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Abstract

A mixed formulation is proposed and analyzed mathematically for coupled
convection-diffusion in heterogeneous medias. Transfer in solid parts driven
by pure diffusion is coupled with convection/diffusion transfer in fluid parts.
This study is carried out for translationnaly invariant geometries (general in-
finite cylinders) and unidirectional flows. This formulation brings to the fore
a new convection/diffusion operator, the properties of which are mathemati-
cally studied : its symmetry is first shown using a suitable scalar product. It
is proved to be self-adjoint with compact resolvent on a simple Hilbert space.
Its spectrum is characterized as being composed of a double set of eigenval-
ues: one converging towards —oo and the other towards +4o0, thus resulting
in a non-sectorial operator. The decomposition of the convection-diffusion
problem into a generalized eigenvalue problem permits the reduction of the
original three-dimensional problem into a two-dimensional one. Despite being
non sectorial, a complete solution on the infinite cylinder, associated to a step
change of the wall temperature at the origin, is exhibited with the help of
the operator’s two sets of eigenvalues/eigenfunctions. On the computational
point of view, a mixed variational formulation is naturally associated to the
eigenvalue problem. Numerical illustrations are provided for axi-symmetrical
situations, the convergence of which is found to be consistent with the numer-
ical discretization.

Keywords Convection-diffusion - variational formulation - Hilbert space -
mixed formulation

1 Introduction

Convection-diffusion problems are of importance in many fields of applications in
thermal, chemical or biomedical engineering sciences. More specifically, heat or mass
diffusion coupled with unidirectional convection is present in many types of equip-
ments such as heat pipes, heat exchangers (shell, tube or plate), chromatographs and
reactors and mass exchangers in micro-channel articial devices, and occurs in real bi-
ological tissues. This framework covers both parallel or counter flow configurations.
A classical strategy for describing the temperature field T of tube like configura-
tions in the applied literature is generally to assume the following separate-variable
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decomposition:

T(.T,y,Z) = ZCATA(x7y)6AZ7 (1)
AEA

where z is the longitudinal coordinate along which the flow is aligned and x, y are
transverse coordinates. The usual subsequent steps [7] are then to search for the
“eigenvalues/eigenfunctions” \/Ty and finally compute the amplitude coefficients
C).

This strategy, although well established, raises several important questions. To
our knowledge, there is no complete theoretical foundation for decomposition (1).
This lack of theoretical framework, despite commonly used terminology, does not
permit A and T) to be defined via an eigenvalue problem, all the more so a sym-
metrical one. On the one hand, this is a fundamental problem for the definition of
A’s topology and location; though it is always assumed to be real and discrete. On
the other hand, this is a practical issue for the numerical computation of 7T and
coefficients ¢, for which no direct orthogonal properties are available from a simple,
scalar-product-based, definition.

For a clear understanding of these points, one needs to look back to the origins.
Graetz and Nusselt |9, 17| studied a simplified version of the problem: a fluid flowing
in a single duct at high Peclet number Pe (which is the ratio of convection to diffusion
time scales), when longitudinal diffusion is negligible compared to radial diffusion.
The duct is assumed to be either a circular cylinder or made of two parallel infinite
plates. Such a symmetric configuration actually leads to simplified one-dimensional
problems. In the case of a cylindrical duct, with the radial coordinate denoted by
r, one comes back to the Graetz problem

187, (ro,T) = Pev(r)d,T,
”

with a Poiseuille parabolic velocity profile v(r). In this simplified framework, search-
ing for a separate variable solution T'(r, z) = f(r)g(2), firstly leads after a straight-
forward calculation to g(z) = e*"®* and secondly leads to the eigenvalue problem
defining f(r) now denoted T\(r) := f(r):

1
T(r,z) = Tx(r)e*™, ;ar (ro,Ty) = Ty, (2)

which allows the definition of A\/T) as eigenvalues/eigenfunctions. Problem (2) is,
moreover, symmetric negative, self adjoint with compact resolvent, justifying decom-
position (1) where A appears as a discrete subset of R™. Moreover, the coefficients c)
can be easily computed using scalar products thanks to the symmetry of the system

ey = /TO(T)T,\(T)TdT,

where Tj is the inlet condition at z = 0.
These results have historically justified (1) as an interesting heuristic. However,
as soon as the Graetz-Nusselt framework is perturbed, none of the previous steps
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can be performed in a simple way. Indeed, many studies have explored possible
extensions to that framework. Among these extensions, two are of particular im-
portance: the extended Graetz problem where the longitudinal diffusion term is
no longer neglected, and the conjugated Graetz problem in which coupling with a
solid wall where diffusion occurs is considered. We list bellow the difficulties met by
previous contributors when considering these extensions.

