, since yi,n ∈ Wi, we have yi,n(T ) = yi,n(0). Therefore

∫ T

0

〈

wi,n(t) | y′i,n(t)
〉

Hi
dt =

∫ T

0

d(fi ◦ yi,n)(t)

dt
dt = fi(yi,n(T )) − fi(yi,n(0)) = 0 (3.28)

and, furthermore,

∫ T

0

〈

yi,n(t) | y′i,n(t)
〉

Hi
dt =

1

2

∫ T

0

d‖yi,n(t)‖2
Hi

dt
dt =

‖yi,n(T )‖2
Hi

− ‖yi,n(0)‖2
Hi

2
= 0. (3.29)

We deduce from (3.28), (3.25), and (3.29) that

0 =

∫ T

0

〈

xi,n(t)

γn

∣

∣

∣

∣

y′i,n(t)

〉

Hi

dt −
∫ T

0

〈

Bi(x1,n(t), . . . , xm,n(t)) | y′i,n(t)
〉

Hi
dt

−
∫ T

0

〈

bi,n(t) | y′i,n(t)
〉

Hi
dt −

∫ T

0
‖y′i,n(t)‖2

Hi
dt −

∫ T

0

〈

ei,n(t) | y′i,n(t)
〉

Hi
dt. (3.30)

Thus, using Cauchy-Schwarz, the inequality γn ≥ ε, and (3.13), we obtain

‖y′i,n‖2 ≤
(1

ε
‖xi,n‖ + ‖Bi(x1,n, . . . , xm,n)‖ + ‖bi,n‖ + ‖ei,n‖

)

‖y′i,n‖. (3.31)

In turn, it follows from (3.6) that

‖x′
i,n+1‖ ≤ λi,n‖x′

i,n‖ + (1 − λi,n)
(1

ε
‖xi,n‖ + ‖Bi(x1,n, . . . , xm,n)‖ + ‖bi,n‖ + ‖ei,n‖

)

. (3.32)
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On the other hand, arguing as in (3.16), we derive from (3.23) that

‖Bi(x1,n, . . . , xm,n)‖ ≤
√

2T‖bi‖2
Hi

+
2mσ2

β2
≤

√
2T‖bi‖Hi

+
√

2m
σ

β
. (3.33)

Hence, using (ii) in Algorithm 3.2, we derive by induction from (3.32) that

‖x′
i,n‖ ≤ max

{

‖x′
i,0‖,

σ

ε
+
√

2T‖bi‖Hi
+
√

2m
σ

β
+ sup

k∈N

(

‖bi,k‖ + ‖ei,k‖
)

}

. (3.34)

This shows the boundedness of (x′
i,n)n∈N in L2([0, T ];Hi). Now let z be the weak limit in

L2([0, T ];Hi) of an arbitrary weakly convergent subsequence of (x′
i,n)n∈N. Since (xi,n)n∈N converges

weakly in L2([0, T ];Hi) to xi, it therefore follows from [48, Proposition 23.19] that z = x′
i. In turn,

this shows that (x′
i,n)n∈N converges weakly in L2([0, T ];Hi) to x′

i.

4 The variational case

We study a special case of Problem 1.1 which yields a variational formulation that extends (1.5).

Recall that, for every f ∈ Γ0(H) and every x ∈ H, the function y 7→ f(y) + ‖x − y‖2/2 admits
a unique minimizer, which is denoted by proxf x. The proximity operator thus defined can be
expressed as proxf = J∂f [36].

Problem 4.1 Let (Hi)1≤i≤m and (Gk)1≤k≤p be real Hilbert spaces. For every i ∈ {1, . . . , m}, let
fi ∈ Γ0(Hi) and, for every k ∈ {1, . . . , p}, let τk ∈ ]0, +∞[, let ϕk : Gk → R be a τk-Lipschitz-
differentiable convex function, and let Lki : Hi → Gk be linear and bounded. It is assumed that
min1≤k≤p

∑m
i=1 ‖Lki‖2 > 0. The problem is to

minimize
x1∈H1,..., xm∈Hm

m
∑

i=1

fi(xi) +

p
∑

k=1

ϕk

( m
∑

i=1

Lkixi

)

, (4.1)

under the assumption that solutions exist.

