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Numerial analysis of a new mixed-formulation foreigenvalue onvetion-di�usion problemsC. Pierre F. PlourabouéReeived: date / Aepted: dateAbstratA mixed formulation is proposed and analyzed mathematially for oupledonvetion-di�usion in heterogeneous medias. Transfer in solid parts drivenby pure di�usion is oupled with onvetion/di�usion transfer in �uid parts.This study is arried out for translationnaly invariant geometries (general in-�nite ylinders) and unidiretional �ows. This formulation brings to the forea new onvetion/di�usion operator, the properties of whih are mathemati-ally studied : its symmetry is �rst shown using a suitable salar produt. Itis proved to be self-adjoint with ompat resolvent on a simple Hilbert spae.Its spetrum is haraterized as being omposed of a double set of eigenval-ues: one onverging towards −∞ and the other towards +∞, thus resultingin a non-setorial operator. The deomposition of the onvetion-di�usionproblem into a generalized eigenvalue problem permits the redution of theoriginal three-dimensional problem into a two-dimensional one. Despite beingnon setorial, a omplete solution on the in�nite ylinder, assoiated to a stephange of the wall temperature at the origin, is exhibited with the help ofthe operator's two sets of eigenvalues/eigenfuntions. On the omputationalpoint of view, a mixed variational formulation is naturally assoiated to theeigenvalue problem. Numerial illustrations are provided for axi-symmetrialsituations, the onvergene of whih is found to be onsistent with the numer-ial disretization.Keywords Convetion-di�usion · variational formulation · Hilbert spae ·mixed formulation1 IntrodutionConvetion-di�usion problems are of importane in many �elds of appliations inthermal, hemial or biomedial engineering sienes. More spei�ally, heat or massdi�usion oupled with unidiretional onvetion is present in many types of equip-ments suh as heat pipes, heat exhangers (shell, tube or plate), hromatographs andreators and mass exhangers in miro-hannel artiial devies, and ours in real bi-ologial tissues. This framework overs both parallel or ounter �ow on�gurations.A lassial strategy for desribing the temperature �eld T of tube like on�gura-tions in the applied literature is generally to assume the following separate-variable1



1 INTRODUCTION 2deomposition:
T (x, y, z) =

∑

λ∈Λ

cλTλ(x, y)e
λz, (1)where z is the longitudinal oordinate along whih the �ow is aligned and x, y aretransverse oordinates. The usual subsequent steps [7℄ are then to searh for the�eigenvalues/eigenfuntions� λ/Tλ and �nally ompute the amplitude oe�ients

cλ. This strategy, although well established, raises several important questions. Toour knowledge, there is no omplete theoretial foundation for deomposition (1).This lak of theoretial framework, despite ommonly used terminology, does notpermit Λ and Tλ to be de�ned via an eigenvalue problem, all the more so a sym-metrial one. On the one hand, this is a fundamental problem for the de�nition of
Λ's topology and loation; though it is always assumed to be real and disrete. Onthe other hand, this is a pratial issue for the numerial omputation of Tλ andoe�ients cλ for whih no diret orthogonal properties are available from a simple,salar-produt-based, de�nition.For a lear understanding of these points, one needs to look bak to the origins.Graetz and Nusselt [9, 17℄ studied a simpli�ed version of the problem: a �uid �owingin a single dut at high Pelet number Pe (whih is the ratio of onvetion to di�usiontime sales), when longitudinal di�usion is negligible ompared to radial di�usion.The dut is assumed to be either a irular ylinder or made of two parallel in�niteplates. Suh a symmetri on�guration atually leads to simpli�ed one-dimensionalproblems. In the ase of a ylindrial dut, with the radial oordinate denoted by
r, one omes bak to the Graetz problem

1

r
∂r (r∂rT ) = Pev(r)∂zT,with a Poiseuille paraboli veloity pro�le v(r). In this simpli�ed framework, searh-ing for a separate variable solution T (r, z) = f(r)g(z), �rstly leads after a straight-forward alulation to g(z) = eλPez and seondly leads to the eigenvalue problemde�ning f(r) now denoted Tλ(r) := f(r):

T (r, z) = Tλ(r)e
λPez, 1

r
∂r (r∂rTλ) = λvTλ, (2)whih allows the de�nition of λ/Tλ as eigenvalues/eigenfuntions. Problem (2) is,moreover, symmetri negative, self adjoint with ompat resolvent, justifying deom-position (1) where Λ appears as a disrete subset of R

−. Moreover, the oe�ients cλan be easily omputed using salar produts thanks to the symmetry of the system
cλ =

∫

T0(r)Tλ(r)rdr,where T0 is the inlet ondition at z = 0.These results have historially justi�ed (1) as an interesting heuristi. However,as soon as the Graetz-Nusselt framework is perturbed, none of the previous steps



1 INTRODUCTION 3an be performed in a simple way. Indeed, many studies have explored possibleextensions to that framework. Among these extensions, two are of partiular im-portane: the extended Graetz problem where the longitudinal di�usion term isno longer negleted, and the onjugated Graetz problem in whih oupling with asolid wall where di�usion ours is onsidered. We list bellow the di�ulties met byprevious ontributors when onsidering these extensions.Looking for a separate variable solution T (r, z) = f(r)g(z) no longer provides ina straightforward way a de�nition of the type g(z) = eλz. However assuming suha usual deomposition T (r, z) = Tλ(r)e
λz, one do not get anymore an eigenvalueproblem. Preisely, in the ase of the onjugated Graetz problem, the new problemto be solved for Tλ reads:

{

1
r
∂r (r∂rTλ) = λPevTλ �uid part

1
r
∂r (r∂rTλ) = −λ2Tλ solid part + oupling ondition on the �uid/solid interfae,where the quadrati term λ2 is aounting for the axial di�usion along z. In suha form, one an see that this problem is not an eigenvalue problem on the whole�uid+solid domain.Adding axial di�usion now permits information bak-�ow in the z < 0 diretion,not only along the �ow with z > 0. Therefore both positive and negative �eigen-values� λ are physially expeted: the previous symmetri-negative struture of theGraetz problem is no longer relevant here. However, until Papoutsakis work [18℄detailed below, no attention had been paid to this important point. Early paperson the extended/onjugated Graetz problem [25, 1, 15, 5, 6, 13, 26, 27, 16℄ assumeda negative �spetrum� (that ould, at least in priniple, be omplex) and a ompleteset of �eigenfuntions� by plugging a Graetz-problem-like series solution into thedi�usion onvetion equation.Still in these early works, as pointed out by Mihelsen et al. [16℄, the di�ulties ofdetermining both the non-orthogonal �eigenfuntions� and the expansion oe�ients

cλ appear ritial. From a omputational point of view the strategy used by Hsuet al. [13, 26, 27℄ using the Gram-Shmidt re-orthogonalization proedure has ahigh ost, espeially when approahing the entrane region where a large number of�eigenvalues� is neessary for a orret representation of the solution.The domain de�nition and inlet ondition also raise new questions and di�-ulties. In early papers, the �ow domain is set as the positive real axis and theassumption of uniform �uid temperature at the inlet has been widely used. Aspointed out in [18, 28℄, e.g., when axial di�usion is permitted, the uniform inletondition is invalid sine the temperature would be altered by upstream ondutionbefore reahing the inlet loation.The most important progress in overoming these di�ulties has been made byPapoutsakis and Ramakrishna in a series of innovative papers [19, 20, 18℄. [18℄proposes a new formulation of the extended Graetz problem, adding a seond un-known temperature �ux, leading to a symmetri eigenvalue problem. This approahthus answers the problem regarding the spetrum loation (real eigenvalues only)and provides a nie formalism for the amplitude oe�ient cλ omputation. Thisapproah has been suessfully used in a series of reent papers by Weigand et al.[29, 32, 31, 30℄ and Chi-Dong Ho et al. for various heat exhanger on�gurations,



2 PHYSICAL STATEMENT 4among whih we non-omprehensively quote [11, 12℄.In our opinion, three important issues are still pending:1- Papoutsakis et al. formulation only overs symmetrial on�gurations suh asirular duts or retangular hannels,2- The extension to the onjugated Graetz problem proposed in [19, 20℄ (addingsolid parts with di�usion) remains heavy and ompliated,3- From a theoretial point of view, only the symmetry of the problem has beenproved: neither its self-adjointness nor the resolvent ompatness have beenproved. In partiular the ompleteness of the eigenvalue set Tλ has not beenshown yet, weakening the legitimay of the proposed deomposition (1).The aim of this paper is to address these issues in a very general tube on�gura-tion (we assume no symmetry of the tube setion) for any general unidiretional ve-loity pro�le (for example allowing non-Newtonian veloity pro�les). A major resultwe wish to ahieve here is to derive a formulation of the initial three-dimensionalproblem into a two-dimensional one, whose numerial disretization is obviouslymuh easier. The physial and geometrial frameworks are desribed in setion 2.Setion 3 develops a theoretial investigation of Equation (1) deomposition for thetemperature solution. Subsetion 3.1 introdues a reformulation of the problemwhih allows the searh for separate variable solutions and leads to an eigenvalueproblem. In subsetion 3.2 the funtional properties of the eigenvalue problem op-erator are established. It is proved to be symmetri and moreover self adjoint witha ompat resolvent on a basi Hilbert spae. At the end of this theoretial setion,these results are used in 3.3 to display a full deomposition of a temperature �eldfor whih far �eld onditions are substituted for an inappropriate inlet ondition at
z = 0. This deomposition appears e�ient from a omputational point of viewsine it only exhibits the eigenvalues/eigenvetors of the problem as well as eas-ily omputable oe�ients using simple salar produts. In setion 4, it is shownthat the eigenvalue problem is naturally equivalent to a mixed variational problem,thus providing a simple omputational framework to solve the eigenvalue problemin terms of mixed �nite element methods. The remaining part of this setion isdevoted to the analysis of the numerial onvergene of the method. We restritourselves to symmetri on�gurations where analytial solutions are available allow-ing an a priori error estimate of the solution. In this last setion we notably studythe previously disussed extended Graetz and onjugated Graetz problems.2 Physial statement2.1 Geometry, general assumptions and notationsThe domain onsidered here is an in�nite ylinder Z = Ω×R having a ross setion
Ω ⊂ R

2 (assumptions on Ω are stated below). The oordinate system relative to Ωwill be denoted by (x, y) and the axial oordinate by z ∈ R.The domain ross-setion Ω is assumed bounded and its boundary ∂Ω is takento be smooth (C1 regularity). Its outward normal is denoted by n. Ω is divided into



2 PHYSICAL STATEMENT 5
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Figure 1: Domain ross-setion Ω (left) and whole domain Z = Ω × R (right)a olletion of open sub-domains Ωi (1 ≤ i ≤ N) with smooth boundaries, disjoint(Ωi ∩ Ωj = ∅ if i 6= j) and suh that Ω = ∪iΩi. The interfae between Ωi and Ωj(if non-empty) is denoted by Γij = Ωi ∩ Ωj , and its unit normal, outward from Ωitowards Ωj , will be denoted by nij . These assumptions ensure that the semi-norm
∫