Looking for a separate variable solution T'(r, z) = f(r)g(z) no longer provides in
a straightforward way a definition of the type g(z) = ¢**. However assuming such
a usual decomposition T'(r,z) = Ty(r)e*?, one do not get anymore an eigenvalue
problem. Precisely, in the case of the conjugated Graetz problem, the new problem
to be solved for T reads:

+ coupling condition on the fluid/solid interface,

%&, (ro,T\) = APevT) fluid part
20, (ro,T\) = —N2T) solid part

where the quadratic term A? is accounting for the axial diffusion along z. In such
a form, one can see that this problem is not an eigenvalue problem on the whole
fluid-+solid domain.

Adding axial diffusion now permits information back-flow in the z < 0 direction,
not only along the flow with z > 0. Therefore both positive and negative “eigen-
values” X are physically expected: the previous symmetric-negative structure of the
Graetz problem is no longer relevant here. However, until Papoutsakis work [18§|
detailed below, no attention had been paid to this important point. Early papers
on the extended/conjugated Graetz problem [25, 1, 15, 5, 6, 13, 26, 27, 16| assumed
a negative “spectrum” (that could, at least in principle, be complex) and a complete
set of “eigenfunctions” by plugging a Graetz-problem-like series solution into the
diffusion convection equation.

Still in these early works, as pointed out by Michelsen et al. [16], the difficulties of
determining both the non-orthogonal “eigenfunctions” and the expansion coefficients
cy appear critical. From a computational point of view the strategy used by Hsu
et al. |13, 26, 27| using the Gram-Schmidt re-orthogonalization procedure has a
high cost, especially when approaching the entrance region where a large number of
“eigenvalues” is necessary for a correct representation of the solution.

The domain definition and inlet condition also raise new questions and diffi-
culties. In early papers, the flow domain is set as the positive real axis and the
assumption of uniform fluid temperature at the inlet has been widely used. As
pointed out in [18, 28|, e.g., when axial diffusion is permitted, the uniform inlet
condition is invalid since the temperature would be altered by upstream conduction
before reaching the inlet location.

The most important progress in overcoming these difficulties has been made by
Papoutsakis and Ramakrishna in a series of innovative papers [19, 20, 18]. [1§]
proposes a new formulation of the extended Graetz problem, adding a second un-
known temperature flux, leading to a symmetric eigenvalue problem. This approach
thus answers the problem regarding the spectrum location (real eigenvalues only)
and provides a nice formalism for the amplitude coefficient ¢, computation. This
approach has been successfully used in a series of recent papers by Weigand et al.
[29, 32, 31, 30| and Chi-Dong Ho et al. for various heat exchanger configurations,
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among which we non-comprehensively quote [11, 12].
In our opinion, three important issues are still pending:

1- Papoutsakis et al. formulation only covers symmetrical configurations such as
circular ducts or rectangular channels,

2- The extension to the conjugated Graetz problem proposed in [19, 20| (adding
solid parts with diffusion) remains heavy and complicated,

3- From a theoretical point of view, only the symmetry of the problem has been
proved: neither its self-adjointness nor the resolvent compactness have been
proved. In particular the completeness of the eigenvalue set T has not been
shown yet, weakening the legitimacy of the proposed decomposition (1).

The aim of this paper is to address these issues in a very general tube configura-
tion (we assume no symmetry of the tube section) for any general unidirectional ve-
locity profile (for example allowing non-Newtonian velocity profiles). A major result
we wish to achieve here is to derive a formulation of the initial three-dimensional
problem into a two-dimensional one, whose numerical discretization is obviously
much easier. The physical and geometrical frameworks are described in section 2.
Section 3 develops a theoretical investigation of Equation (1) decomposition for the
temperature solution. Subsection 3.1 introduces a reformulation of the problem
which allows the search for separate variable solutions and leads to an eigenvalue
problem. In subsection 3.2 the functional properties of the eigenvalue problem op-
erator are established. It is proved to be symmetric and moreover self adjoint with
a compact resolvent on a basic Hilbert space. At the end of this theoretical section,
these results are used in 3.3 to display a full decomposition of a temperature field
for which far field conditions are substituted for an inappropriate inlet condition at
z = 0. This decomposition appears efficient from a computational point of view
since it only exhibits the eigenvalues/eigenvectors of the problem as well as eas-
ily computable coefficients using simple scalar products. In section 4, it is shown
that the eigenvalue problem is naturally equivalent to a mixed variational problem,
thus providing a simple computational framework to solve the eigenvalue problem
in terms of mixed finite element methods. The remaining part of this section is
devoted to the analysis of the numerical convergence of the method. We restrict
ourselves to symmetric configurations where analytical solutions are available allow-
ing an a priori error estimate of the solution. In this last section we notably study
the previously discussed extended Graetz and conjugated Graetz problems.

2 Physical statement

2.1 Geometry, general assumptions and notations

The domain considered here is an infinite cylinder Z = €2 x R having a cross section
Q) C R? (assumptions on Q are stated below). The coordinate system relative to
will be denoted by (z,y) and the axial coordinate by z € R.