Algorithm 4.2 Set

β =
1

p max
1≤k≤p

τk

m
∑

i=1

‖Lki‖2

. (4.2)

Fix ε ∈ ]0, min{1, β}[, (γn)n∈N in [ε, 2β − ε], (λn)n∈N in [0, 1 − ε], and (xi,0)1≤i≤m ∈ H1 × · · ·×Hm.
Set, for every n ∈ N,






















































x1,n+1 = λ1,nx1,n +

(1 − λ1,n)

(

proxγnf1,n

(

x1,n − γn

( p
∑

k=1

L∗
k1∇ϕk

( m
∑

j=1

Lkjxj,n

)

+ b1,n

))

+ a1,n

)

,

...

xm,n+1 = λm,nxm,n +

(1 − λm,n)

(

proxγnfm,n

(

xm,n − γn

( p
∑

k=1

L∗
km∇ϕk

( m
∑

j=1

Lkjxj,n

)

+ bm,n

))

+ am,n

)

,

(4.3)
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where, for every i ∈ {1, . . . , m}, the following hold.

(i) (fi,n)n∈N are functions in Γ0(Hi) such that

(∀ρ ∈ ]0, +∞[)
∑

n∈N

sup
‖y‖≤ρ

‖proxγnfi,n
y − proxγnfi

y‖ < +∞. (4.4)

(ii) (ai,n)n∈N and (bi,n)n∈N are sequences in Hi such that
∑

n∈N
‖ai,n‖ < +∞ and

∑

n∈N
‖bi,n‖ <

+∞.

(iii) (λi,n)n∈N is a sequence in [0, 1[ such that
∑

n∈N
|λi,n − λn| < +∞.

We now turn our attention to the asymptotic behavior of Algorithm 4.2 (strong convergence
conditions can be derived from Theorem 2.10).

Theorem 4.3 Let ((xi,n)n∈N)1≤i≤m be sequences generated by Algorithm 4.2. Then, for every
i ∈ {1, . . . , m}, (xi,n)n∈N converges weakly to a point xi ∈ Hi, and (xi)1≤i≤m is a solution to
Problem 4.1.

Proof. Problem 4.1 is a special case of Problem 1.1 where, for every i ∈ {1, . . . , m},

Ai = ∂fi and Bi : (xj)1≤j≤m 7→
p

∑

k=1

L∗
ki∇ϕk

( m
∑

j=1

Lkjxj

)

. (4.5)

Indeed, define H as in the proof of Theorem 2.9 and set

f : H → ]−∞, +∞] : (xi)1≤i≤m 7→
m

∑

i=1

fi(xi) (4.6)

and

g : H → R : (xi)1≤i≤m 7→
p

∑

k=1

ϕk

( m
∑

i=1

Lkixi

)

. (4.7)

Then f and g are in Γ0(H) and it follows from Fermat’s rule and elementary subdifferential calculus
that, for every (x1, . . . , xm) ∈ H,

(x1, . . . , xm) solves (4.1) ⇔ (0, . . . , 0) ∈ ∂(f + g)(x1, . . . , xm)

⇔ (0, . . . , 0) ∈ ∂f(x1, . . . , xm) + ∇g(x1, . . . , xm)

⇔ (∀i ∈ {1, . . . , m}) 0 ∈ ∂fi(xi) +

p
∑

k=1

L∗
ki∇ϕk

( m
∑

j=1

Lkjxj

)

⇔ (∀i ∈ {1, . . . , m}) 0 ∈ Aixi + Bi(x1, . . . , xm). (4.8)

Next, let us show that the family (Bi)1≤i≤m in (4.5) satisfies (1.6) with β as in (4.2). First,
Lemma 2.6 asserts that, for every k ∈ {1, . . . , p}, ∇ϕk is τ−1

k -cocoercive. Hence, for every i ∈
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{1, . . . , m}, xi ∈ Hi, and yi ∈ Hi, it follows from (4.5), (4.2), and the convexity of ‖ · ‖2 that

m
∑

i=1

〈Bi(x1, . . . , xm) − Bi(y1, . . . , ym) | xi − yi〉

=
m

∑

i=1

p
∑

k=1

〈

L∗
ki

(

∇ϕk

( m
∑

j=1

Lkjxj

)

−∇ϕk

( m
∑

j=1

Lkjyj

))
∣

∣

∣

∣

xi − yi

〉

=
m

∑

i=1

p
∑

k=1

〈

∇ϕk

( m
∑

j=1

Lkjxj

)

−∇ϕk

( m
∑

j=1

Lkjyj

) ∣

∣

∣

∣

Lki(xi − yi)

〉

=

p
∑

k=1

〈

∇ϕk

( m
∑

j=1

Lkjxj

)