Ω
|∇u|2dx is a norm on H1

0 (Ω) equivalent to the H1 norm (Poinaré inequality)and also that H1
0 (Ω) and H1(Ωi) have ompat embedding into L2(Ω) and L2(Ωi)respetively (see e..g [8, 3℄).The �ow in the �uid part is assumed to be established and laminar, so thatthe veloity v = v(x, y)ez is along the z diretion and is a funtion of (x, y) only.The veloity pro�le v is only assumed bounded: v ∈ L∞(Ω), though it is physiallyontinuous in all appliations. Solid sub-domainsΩi are taken into aount by setting

v|Ωi
= 0. v > 0 (resp. v < 0) on Ωi naturally means that Ωi is a �uid sub-domainwhere the �ow is in the z > 0 (resp. z < 0) diretion.The ondutivity k is isotropi but heterogeneous. Preisely, k is a bounded,positive and pieewise onstant funtion onstant on every Ωi:

0 < α ≤ k(x) ≤ β < +∞ a.e. in Ω , ki := k|Ωi
∈ R . (3)

Ti := T|Ωi
indiates the restrition of the funtion T to the sub-domain Ωi.Conventionally here, the di�erential operators div, ∇ are onsidered on R

2 only:divp = ∂xp1 + ∂yp2 and ∇f = (∂xf, ∂yf), for a vetor �eld p and a salar funtion
f respetively.2.2 Energy equationOn the in�nite ylinder Z = Ω × R. The dimensionless energy equation isdiv(k∇T ) + k∂2

zT = Pe v∂zT , (4)where Pe is the dimensionless Pélet number. On the ylinder boundary ∂Z, on-stant temperatures are imposed, with a step hange at the entry z = 0:
{

T|∂Z = 1 if z < 0

T|∂Z = 0 if z > 0
. (5)Relevant limit onditions as z → ±∞ therefore are:

T (·, z) →
z→−∞

1 , T (·, z) →
z→+∞

0 . (6)



3 MATHEMATICAL ANALYSIS 6Coupling onditions at the sub-domain interfaes also are required, physially stand-ing for the ontinuity of the temperature (onentration) and of the normal heat(mass) �ux, they read:
Ti = Tj and ki∇Ti · nij = kj∇Tj · nij on Γij , (7)whenever the interfae Γij is non-empty, the dot produt naturally standing for thesalar produt in R

2.3 Mathematial analysis3.1 Problem reformulationEquation (4) is reformulated into a system of two �rst order di�erential equations:
∂zT = Pe v k−1 T − k−1div(p) (8)
∂zp = k∇T , (9)where T still denotes the dimensionless temperature (or onentration), the addi-tional unknown p denotes a vetor valued funtion on Ω.Introduing the following unbounded operator A : D(A) ⊂ H 7→ H on an Hilbertspae H and with domainD(A) (whose de�nitions follow), system (8) takes the formof an ODE on the in�nite dimensional spae H with unknown Φ(z) ∈ H:

d

dz
Φ(z) = AΦ(z) , Φ(z) =

∣

∣

∣

∣

T (z)
p(z)

, A =

( Pe vk−1 −k−1div(·)
k∇· 0

)

. (10)The spae H is de�ned as the Hilbert spaes produt H = L2(Ω) × (L2(Ω))2,where (L2(Ω))2 is the spae of square integrable vetor valued funtions on Ω. H isequipped with the following salar produt,
(Ψ1,Ψ2)H =

(
∣

∣

∣

∣

T1

p1

,

∣

∣

∣

∣

T2

p2

)

H

=

∫

Ω

T1T2kdx +

∫

Ω

p1 · p2k
−1dx . (11)Note that this salar produt on H is equivalent to the anonial one (taking k =

1) by using assumption (3). It has been modi�ed to ensure the symmetry of theoperator A.Relative to a homogeneous Dirihlet boundary ondition, the domain D(A) is givenas D(A) := H1
0 (Ω)×H(div,Ω), where H(div,Ω) = {p ∈ (L2(Ω))2, div(p) ∈ L2(Ω)}in the distribution sense. We shall refer to [4℄ for the basi properties of the spae.Suh a de�nition of D(A) ensures that A : D(A) ⊂ H 7→ H in (10) is well de�ned.Proposition 3.1. The operator A is dense and symmetri:

∀ Ψ1,Ψ2 ∈ D(A) : (AΨ1,Ψ2)H = (Ψ1, AΨ2)H . (12)



3 MATHEMATICAL ANALYSIS 7Proof. The density of A diretly follows from its de�nition. Denoting Ψj =

∣

∣

∣

∣

Tj

pj
,

j = 1, 2, using the Green formula and the fat that Tj ∈ H1
0 (Ω) yields:

(AΨ1,Ψ2)H =

∫

Ω

Pe vT1T2dx −

∫

Ω

div (p1)T2dx +

∫

Ω

∇T1 · p2dx

=

∫

Ω

Pe vT2T1dx +

∫

Ω

p1 · ∇T2dx −

∫

Ω

T1div (p2) dx

= (Ψ1, AΨ2)H .