The domain cross-section €2 is assumed bounded and its boundary 0f) is taken
to be smooth (C* regularity). Its outward normal is denoted by n. € is divided into
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Figure 1: Domain cross-section €2 (left) and whole domain Z = 2 x R (right)

a collection of open sub-domains €; (1 < i < N) with smooth boundaries, disjoint
(Q; N =0 if i # j) and such that Q = U;Q;. The interface between €); and €,
(if non-empty) is denoted by I';; = QN Q_j, and its unit normal, outward from €;
towards €2;, will be denoted by n;;. These assumptions ensure that the semi-norm
Jo |Vul?dz is a norm on Hj(Q) equivalent to the H; norm (Poincaré inequality)
and also that H}(Q) and H'(€2;) have compact embedding into L*(Q2) and L*(©;)
respectively (see e..g [8, 3]).

The flow in the fluid part is assumed to be established and laminar, so that
the velocity v = v(z,y)e, is along the z direction and is a function of (z,y) only.
The velocity profile v is only assumed bounded: v € L®(2), though it is physically
continuous in all applications. Solid sub-domains €2; are taken into account by setting
v, = 0. v >0 (resp. v < 0) on €; naturally means that €; is a fluid sub-domain
where the flow is in the z > 0 (resp. z < 0) direction.

The conductivity £ is isotropic but heterogeneous. Precisely, £ is a bounded,
positive and piecewise constant function constant on every €2;:

O<a<k(r)<pf<+4o0 ae in Q , ki :=kgo €R. (3)

T; = T, indicates the restriction of the function 7" to the sub-domain €2;.
Conventionally here, the differential operators div, V are considered on R? only:
divp = Oyp1 + 9ype and V f = (0, f,0,f), for a vector field p and a scalar function
f respectively.

2.2 Energy equation
On the infinite cylinder Z = 2 x R. The dimensionless energy equation is
div(kVT) + k0*T = Pe v0,T , (4)

where Pe is the dimensionless Péclet number. On the cylinder boundary 0Z, con-
stant temperatures are imposed, with a step change at the entry z = 0:

T‘\aZ:lifZ<0 (5)
Tioy =0if 2> 0

Relevant limit conditions as z — 400 therefore are:

T(,z) — 1, T(,z) — 0. (6)

Z——00 Z—+00
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Coupling conditions at the sub-domain interfaces also are required, physically stand-
ing for the continuity of the temperature (concentration) and of the normal heat
(mass) flux, they read:

T, =T, and Kk, VT, -n;; =k;VT;-n;; on I, (7)

whenever the interface I';; is non-empty, the dot product naturally standing for the
scalar product in R2.

3 Mathematical analysis

3.1 Problem reformulation

Equation (4) is reformulated into a system of two first order differential equations:

0.T =Pev k' T — k 'div(p) (8)
8.p = kVT | (9)

where T still denotes the dimensionless temperature (or concentration), the addi-
tional unknown p denotes a vector valued function on 2.

Introducing the following unbounded operator A : D(A) C ‘H — H on an Hilbert
space H and with domain D(A) (whose definitions follow), system (8) takes the form
of an ODE on the infinite dimensional space H with unknown @(z) € H:

d T(z) Pe vk~! —k~ldiv(-)
—-0(2) = AD(z) , qs(z)z' : Az( ey 0 ) . (10)

The space H is defined as the Hilbert spaces product H = L*(Q2) x (L*(Q))?,
where (L?(9))? is the space of square integrable vector valued functions on Q. H is
equipped with the following scalar product,

T T:
(\Ifl,wz)Hz(’ 1,’ ?

) :/Tngkdx + /pl-pzklda:. (11)
P1 P2 /4 J J

Note that this scalar product on H is equivalent to the canonical one (taking k =
1) by using assumption (3). Tt has been modified to ensure the symmetry of the
operator A.

Relative to a homogeneous Dirichlet boundary condition, the domain D(A) is given
as D(A) := H} () x H(div, ), where H(div,Q) = {p € (L*(Q))?, div(p) € L*(Q)}
in the distribution sense. We shall refer to |4] for the basic properties of the space.
Such a definition of D(A) ensures that A: D(A) C H — H in (10) is well defined.

Proposition 3.1. The operator A is dense and symmetric:

N \111, \I’Q € D(A) : (A\Ill, \IIQ)H == (\I’l,A\Dg)'H . (12)
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Proof. The density of A directly follows from its definition. Denoting ¥, = ’ gj ,
J
j = 1,2, using the Green formula and the fact that 7; € Hj(f2) yields:
(A\Ifl, \IIZ)H = /P@ UTlTQdIB — /le (pl) TQdIB -+ /VTl . pgd.’lﬁ
Q Q Q
= /Pe UTQTldI + /p1 VTQdZE — /Tlle (pg) dx
Q Q Q
- (‘I’l, A\IIQ)H .
O