−∇ϕk

( m
∑

j=1

Lkjyj

) ∣

∣

∣

∣

m
∑

i=1

Lkixi −
m

∑

i=1

Lkiyi

〉

≥
p

∑

k=1

1

τk

∥

∥

∥

∥

∇ϕk

( m
∑

j=1

Lkjxj

)

−∇ϕk

( m
∑

j=1

Lkjyj

)
∥

∥

∥

∥

2

=

p
∑

k=1

1

τk

∑m
i=1 ‖Lki‖2

m
∑

i=1

‖Lki‖2

∥

∥

∥

∥

∇ϕk

( m
∑

j=1

Lkjxj

)

−∇ϕk

( m
∑

j=1

Lkjyj

)∥

∥

∥

∥

2

≥ pβ

p
∑

k=1

m
∑

i=1

‖Lki‖2

∥

∥

∥

∥

∇ϕk

( m
∑

j=1

Lkjxj

)

−∇ϕk

( m
∑

j=1

Lkjyj

)
∥

∥

∥

∥

2

≥ β
m

∑

i=1

p

p
∑

k=1

∥

∥

∥

∥

L∗
ki

(

∇ϕk

( m
∑

j=1

Lkjxj

)

−∇ϕk

( m
∑

j=1

Lkjyj

))∥

∥

∥

∥

2

≥ β
m

∑

i=1

∥

∥

∥

∥

p
∑

k=1

L∗
ki∇ϕk

( m
∑

j=1

Lkjxj

)

−
p

∑

k=1

L∗
ki∇ϕk

( m
∑

j=1

Lkjyj

)
∥

∥

∥

∥

2

. (4.9)

This shows that (1.6) holds. Furthermore, upon setting

(∀i ∈ {1, . . . , m})(∀n ∈ N) Ai,n = ∂fi,n and Bi,n = Bi, (4.10)

we deduce from (4.4) that Algorithm 4.2 is a particular case of Algorithm 2.2. Altogether, Theo-
rem 4.3 follows from Theorem 2.9.

Here are a couple of applications of Problem 4.1.

Example 4.4 (traffic theory) Consider a network with M links indexed by j ∈ {1, . . . , M} and
N paths indexed by l ∈ {1, . . . , N}, linking a subset of Q origin-destination node pairs indexed by
k ∈ {1, . . . , Q}. There are m types of users indexed by i ∈ {1, . . . , m} transiting on the network.
For every i ∈ {1, . . . , m} and l ∈ {1, . . . , N}, let ξil ∈ R be the flux of user i on path l and let
xi = (ξil)1≤l≤N be the flow associated with user i. A standard problem in traffic theory is to find
a Wardrop equilibrium [45] of the network, i.e., flows (xi)1≤i≤m such that the costs in all paths
actually used are equal and less than those a single user would face on any unused path. Such an
equilibrium can be obtained by solving the variational problem [13, 37, 41]

minimize
x1∈C1,..., xm∈Cm

M
∑

j=1

∫ hj(x1,...,xm)

0
φj(h)dh, (4.11)
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where φj : R → [0, +∞[ is a strictly increasing τ -Lipschitz continuous function modeling the cost
of transiting on link j and hj(x1, . . . , xm) is the total flow through link j, which can be expressed
as hj(x1, . . . , xm) =

∑m
i=1(Lxi)

⊤ej , where ej is the jth canonical basis vector of R
M and L is

an M × N binary matrix with jlth entry equal to 1 or 0, according as link j belongs to path
l or not. Furthermore, each closed and convex constraint set Ci in (4.11) is defined as Ci =
{

(ηl)1≤l≤N ∈ [0, +∞[N
∣

∣ (∀k ∈ {1, . . . , Q}) ∑

l∈Nk
ηl = δik

}

, where ∅ 6= Nk ⊂ {1, . . . , N} is the set
of paths linking the pair k and δik ∈ [0, +∞[ is the flow of user i that must transit from the origin
to the destination of pair k (for more details on network flows, see [40, 41]). Upon setting

ϕ1 : R
M → R : (νj)1≤j≤M 7→

M
∑

j=1

∫ νj

0
φj(h)dh, (4.12)

problem (4.11) can be written as

minimize
x1∈RN ,..., xm∈RN

m
∑

i=1

ιCi
(xi) + ϕ1

( m
∑

i=1

Lxi

)

. (4.13)

Since ϕ1 is strictly convex and τ -Lipschitz-differentiable, (4.13) is a particular instance of Prob-
lem 4.1 with p = 1, G1 = R