3.2 Spetral analysis of AIn this setion, the main theoretial result of our study is proved. We show that Ais self adjoint and that (0 exepted), its spetrum is made of eigenvalues of �niteorder only, the orresponding eigenfuntions forming a Hilbert (omplete) base of
(Ker A)⊥ = Ran A. We observe that denoting by Ψn = (Tn,pn) the omponents ofthe nth eigen-funtion (AΨn = λnΨn), and introduing T (x, y, z) = eλnzTn(x, y), wehave: div(k∇Tn) + λ2

nkTn = λnPe vTn and div(k∇T ) + k∂2
zT = Pe v∂zT ,and T is a solution of the original energy equation (4). Inidentally, we also reoverthe so-alled eigen-values/funtions of the previously quoted literature [1, 2, 6, 5, 13,26, 27, 15, 25℄. This theorem therefore brings full legitimay to the deompositionsroutinely found in the literature.Theorem 3.2. A : D(A) ⊂ H 7→ H is self-adjoint and has a ompat resolvent.We introdue the Kernel of A , Ker A = {(0,p), p ∈ H0(div,Ω)}, whereH0(div,Ω) =

{p ∈ H(div,Ω), div p = 0}. Then there exists a Hilbert base (Ψn)n∈N
of Ran A =

(Ker A)⊥ omposed of eigen-funtions: Ψn ∈ D(A), AΨn = λnΨn, ‖Ψn‖H = 1. Theoordinates of Ψn are denoted Ψn = (Tn,pn) = (Tn, k∇Tn/λn). We therefore have
D(A) =

{

Ψ ∈ H ,
∑

n

|λn(Ψ,Ψn)H|
2 < +∞

}

, AΨ =
∑

n

λn(Ψ,Ψn)HΨn ,for all Ψ ∈ D(A).Moreover this base an be split into two parts (

Ψ+
i

)

i∈N
and (

Ψ−
i

)

i∈N
suh that:

0 > λ+
1 ≥ · · · ≥ λ+

j ≥ · · · → −∞ , 0 < λ−1 ≤ · · · ≤ λ−j ≤ · · · → +∞ , (13)The orresponding eigen-funtions are denoted Ψ±
n . Eigen-values(funtions), aord-ing to this deomposition, are respetively alled upstream (+) and downstream (-). In the proof, we shall use the following regularity result (see[14℄ p. 192-196):



3 MATHEMATICAL ANALYSIS 8Lemma 3.3. For any f ∈ L2(Ω). there exists a unique T ∈ H1
0 (Ω) satisfyingdiv(k∇T ) = f in the distribution sense. That solution also satis�es on eah sub-domain Ωi: Ti ∈ H2(Ωi), div(k∇T ) = f in L2(Ωi) (strong sense) and ‖Ti‖H2(Ωi) ≤

C‖f‖L2(Ω) (C independent on f). Moreover T satis�es on every interfae Γi,j theoupling onditions (7) in the trae sense.Proof. A is dense and symmetri. Sine vk−1 ∈ L∞(Ω), A is also a ontinuousperturbation of the symmetri operator A0 : D(A) ⊂ H 7→ H de�ned as A0 =
(

0 −k−1div(·)
k∇· 0

). Using the Kato-Relish theorem (see e.g. [23℄ p. 163), theself-adjointness of A0 implies the self-adjointness of A. To prove the self-adjointnessof A0, one shows that A0 + i has range H (see e.g. [22℄).Let us �x (f,q) ∈ H. We searh for T ∈ H1
0 (Ω) suh that:

∀ ϕ ∈ H1
0 (Ω) :

∫

Ω

Tϕkdx+

∫

Ω

k∇T · ∇ϕdx =

∫

Ω

∇ϕ · qdx−

∫

Ω

iϕfkdx .On the right one learly has a ontinuous linear form on H1
0 (Ω), whereas the left sideexhibits a symmetri, positive, ontinuous and oerive bilinear produt on H1

0 (Ω).As a result, the Lax-Milgram theorem applies (see e.g. [8℄) ensuring the existeneand uniqueness of suh a T . Let us de�ne ip = q − k∇T ∈ (L2(Ω))2. From theabove equality we obtain:
∀ ϕ ∈ C∞

c (Ω) :

∫

Ω

ip · ∇ϕdx =

∫

Ω

k(if + T )ϕdx .This equality shows that, in the distribution sense, div(p) ∈ L2(Ω) and we have
p ∈ H(div,Ω). Thus Ψ = (T,p) ∈ D(A) and one has (A0 + i)Ψ = (f,q), so provingthe self adjointness of A0 and A.To prove that A has a ompat resolvent, we introdue the pseudo inverse of
A, A−1 : Ran A 7→ (Ker A)⊥ ∩ D(A) = Ran A ∩ D(A) and we prove that A−1 isompat.For this let us onsider a bounded sequene (fn,qn) ∈ Ran A. There is a unique
(Tn,pn) ∈ Ran A∩D(A) satisfying A(Tn,pn) = (fn,qn). (Tn) then satis�es k∇Tn =
qn and therefore forms a bounded sequene in H1

0 (Ω). The ompat embedding
H1

0 (Ω) 7→ L2(Ω) thus implies that (Tn) is relatively ompat in L2(Ω).We now introdue ϕn ∈ H1
0 (Ω) the unique variational solution to div(k∇ϕn) =Pe vTn − kfn. Let us prove that pn = k∇ϕn. Sine A(Tn, k∇ϕn) = (fn,qn), wehave to hek that (Tn, k∇ϕn) ∈ (Ker A)⊥:

∀ p ∈ H0(div,Ω) :

(
∣

∣

∣

∣

Tn

k∇ϕn
,

∣

∣

∣

∣

0
p

)

H

=

∫

Ω

∇ϕn · pdx = −

∫

Ω

ϕndiv(p)dx = 0Lemma 3.3 then applies and ensures that ϕn|Ωi
∈ H2(Ωi) and that, (Pe vTn − kfn),being bounded in L2(Ω), (ϕn|Ωi