3.2 Spectral analysis of A

In this section, the main theoretical result of our study is proved. We show that A
is self adjoint and that (0 excepted), its spectrum is made of eigenvalues of finite
order only, the corresponding eigenfunctions forming a Hilbert (complete) base of
(Ker A)+ = Ran A. We observe that denoting by ¥,, = (T},, p,,) the components of
the n'" eigen-function (A¥, = \, ¥, ), and introducing T'(z,y, 2) = e**T,,(z,y), we
have:

div(kVT,) + A\2kT,, = \,Pe vT, and div(kVT) + k0*T = Pe v0,T ,

and T is a solution of the original energy equation (4). Incidentally, we also recover
the so-called eigen-values/functions of the previously quoted literature [1, 2, 6, 5, 13,
26, 27, 15, 25]. This theorem therefore brings full legitimacy to the decompositions
routinely found in the literature.

Theorem 3.2. A: D(A) C H — H is self-adjoint and has a compact resolvent.
We introduce the Kernel of A, Ker A = {(0,p), p € Ho(div, )}, where Hy(div, Q) =
{p € H(div,Q), divp =0}. Then there exists a Hilbert base (V) of Ran A =
(Ker A)* composed of eigen-functions: ¥, € D(A), AV, =\, U, ||V, |lx = 1. The
coordinates of V,, are denoted V,, = (T,,, pn) = (10, kVT, /\,). We therefore have

D(A) = {\D EH, D AT, < +oo} AT = AT, )T,

for all W € D(A).

. . . + — .
Moreover this base can be split into two parts (\Ifl )Z.GN and (\IIZ )Z.GN such that:

0>A>--->2A > = —00, 0<A <---< A <---— 400, (13)

The corresponding eigen-functions are denoted V. Eigen-values(functions), accord-
ing to this decomposition, are respectively called upstream (+) and downstream (-)

In the proof, we shall use the following regularity result (see[14| p. 192-196):
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Lemma 3.3. For any f € L*(Q). there exists a unique T € H(Q) satisfying
div(kNT) = [ in the distribution sense. That solution also satisfies on each sub-
domain Q;: T; € H*(QY;), div(kVT) = f in L*(;) (strong sense) and ||T;|| p2q,) <
Cllfll2q (C independent on f). Moreover T satisfies on every interface I'; ; the
coupling conditions (7) in the trace sense.

Proof. A is dense and symmetric. Since vk™! € L*(Q), A is also a continuous

perturbation of the symmetric operator Ay : D(A) C 'H — H defined as Ay =
—k=1iv(-

< kOV K (;hv() ) Using the Kato-Relish theorem (see e.g. [23] p. 163), the

self-adjointness of Ay implies the self-adjointness of A. To prove the self-adjointness

of Ay, one shows that Ay + ¢ has range H (see e.g. [22]).

Let us fix (f,q) € H. We search for T' € H} () such that:

Ve Hy(Q) : /Tgokdx+/kVT~Vgpda::/Vgp-qu—/z’gpfkdx.
Q Q Q Q

On the right one clearly has a continuous linear form on H}(£2), whereas the left side
exhibits a symmetric, positive, continuous and coercive bilinear product on H}(€2).
As a result, the Lax-Milgram theorem applies (see e.g. [8]) ensuring the existence
and uniqueness of such a T. Let us define ip = q — kVT € (L?(Q))?. From the
above equality we obtain:

Vel : /ip~V<pdx:/k:(if+T)<pdx.
Q Q

This equality shows that, in the distribution sense, div(p) € L*() and we have
p € H(div,Q). Thus ¥ = (T,p) € D(A) and one has (4y+4)¥ = (f,q), so proving
the self adjointness of Ay and A.
To prove that A has a compact resolvent, we introduce the pseudo inverse of
A, A7': Ran A — (Ker A)* N D(A) = Ran AN D(A) and we prove that A™! is
compact.
For this let us consider a bounded sequence (f,,q,) € Ran A. There is a unique
(T, pn) € Ran AND(A) satisfying A(T,,, pn) = (fn,qn). (T),) then satisfies kVT,, =
Q. and therefore forms a bounded sequence in HJ(2). The compact embedding
H}(Q) — L*(Q) thus implies that (7;,) is relatively compact in L?((2).
We now introduce ¢, € Hj(€) the unique variational solution to div(kVe,) =
Pe vT,, — kf,. Let us prove that p, = kV,. Since A(T,,kVe,) = (fu,qn), we
have to check that (T}, kV,) € (Ker A)L:
: (’Tn 'o)_/ _/. B
V p € Hy(div, Q) : , = [ Vo, pde=— [ ¢,div(p)dz =0
EV i, P/, J J

Lemma 3.3 then applies and ensures that ¢, o, € H*(€;) and that, (Pe vT,, — kf,),
being bounded in L*(Q), (¢njo,) is bounded in H*(€2;). Therefore both components
of (Vno,) are bounded in H'(€);), thus implying that both components of (pyq,)
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also are bounded in H'(€2;). The compact embedding H'(€Q;) C L?*(£2;) then ensures
that (p,) is relatively compact in L*(9).