M and (∀i ∈ {1, . . . , m}) Hi = R
N , fi = ιCi

, and L1i = L. Accordingly,
Theorem 4.3 asserts that (4.13) can be solved by Algorithm 4.2 which, with the choice of parameters
γn ≡ γ ∈ ]0, 2/τ [, λi,n ≡ 0, λn ≡ 0, ai,n ≡ 0, and bi,n ≡ 0, yields

(∀i ∈ {1, . . . , m}) xi,n+1 = PCi

(

xi,n − γL⊤
(

φ1(ρ1,n), . . . , φM (ρM,n)
)

)

, (4.14)

where (ρ1,n, . . . , ρM,n) =
∑m

j=1 Lxj,n. In the special case when m = 1 the algorithm described in
(4.14) is proposed in [14]. Let us note that, as an alternative to ϕ1 in (4.12), we can consider the
function

ϕ1 : R
M → R : (νj)1≤j≤M 7→

M
∑

j=1

νjφj(νj), (4.15)

under suitable assumptions on (φj)1≤j≤M . In this case, (4.13) reduces to the problem of finding the
social optimum in the network [41], that is

minimize
x1∈C1,..., xm∈Cm

M
∑

j=1

hj(x1, . . . , xm)φj

(

hj(x1, . . . , xm)
)

, (4.16)

which can also be solved with Algorithm 4.2.

Example 4.5 (best approximation) The convex feasibility problem is to find a point in the
intersection of closed convex subsets (Ci)1≤i≤m of a real Hilbert space H [10, 21]. This problem
arises in many applications in engineering and the physical sciences [17, 19]. In many instances, the
intersection of the sets (Ci)1≤i≤m may turn out to be empty and a relaxation of this problem in the
presence of a hard constraint represented by C1 is to [23]

minimize
x1∈C1

1

2

m
∑

i=2

ωid
2
Ci

(x1), (4.17)

where (ωi)2≤i≤m are strictly positive weights such that max2≤i≤m ωi = 1. We assume that this
problem admits at least one solution, as is the case when one of the sets in (Ci)1≤i≤m is bounded
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[23, Proposition 4]. Since, for every i ∈ {2, . . . , m} and every x1 ∈ C1, d2
Ci

(x1) = minxi∈Ci
‖x1−xi‖2,

(4.17) can be reformulated as

minimize
x1∈C1,..., xm∈Cm

1

2

m−1
∑

k=1

ωk+1‖x1 − xk+1‖2. (4.18)

This is a special instance of Problem 4.1 with p = m− 1 and, for every i ∈ {1, . . . , m}, fi = ιCi
and

(∀k ∈ {1, . . . , m − 1}) ϕk =
ωk+1

2
‖ · ‖2 and Lki =











Id , if i = 1;

− Id , if i = k + 1;

0, otherwise.

(4.19)

We can derive from Algorithm 4.2 an algorithm which, by Theorem 4.3, generates orbits that
are guaranteed to converge weakly to a solution to (4.18). Indeed, in this case, (4.2) yields β =
1/(2(m−1)). For example, upon setting γn ≡ γ ∈ ]0, 1/(m − 1)[, λn ≡ 0, λi,n ≡ 0, ai,n ≡ 0, bi,n ≡ 0,
and fi,n = ιCi

for simplicity, Algorithm 4.2 becomes

{

x1,n+1 = PC1

(

(1 − γ
∑m

i=2 ωi)x1,n + γ
∑m

i=2 ωixi,n

)

(∀i ∈ {2, . . . , m}) xi,n+1 = PCi

(

γωix1,n + (1 − γωi)xi,n

)

.
(4.20)

In the particular case when m = 2 and γ = 1/2, then ω2 = 1, (4.18) is equivalent to finding a best
approximation pair relative to (C1, C2) [9, 11], and (4.20) reduces to

{

x1,n+1 = PC1

(

(x1,n + x2,n)/2
)

x2,n+1 = PC2

(

(x1,n + x2,n)/2
)

.
(4.21)
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[1] F. Acker and M. A. Prestel, Convergence d’un schéma de minimisation alternée, Ann. Fac. Sci. Toulouse
V. Sér. Math., vol. 2, pp. 1–9, 1980.

[2] H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, MA, 1984.

[3] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Alternating proximal algorithms for weakly coupled
convex minimization problems – Applications to dynamical games and PDE’s, J. Convex Anal., vol. 15,
pp. 485–506, 2008.

[4] H. Attouch, P. Redont, and A. Soubeyran, A new class of alternating proximal minimization algorithms
with costs-to-move, SIAM J. Optim., vol. 18, pp. 1061–1081, 2007.

[5] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, MA, 1990.
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