) is bounded in H2(Ωi). Therefore both omponentsof (∇ϕn|Ωi
) are bounded in H1(Ωi), thus implying that both omponents of (pn|Ωi

)



3 MATHEMATICAL ANALYSIS 9also are bounded in H1(Ωi). The ompat embedding H1(Ωi) ⊂ L2(Ωi) then ensuresthat (pn) is relatively ompat in L2(Ω).Consequently, A−1 is ompat and self adjoint on the separable spae Ran A.Therefore there exists a Hilbert base (Ψn)n∈N
for Ran A made of eigen-funtions:

Ψn ∈ D(A), Aψn = λnΨn.
A−1 being ompat, 0 is the only limit point for sub-sequenes of (1/λn) and thus
{−∞,+∞} are the only two possible limit points for sub-sequenes of (λn). It iseasily seen that, whatever the value of α ∈ R, A + α is bounded neither belownor above. The spetrum is therefore also neither bounded below nor above. Thus
{−∞,+∞} are both limit points for the spetrum, implying deomposition (13).3.3 Solution derivationThe results of the previous setion are used here to derive the solution Φ(z) =
(T (z),p(z)) to (8)-(10) suh that T satis�es the boundary, limit and interfae on-ditions in (5)-(6) and (7). We point out that the boundary ondition (5) impliesthat, for z < 0, one does not have Φ(z) ∈ D(A). For this to be taken into aount,we shall onsider the (maximal) extension A to operator A:

• D(A) = H1(Ω) ×H(div,Ω),
• A : D(A) 7→ H has the same algebrai expression as A in (10).Unlike A, A is not symmetri:

(AΨ1,Ψ2)H = (Ψ1, AΨ2)H +

∫

∂Ω

T1p2 · nds−

∫

∂Ω

T2p1 · nds , (14)for all pairs of funtions in D(A), with the usual notations.De�nition 3.4. We shall de�ne a solution to (8)-(10) with onditions (5),(6) and(7) as a funtion Φ : z ∈ R 7→ Φ(z) = (T (z),p(z)) ∈ H suh that:
• Φ ∈ C (R,H) (ontinuity on R),
• Φ ∈ C1 (R − {0},H) (ontinuous Frehet di�erentiability on R − {0}),
• ∀z ∈ R − {0}, Φ(z) ∈ D(A) and d

dz
Φ(z) = AΦ(z),and suh that T satis�es the limit ondition (6) as z → ±∞ in H's norm and theboundary, interfae onditions (5)-(7) for all z 6= 0 in the trae sense.That formalism being stated:Proposition 3.5. There exists a unique solution Φ to (8)-(10) with onditions(5),(6) and (7). De�ning the onstants (αn),

αn :=
1

λ2
n

∫

∂Ω

k∇Tn · nds =
1

λn

∫

∂Ω

pn · nds, (15)



3 MATHEMATICAL ANALYSIS 10this solution is given as follows:
Φ(z) =











−
∑

n

αnΨn +
∑

n

α−
n e

λ−

n zΨ−
n z ≤ 0

−
∑

n

α+
n e

λ+
n zΨ+

n z ≥ 0
(16)The expression an moreover be simplifyed and the temperature �eld is given by:

T (z) =











1 +
∑

n

α−
n e

λ−

n zT−
n z ≤ 0

−
∑

n

α+
n e

λ+
n zT+

n z ≥ 0
(17)Sine A is not setoral (is not the in�nitesimal generator of an analyti semi-group, see e.g. [10℄), some preautions have to be taken in demonstrating the propo-sition. A detailed proof follows.Proof. Using the Hilbert base (Ψn) of (Ker A)⊥, the solution Φ is sought in theform Φ(z) =

∑

n(Φ(z),Ψn)HΨn. All oe�ients must therefore satisfy the ODE
d

dz
(Φ(z),Ψn)H = (AΦ(z),Ψn)H. Then using (14), the boundary ondition (5) andthe equality k∇Tn = λnpn, we �nd that
d

dz
(Φ,Ψn)(z) = (Φ,AΨn)(z) + ω(z)

∫

∂Ω

pn · nds = λn(Φ,Ψn)(z) + λnαnω(z) ,where ω(z) = 0 when z > 0 and ω(z) = 1 otherwise. Looking for a bounded andontinuous solution to this ODE on R gives us a unique solution, aording to λn'ssign (λ+
n < 0 and λ−n > 0):

(Φ,Ψ−
n )(z) =

{

α−
n

(

eλ−

n z − 1
)

z < 0

0 z > 0
, (Φ,Ψ+

n )(z) =

{

−α+
n z < 0

−α+
n e

λ+
n z z > 0

.This gives us deomposition (16) and the uniqueness of the solution. Let us nowprove that Φ de�ned by (16) is a solution with the sense in 3.4.Consider the (unique) funtion ϕ∞ ∈ H1
0 (Ω) suh that div(k∇ϕ∞) = Pe v. Weintrodue Φ∞ =

∣

∣

∣

∣

1
k∇ϕ∞

∈ H, a funtion that learly satis�es Φ∞ ∈ D(A), AΦ∞ =

0 and Φ∞ ∈ (Ker A)⊥. Let us prove that Φ∞ = −
∑

n αnΨn (thus explaining how togo from (16) to (17)). Sine λnpn = k∇Tn:
(Φ∞,Ψn)H =

∫

Ω

Tnkdx+
1

λn

∫

Ω

k∇ϕ∞ · k∇Tnk
−1dx =

∫

Ω

Tnkdx−
1

λn

∫

Ω

Pe vTndx,and using the equality λnkTn = Pe vTn −
1

λn
div(k∇Tn), we obtain

(Φ∞,Ψn)H = −
1

λ2
n

∫

Ω

k∇Tn · nds = − αn .