Consequently, A~! is compact and self adjoint on the separable space Ran A.
Therefore there exists a Hilbert base (V,,), . for Ran A made of eigen-functions:
U, € D(A), A, = \,V,,.

A~ being compact, 0 is the only limit point for sub-sequences of (1/),) and thus
{—00,+00} are the only two possible limit points for sub-sequences of (\,). Tt is
easily seen that, whatever the value of @ € R, A + « is bounded neither below
nor above. The spectrum is therefore also neither bounded below nor above. Thus

{—00, +00} are both limit points for the spectrum, implying decomposition (13).
U

3.3 Solution derivation

The results of the previous section are used here to derive the solution &(z) =
(T'(z),p(z)) to (8)-(10) such that T satisfies the boundary, limit and interface con-
ditions in (5)-(6) and (7). We point out that the boundary condition (5) implies
that, for z < 0, one does not have ®(z) € D(A). For this to be taken into acount,
we shall consider the (maximal) extension A to operator A:

e D(A) = H'(Q) x H(div,Q),
e A: D(A) — H has the same algebraic expression as A in (10).

Unlike A, A is not symmetric:

(Z‘Ill, \112)7-[ = (\Ifl,z‘llg)')-( + /T1p2 -nds — /Tgpl -nds s (14)
o0 o

for all pairs of functions in D(A), with the usual notations.

Definition 3.4. We shall define a solution to (8)-(10) with conditions (5),(6) and
(7) as a function @ : z € R @(2) = (T(2), p(z)) € H such that:

e & cC(R,H) (continuity on R),

o & cC'(R—{0},H) (continuous Frechet differentiability on R — {0}),
— d —
o VzeR—{0}, &(z) € D(A) and d—@(z) = Ad(2),
2
and such that T satisfies the limit condition (6) as z — £oo in H’s norm and the
boundary, interface conditions (5)-(7) for all z # 0 in the trace sense.

That formalism being stated:

Proposition 3.5. There exists a unique solution ® to (8)-(10) with conditions
(5),(6) and (7). Defining the constants (),

1 1
Qy, = )\—% kVT, -nds = n /pn -nds, (15)
89 90
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this solution is given as follows:

— Z a, V¥, + Z a;e)‘;'z\l/; z2<0

D(z) = -
=) — Z ater gt z2>0

(16)

The expression can moreover be simplifyed and the temperature field is given by:
1+ZO¢;6)‘;ZT; 2 <0

T(z) = "
) —Za:{esz; z22>0

(17)

Since A is not sectoral (is not the infinitesimal generator of an analytic semi-
group, see e.g. [10]), some precautions have to be taken in demonstrating the propo-
sition. A detailed proof follows.

Proof. Using the Hilbert base (¥,) of (Ker A)%, the solution & is sought in the
form @(z) = Y (P(2), V,,)1¥,. All coefficients must therefore satisfy the ODE

d

d—(@(z), U, )y = (AD(2),V,)y. Then using (14), the boundary condition (5) and
z

the equality kVT,, = \,p,, we find that

d
d—(@, U,)(2) = (2, AV,)(2) + w(2) /pn ‘nds = A\ (D, V,)(2) + Apaw(2)
z
19)
where w(z) = 0 when z > 0 and w(z) = 1 otherwise. Looking for a bounded and
continuous solution to this ODE on R gives us a unique solution, according to \,’s

sign (AF < 0and A\, > 0):

(@711]n)(z):{ o, (e/\;z_l) z <0 ’ (@7\11;{)(2/):{ —at 2 <0

+
0 5> 0 —atern® z>0

This gives us decomposition (16) and the uniqueness of the solution. Let us now
prove that @ defined by (16) is a solution with the sense in 3.4.

Consider the (unique) function ¢, € H}(Q) such that div(kVeys) = Pe v. We
1
LAV
0 and &, € (Ker A)*. Let us prove that &, = — >, ¥, (thus explaining how to

go from (16) to (17)). Since \,p, = kVT,:

introduce @, = € H, a function that clearly satisfies &, € D(A), Ad,, =

1 1
(P Vi)gy = /Tnkdx—i— /\—/ngooo kYT, k™ Yde = /Tnkda:— /\—/Pe vT,dx,
Q " Q "
1
and using the equality \,kT,, = Pe vT,, — /\—div(kVTn), we obtain

1

V]
)\TL
Q

(Poo, W)y = kVT, -nds = —a, .
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Thus — > a,V, = &, € H, and it follows that = = —>" aFV, € H and &, =
D + DL We use the fact that @ € D(A) if and only if >~ |\,(D, U,)5|* < +00.
Since A} — —oo (resp. A\, — +00), it is straightforward to check that the two

functions,
e - +
f(z) = Zan U et g(z) = Za:\ﬂ:e’\"z,
n n

satisfy:
o feC((—00,0],H), g € C(]0,4+00),H) (continuity),

o feC'((—00,0),H), g € C'((0,+00),H) (continuous Frechet differentiabil-
ity),

o for z < 0 (resp. z>0), f(z) € D(A) (resp. g(2) € D(A)) and diif(z) = Af(2)
(resp. -9(2) = Ag(2).