4 MIXED VARIATIONAL FORMULATION AND APPROXIMATION 11Thus −∑

n αnΨn = Φ∞ ∈ H, and it follows that Φ±
∞ = −

∑

n α
±
n Ψn ∈ H and Φ∞ =

Φ−
∞ + Φ+

∞. We use the fat that Φ ∈ D(A) if and only if ∑

n |λn(Φ,Ψn)H|
2 < +∞.Sine λ+

n →
n

−∞ (resp. λ−n →
n

+∞), it is straightforward to hek that the twofuntions,
f(z) =

∑

n

α−
n Ψ−

n e
λ−

n z , g(z) =
∑

n

α+
n Ψ+

n e
λ+

n z,satisfy:
• f ∈ C ((−∞, 0],H), g ∈ C ([0,+∞),H) (ontinuity),
• f ∈ C1 ((−∞, 0),H), g ∈ C1 ((0,+∞),H) (ontinuous Frehet di�erentiabil-ity),
• for z < 0 (resp. z > 0), f(z) ∈ D(A) (resp. g(z) ∈ D(A)) and d

dz
f(z) = Af(z)(resp. d

dz
g(z) = Ag(z)).The funtion Φ in (16) an be rewritten as Φ(z) = Φ∞ + f(z), z ≤ 0 and Φ(z) =

−g(z), z ≥ 0 (whih funtions atually math at z = 0 using Φ∞ = Φ−
∞ + Φ+

∞). Itis therefore ontinuous on R, Frehet di�erentiable on R − {0}, Φ(z) ∈ D(A) and
d

dz
Φ(z) = AΦ(z) for z ∈ R − {0} sine AΦ∞ = 0. It is also lear that T (z) satis�esthe limit ondition (6) and the boundary ondition (5) for z 6= 0.It remains to be proved that it also satis�es the interfae onditions (7) for z 6= 0. Forthis, let us onsider the previously introdued funtion f whose omponents will bedenoted as f(z) = (t(z),p(z)). Sine λ−n →

n
+∞, it is easy to hek that, for z < 0,

Af(z) ∈ D(A). Therefore k∇t(z) ∈ H(div,Ω) whih implies that div(k∇t)(z) ∈
L2(Ω) for z < 0. Applying 3.3, it follows that t(z) satis�es the interfae onditions(7). The same result applies to g(z) for z > 0 and, as a result, to T (z) for z 6= 0.4 Mixed variational formulation and approximation4.1 Mixed variational formulationLet us onsider the following variational problem: �nd (λ, T,p) ∈ R × L2(Ω) ×
H(div,Ω) suh that, ∀(u,q) ∈ L2(Ω) ×H(div,Ω),

∫

Ω

Pe vTudx −

∫

Ω

udiv(p)dx = λ

∫

Ω

Tukdx (18)
−

∫

Ω

Tdiv(q)dx = λ

∫

Ω

p · qk−1dx . (19)It is lear that whenever Ψn is an eigen-funtion as given in theorem 3.2, then
(λn, Tn,pn) satis�es the variational problem above. Conversely if (λ, T,p) satis�es(18)-(19) for all (u,q) ∈ L2(Ω) × H(div,Ω), then the seond line implies that T ∈
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H1

0 (Ω) (using the dense embedding of H(div,Ω) into H1/2(∂Ω)′, see [4℄). Therefore
Ψ = (T,p) ∈ D(A) and satis�es AΨ = λΨ. Thus Ψ = Ψn for some n and solving(18)-(19) is equivalent to �nding all the eigen-values/funtions of operator A.4.2 Axi-symmetrial implementationIn order to test this variational formulation, we have derived a one-dimensionalversion of the problem whih is interesting in the ase of an axi-symmetrial on�g-urations. The motivation is to test the onvergene of the problem numerially onknown solutions. The simplest ase is onvetion-di�usion inside a single ylinder forwhih, in the limit of large Pélet number, we should reover the Graetz spetrum[9℄ for the operator A. In this setion we onsider the somewhat more general aseof two onentri ylinders, for whih Ω = Ω1 ∪Ω2, with Ω1 an inner disk �lled withliquid and Ω2 an outer solid orona. When the size of the seond domain to set tozero, the single ylinder problem is found again as a partiular ase.A liquid �ows inside Ω1 with a unidiretional, longitudinal, dimensionless veloity
v(r)ez whih varies from a maximal value at the ylinder enter r = 0 to zero at theboundary with the seond ylinder plaed at r = r0. We hoose the dimensionlessveloity to follow the usual Poiseuille �ow pro�le v(r) = 2Pe(r2

0 − r2), althoughany ontinuous pro�le being zero at the boundary ould be hosen. The veloitynormalization is set so that normalized surfae averaged veloity �ux is the Péletnumber :
1