The function @ in (16) can be rewritten as ¢(z) = @ + f(2), 2 < 0 and ?(z) =
—g(z), z > 0 (which functions actually match at z = 0 using @, = & + &L). It

is therefore continuous on R, Frechet differentiable on R — {0}, #(z) € D(A) and

d — —
d—@(z) = AP(z) for z € R — {0} since AD, = 0. It is also clear that T'(z) satisfies
z

the limit condition (6) and the boundary condition (5) for z # 0.

It remains to be proved that it also satisfies the interface conditions (7) for z # 0. For
this, let us consider the previously introduced function f whose components will be
denoted as f(z) = (t(2),p(z)). Since A, — o0, it is easy to check that, for z < 0,
Af(z) € D(A). Therefore kVt(z) € H(div,Q) which implies that div(kVt)(z) €
L*(Q2) for z < 0. Applying 3.3, it follows that ¢(z) satisfies the interface conditions
(7). The same result applies to g(z) for z > 0 and, as a result, to 7'(z) for z # 0. O

4 Mixed variational formulation and approximation

4.1 Mixed variational formulation

Let us consider the following variational problem: find (A\,7,p) € R x L*(Q) x
H(div, Q) such that, V(u,q) € L*(Q) x H(div,Q),

/Pe vTudr — /udiv(p)da: = /\/Tukdx (18)

Q

Q
Tdiv(q)dx = /\/p-qk_lda:. (19)
Q

D\{O

It is clear that whenever W, is an eigen-function as given in theorem 3.2, then
(A, Ty, Pn) satisfies the variational problem above. Conversely if (A, T, p) satisfies
(18)-(19) for all (u,q) € L*(2) x H(div,), then the second line implies that T €
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H(Q) (using the dense embedding of H(div, ) into H/2(09Q)', see [4]). Therefore
U = (T,p) € D(A) and satisfies AV = A\U. Thus ¥ = ¥, for some n and solving
(18)-(19) is equivalent to finding all the eigen-values/functions of operator A.

4.2 Axi-symmetrical implementation

In order to test this variational formulation, we have derived a one-dimensional
version of the problem which is interesting in the case of an axi-symmetrical config-
urations. The motivation is to test the convergence of the problem numerically on
known solutions. The simplest case is convection-diffusion inside a single cylinder for
which, in the limit of large Péclet number, we should recover the Graetz spectrum
[9] for the operator A. In this section we consider the somewhat more general case
of two concentric cylinders, for which Q = Q; U, with ; an inner disk filled with
liquid and €25 an outer solid corona. When the size of the second domain to set to
zero, the single cylinder problem is found again as a particular case.

A liquid flows inside €2; with a unidirectional, longitudinal, dimensionless velocity
v(r)e, which varies from a maximal value at the cylinder center » = 0 to zero at the
boundary with the second cylinder placed at r = ry. We choose the dimensionless
velocity to follow the usual Poiseuille flow profile v(r) = 2Pe(r2 — r?), although
any continuous profile being zero at the boundary could be chosen. The velocity
normalization is set so that normalized surface averaged velocity flux is the Péclet

number : 1
—— [ v(r)d§); = Pe
1€ | /
951

Where [|Q|| = 7r? is the inner disk area associated with the first inner cylinder
section. In corona {25 the velocity is taken to be zero; no convection occurs in this
second domain. Continuity of flux and temperature (7) are applied at the domain
frontier 0€2y N 0y with uniform conductivity & = 1. The radial dimensionless
distance is chosen so that » = 1 corresponds to the outer boundary of the second
cylinder 99y — 95 NIy where a homogeneous Dirichlet boundary condition (5) is
chosen.

Problem (18)-(19) is approximated on a regular one-dimensional mesh discretizing
coordinate r € [0,1] with index i on grid r = i/n with i € {1,n}. We adopt
here the classical mixed finite element approximation of order 0 of Raviart and
Thomas Py x RTj (see e.g. |4]) to the present axi-symmetrical 1D formulation. Base
elements for the scalar 7" are therefore P piecewise constant functions over the grid
elements, whereas base elements for the 'vector’ p are the P; continuous piecewise
affine functions over the grid elements: thus re-establishing the flux continuity at
the grid points.