‖Ω1‖

∫

Ω1

v(r)dΩ1 = PeWhere ‖Ω1‖ = πr2
0 is the inner disk area assoiated with the �rst inner ylindersetion. In orona Ω2 the veloity is taken to be zero; no onvetion ours in thisseond domain. Continuity of �ux and temperature (7) are applied at the domainfrontier ∂Ω2 ∩ ∂Ω2 with uniform ondutivity k = 1. The radial dimensionlessdistane is hosen so that r = 1 orresponds to the outer boundary of the seondylinder ∂Ω2 − ∂Ω1 ∩ ∂Ω2 where a homogeneous Dirihlet boundary ondition (5) ishosen.Problem (18)-(19) is approximated on a regular one-dimensional mesh disretizingoordinate r ∈ [0, 1] with index i on grid r = i/n with i ∈ {1, n}. We adopthere the lassial mixed �nite element approximation of order 0 of Raviart andThomas P0×RT0 (see e.g. [4℄) to the present axi-symmetrial 1D formulation. Baseelements for the salar T are therefore P0 pieewise onstant funtions over the gridelements, whereas base elements for the 'vetor ' p are the P1 ontinuous pieewisea�ne funtions over the grid elements: thus re-establishing the �ux ontinuity atthe grid points.The generalized linear eigenvalue problem resulting from this disretization hoieis as follows:
AΨn =

(

a b

bT 0

)

Ψn = λn

(

c 0
0 d

)

Ψn, (20)Where Ψn is a 2n omponent vetor whose �rst n omponents are the disretetemperature �eld Tn = (Ti)i∈{1,n} approximating Tλ and the following n + 1 to 2n



4 MIXED VARIATIONAL FORMULATION AND APPROXIMATION 13omponents desribe pn approximating the gradient �eld pλ = ∂rTλ/λ whih is one-dimensional in this axi-symetrial ontext. The n×n matries a, b, c and d an beomputed analytially and admit the following oe�ients :
aij = −δij

Pe
2r0n4 (2i− 1)(2i2 − 2i− 2r2

0n
2 + 1)

bij = − 1
n

( δiji+ δi−1j(1 − i) )
cij = δij

2i−1
2n2

dij = − 1
12n2 ( δij8i + δi−1j(2i− 1) + δi+1j(2i+ 1) ) ,

(21)where (i, j) ∈ {1, n}2 and δ is the Kroneker symbol.4.3 Numerial results and onvergeneIn the generalized eigenvalue problem (20), one notes that the matrieA is symmetriand that the right hand side mass-matrix Diag(c,d) is symmetri positive de�nite.Therefore, problem (20) an be numerially solved using the variant of the Lanzosalgorithm for generalized eigenvalue problems (see e.g. [24℄). The resulting �rsteigenvetors and eigenvalues were omputed using the Fortran library ARPACKand spare matrix storage. The results presented here orrespond to two partiularon�gurations:
• a single ylinder with a single radial domain Ω1 for whih r0 = 1 and,
• two onentri ylinders whose radius ratio is two, so that r0 = 1/2.We study the numerial onvergene of the �rst eigenvalues and �rst eigenvetorswhen the Pélet number is varied from low to high values. We systematially om-pared the disrete numerial results with referene solutions obtained with anotheriterative method explained in the appendix A.4.3.1 Single ylinder : r0 = 1In the ase of a single ylinder, for large values of the Pélet number, the upstreampart of A's spetrum (positive eigenvalues λ−n assoiated with the z < 0 region)is di�ult to ompute numerially for it diverges with Pe [21℄. In ontrast, thedownstream part of the spetrum (negative eigenvalues λ+

n assoiated with the z > 0region) onverges to the Graetz spetrum, and deays to zero as 1/Pe when the Péletnumber inreases.Let us �rst disuss the eigenvalue onvergene. Figure 2 illustrates the relativeerror E =
√

(λn − λ)2/λ assoiated with the �rst two downstream eigenvalues λ+
1and λ+

2 and for the �rst upstream one λ−1 . it an be seen in this �gure that theonvergene of the numerial estimation is onsistent with the hosen lassial mixed�nite element approximation spae P0×RT0, for whih a∼ 1/n behavior is expeted.Furthermore, the strong in�uene of the Pélet number on onvergene rate an alsobe observed. For small Pélet number, the spetrum is almost symmetrial, so thatone expets the onvergene for λ+
1 and λ−1 to be very lose, as observed on �gure2a. In ontrast, as the Pélet number inreases, there is a distint shift in theonvergene urve. The loser the eigenvalue is to zero, the easier it is to ompute.
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log10 nFigure 2: (a) Relative numerial error for eigenvalue λ+
1 , λ+

2 and λ−1 for Pe = 0.1.The dotted lines orresponds to a −1 slope assoiated with a ∼ 1/n behavior. (b)Same onvention as (a) for Pe = 10.Sine λ−1 diverges with Pe, it is more di�ult to approximate numerially and,then, the relative error assoiated with λ−1 in �gure 2b is 30% larger than the oneassoiated with λ+
1 for Pe = 10. This di�erene further inreases with Pélet number.We also wish to illustrate the numerial onvergene on the eigenfuntion. Figure3 illustrates the eigenvetor omputation for the temperature and gradient �eldsassoiated with λ+
1 , λ+

2 and λ−1 eigenvalues. In the ase of small Pélet numbers,the asymptoti symmetry of the eigenvalue spetrum also implies a symmetry ofthe eigenvetors,dswhih is learly visible when omparing the 1+ and 1− �elds inFigure 3. The assoiated leading order eigenfuntion shows a single maximum at
r = 0, the ylinder enter, and obviously dereases to zero at r = 1 for the Dirihletboundary ondition to be ful�lled. When the assoiated eigenvalue order inreases,the orresponding eigenfuntion has as many osillations as the eigenvalue order.For example for λ+

2 , two ritial points an be seen, a minimum and a maximum,for the eigenfuntion in Figure 3. The superposition between the disrete numerialomputation and the �exat� solution is also illustrated in Figure 3. One an seethat the omparison for the gradient depited in Figure 3(b) is rough for n = 20, butno di�erene is visible between the two for n = 320 in Figure 3(d). The onvergeneto the exat solution is also illustrated in �gure 4 for Pe = 10. In this ase the twoeigenfuntions assoiated with λ+
1 and λ−1 di�er markedly. The �rst one, assoiatedwith λ+

1 , still reahes a maximum at the tube enter r = 0, whereas the maximumposition of the seond one, assoiated with λ−1 , is shifted lose to the tube boundaryat r = 1. Furthermore, this seond eigenfuntion deays to zero at the tube enter.The reason for this distint behavior is now the opposite role of onvetion for thesetwo temperature pro�les. For the downstream eigenfuntion assoiated with λ+
1 ,longitudinal onvetion prevails over di�usion. Sine this onvetion is maximum atthe tube enter, it ditates the shape of the orresponding temperature pro�le. Forthe upstream eigenfuntion assoiated with λ−1 , retro-di�usion is the only mehanismfor this temperature to display a bak-�ow exponential deay. Hene, sine theonvetion is maximal at the tube enter, retro-di�usion is maximum at the tube



4 MIXED VARIATIONAL FORMULATION AND APPROXIMATION 15

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1+
 

 
exa

N=20

0 0.5 1
−0.5

0

0.5

1

2+
0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−(a) 0 0.5 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

1+
 

 
exa

N=20

0 0.5 1
−4

−3

−2

−1

0

1

2

2+
0 0.5 1

−1.5

−1

−0.5

0

1−(b)

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1+
 

 
exa

N=320

0 0.5 1
−0.5

0

0.5

1

2+
0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−() 0 0.5 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

1+
 

 
exa

N=320

0 0.5 1
−4

−3

−2

−1

0

1

2

2+
0 0.5 1

−1.5

−1

−0.5

0

1−(d)Figure 3: (a) Temperature �eld T (i/n) i ∈ {1, n} for disretization n = 20 andPe = 0.1 for the �rst two downstream eigenvetors 1+ and 2+ and the �rst upstreameigenvetor 1−. Normalization T (0) = 1 has been imposed. (b) Temperature gradi-ent p = ∂rT (i/n)/λ for disretization n = 20 and Pe = 0.1. () Same onvention as(a) for disretization n = 320. (d) Same onvention as (b) for disretization n = 320.boundary, where the veloity vanishes. A boundary layer develops near r = 1, thethikness of whih deays to zero as the Pélet number diverges. This boundarylayer is responsible for the numerial di�ulties arising in the omputation of theupstream part of the spetrum at large Pélet numbers. The slower onvergene ofthe eigenvetors 1− is learly visible in �gure 4a and 4b for a rough disretizationof n = 20 points. Although in this ase, the �rst two downstream eigenfuntions,
1+ and 2+ are well approximated by the orresponding eigenvetors, this is not thease for the upstream one 1−. Nevertheless, for a su�ient disretization of n = 320points, the onvergene an be satisfatory as illustrated on �gure 4,d.We �nally wish to illustrate the onvergene on the eigenvetor by omputingthe relative error E =

√

(Ψn − Ψ,Ψn − Ψ)H/(Ψ,Ψ)H built with the H norm (11)for a disrete eigenvetor Ψn to onverge to the theoretial one Ψ. Figure 5 showsthe onvergene of the relative error for inreasing point number n. As expeted,
1/n behavior is observed for both Pe = 0.1 and Pe = 10, but the error is larger inthe latter ase.
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Ω2, so that it is not on�ned in a small region near the boundary. The resultingtemperature gradients are muh lower and do not diverge with the Pélet number.Hene, the maximum temperature observed for the 1− eigenvetor of �gures 6 and6d is indeed loalized inside the seond domain at a radial oordinate larger than
1/2. Obviously, the temperature values assoiated with this maximum are muhlower than in the ase of the single ylinder, due to the smoothing e�et assoiatedwith permitting retro-di�usion in the seond domain Ω2.The onvergene rate, whih an be omputed either for the eigenvalues or theeigenvetors, follows the same saling as those already found for the single ylinder
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Tλ an be the expanded in the form

Tλ(r) =
∑

n∈N

tn(r) λn . (22)In this desription the losure funtions {tn}n∈N are independent of the eigenvalue
λ onsidered and also of the onsidered boundary ondition at r = 1. They an beomputed using a simple iterative proess for the omputation of the spetrum andeigenfuntions with a Maple ode.The onvergene of the λ-analyity method has been established for general axi-symmetrial on�gurations. The proof being the topi of a foreoming paper, andfor the sake of simpliity, we fous our attention here on the treatment of the Graetzproblem. In this ase, the proof for the onvergene of the λ-analyity method isavailable in [21℄. The eigenvalues Tλ are de�ned as follows, on the interval [0, 1]:

Tλ(0) = 1 , ∆cTλ = v(r)λT ,



A REFERENCE SOLUTIONS IN AXI-SYMMETRICAL PROBLEMS 21where ∆c stands for the ylindrial part of the Laplae operator ∆c ≡ 1/r∂r(r∂r).Eigenfuntions Tλ then read (22) where the tn(r) ful�ll the reursive sheme:
t0(r) = 1 and: ∆ctn = v(r)tn−1(r) , tn(0) = 0 for n ≥ 1 .We point out that this sheme atually has a unique solution thanks to the degen-eray of the ODE at r = 0.The spetrum, in the ase of a Dirihlet boundary ondition, is thus de�ned as:

Λ =

{

λ ,
∑

n∈N

tn(1) λn = 0

}

.It an be approximated using trunations, with an exponential rate of onvergene.