The generalized linear eigenvalue problem resulting from this discretization choice

is as follows: .
a c O
A\Ifn—(bT 0>\Iln—)\n(0 d>\Iln, (20)

Where ¥, is a 2n component vector whose first n components are the discrete
temperature field T, = (7T});c(1,,) approximating T and the following n + 1 to 2n
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components describe p,, approximating the gradient field py = 9,7,/ which is one-
dimensional in this axi-symetrical context. The n x n matrices a, b, ¢ and d can be
computed analytically and admit the following coefficients :

a; = —5“27,%(127; —1)(2i% — 20 — 2r2n? + 1)
bij = ~n ( 6ijl + 52:_13'(1 — Z) ) (21)
o = 5,21
1J 1 ) ) 2n? ]
di]’ = 12 ( 5@']'82 + 51‘—13’(27/ — 1) —+ 5i+1j(27f + 1) ) ,

where (i,7) € {1,n}? and ¢ is the Kronecker symbol.

4.3 Numerical results and convergence

In the generalized eigenvalue problem (20), one notes that the matrice A is symmetric
and that the right hand side mass-matrix Diag(c,d) is symmetric positive definite.
Therefore, problem (20) can be numerically solved using the variant of the Lanczos
algorithm for generalized eigenvalue problems (see e.g. [24|). The resulting first
eigenvectors and eigenvalues were computed using the Fortran library ARPACK
and sparce matrix storage. The results presented here correspond to two particular
configurations:

e a single cylinder with a single radial domain €2; for which ry = 1 and,
e two concentric cylinders whose radius ratio is two, so that ro = 1/2.

We study the numerical convergence of the first eigenvalues and first eigenvectors
when the Péclet number is varied from low to high values. We systematically com-
pared the discrete numerical results with reference solutions obtained with another
iterative method explained in the appendix A.

4.3.1 Single cylinder : rjp =1

In the case of a single cylinder, for large values of the Péclet number, the upstream
part of A’s spectrum (positive eigenvalues A associated with the z < 0 region)
is difficult to compute numerically for it diverges with Pe [21]. In contrast, the
downstream part of the spectrum (negative eigenvalues A" associated with the z > 0
region) converges to the Graetz spectrum, and decays to zero as 1/Pe when the Péclet
number increases.

Let us first discuss the eigenvalue convergence. Figure 2 illustrates the relative
error £ = /(\, — A\)2/\ associated with the first two downstream eigenvalues A
and \j and for the first upstream one \;. it can be seen in this figure that the
convergence of the numerical estimation is consistent with the chosen classical mixed
finite element approximation space Py x RTj, for which a ~ 1/n behavior is expected.
Furthermore, the strong influence of the Péclet number on convergence rate can also
be observed. For small Péclet number, the spectrum is almost symmetrical, so that
one expects the convergence for \{ and A] to be very close, as observed on figure
2a. In contrast, as the Péclet number increases, there is a distinct shift in the
convergence curve. The closer the eigenvalue is to zero, the easier it is to compute.
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Figure 2: (a) Relative numerical error for eigenvalue \f, A\ and \| for Pe = 0.1.
The dotted lines corresponds to a —1 slope associated with a ~ 1/n behavior. (b)
Same convention as (a) for Pe = 10.

Since A; diverges with Pe, it is more difficult to approximate numerically and,
then, the relative error associated with A] in figure 2b is 30% larger than the one
associated with A for Pe = 10. This difference further increases with Péclet number.
We also wish to illustrate the numerical convergence on the eigenfunction. Figure
3 illustrates the eigenvector computation for the temperature and gradient fields
associated with A\, \J and A\] eigenvalues. In the case of small Péclet numbers,
the asymptotic symmetry of the eigenvalue spectrum also implies a symmetry of
the eigenvectors,dswhich is clearly visible when comparing the 1+ and 1— fields in
Figure 3. The associated leading order eigenfunction shows a single maximum at
r = 0, the cylinder center, and obviously decreases to zero at r = 1 for the Dirichlet
boundary condition to be fulfilled. When the associated eigenvalue order increases,
the corresponding eigenfunction has as many oscillations as the eigenvalue order.
For example for \J, two critical points can be seen, a minimum and a maximum,
for the eigenfunction in Figure 3. The superposition between the discrete numerical
computation and the “exact” solution is also illustrated in Figure 3. One can see
that the comparison for the gradient depicted in Figure 3(b) is rough for n = 20, but
no difference is visible between the two for n = 320 in Figure 3(d). The convergence
to the exact solution is also illustrated in figure 4 for Pe = 10. In this case the two
eigenfunctions associated with A and \[ differ markedly. The first one, associated
with A], still reaches a maximum at the tube center 7 = 0, whereas the maximum
position of the second one, associated with A\|, is shifted close to the tube boundary
at r = 1. Furthermore, this second eigenfunction decays to zero at the tube center.
The reason for this distinct behavior is now the opposite role of convection for these
two temperature profiles. For the downstream eigenfunction associated with A{,
longitudinal convection prevails over diffusion. Since this convection is maximum at
the tube center, it dictates the shape of the corresponding temperature profile. For
the upstream eigenfunction associated with A, retro-diffusion is the only mechanism
for this temperature to display a back-flow exponential decay. Hence, since the
convection is maximal at the tube center, retro-diffusion is maximum at the tube
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Figure 3: (a) Temperature field T'(i/n)i € {1,n} for discretization n = 20 and
Pe = 0.1 for the first two downstream eigenvectors 14 and 2+ and the first upstream
eigenvector 1—. Normalization 7'(0) = 1 has been imposed. (b) Temperature gradi-
ent p = 0,7(i/n)/ for discretization n = 20 and Pe = 0.1. (¢) Same convention as
(a) for discretization n = 320. (d) Same convention as (b) for discretization n = 320.

boundary, where the velocity vanishes. A boundary layer develops near r = 1, the
thickness of which decays to zero as the Péclet number diverges. This boundary
layer is responsible for the numerical difficulties arising in the computation of the
upstream part of the spectrum at large Péclet numbers. The slower convergence of
the eigenvectors 1— is clearly visible in figure 4a and 4b for a rough discretization
of n = 20 points. Although in this case, the first two downstream eigenfunctions,
14 and 2+ are well approximated by the corresponding eigenvectors, this is not the
case for the upstream one 1—. Nevertheless, for a sufficient discretization of n = 320
points, the convergence can be satisfactory as illustrated on figure 4c,d.

We finally wish to illustrate the convergence on the eigenvector by computing
the relative error E = /(¥,, — ¥, ¥,, — W)y, /(¥, W)y built with the H norm (11)
for a discrete eigenvector W,, to converge to the theoretical one W. Figure 5 shows
the convergence of the relative error for increasing point number n. As expected,

1/n behavior is observed for both Pe = 0.1 and Pe = 10, but the error is larger in
the latter case.
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Two concentric cylinders : ry = 1/2
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Figure 5: (a) Relative error for eigenvectors associated with eigenvalues A\, A and
A7 for Pe = 0.1. The dotted lines corresponds to a —1 slope associated with a

In the case where two domains are present, it is interesting to test the numerical
implementation of the flux and temperature continuity (7) between the two domains

in this formulation. Figure 6 shows some eigenfunction profiles at the same Péclet
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numbers as those previously illustrated for the single cylinder case, Pe = 0.1 and
Pe = 10. It can be observed on this figure that the temperature continuity at the

1psc T 1 T 1
X,

1
y - - exa * 5 - - exa
x x n=20 % X x n=320|
09 . \ 09 x — 0.9 . 0.9-
x X X
08 X 1 4 08 * 08 08
\ L *
\ \ \
0.7 x 4 ! 0.7 A 4 0.7 4 0.7
\ 05k X 0.5
0.6 L — L 0.6 P 0.6 0.6
\ 1 \
0.5 X 4 \ 0.5 \ 1 0.5 4 0.5+
Y X x
0.4- Y L 0.4- % 0.4- 0.4-
&
\ 0 \ \ ot
0.3+ oA \ 0.3+ VoA 0.3+ q 0.3+
% ) X
od . | Aooal ' 02 0.2
. . T / . « . .
\ % \
0.1 v & 0.1 X 0.1 0.1
xx
0 . -0. : 0 : 0 : -0. : 0 :
0 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1
1+ 2+ 1- 1+ 2+ 1-
(a) (b
1px . 1 . 7 . 1 . 1
x - - exa \ x — - exa
N x n=20 X P x n=320
og X 4 \ X 0.9- 4
X | 6F v
[OX: S ! o 0.8
\ \
\ \ | 1 X |
0.7 % 5 4 \ 0.7 —
' os ! — ! 050
X X | !
0.6 \ 4 ! | X 0.6
A ! 4r h '
| 1
0.5+ % q ! 0.5+
. L & }
X 1 3+ 1 t 4
0.4- \ 1 | i 1 0.4-
1 |
\>§ o X 1 /)< ! o
0.3 . ‘ IS x 0.3 4
% ' * * !
0.2 v \ & | 0.2t
% X P *
\><\ \ J 1% \
0.1- % % 4 0.1
Xxy 0({(
0 . -0. X 0 : 0 . -0. 0 :
0 05 1 0 05 1 0 05 1 0 05 1 0 0.5 1 0 05 1
( + 2+ 1- + 2+ 1-
C

Figure 6: (a) Temperature field T'(i/n)i € {1,n} for discretization n = 20 and
Pe = 0.1 for the first two positive eigenvectors 1+ and 2+ and the first negative
eigenvector 1—. Normalization T'(0) = 1 has been imposed. (b) Same convection as

(a) for for discretization n = 320. (c) Same convention as (a) Pe = 10. (d) Same
convention as (b) for discretization n = 320.

domain border r = ry = 1/2 is excellent even for a modest discretization n = 20. The
same observation can be made on the gradient field. The convergence to the exact
solution which can be visually checked on figure 6¢ is better than the one previously
obtained with the same parameter in figure 4a. This is due to the fact that there
is no boundary layer in the latter case when two domains are present. The retro-
diffusion of the upstream eigenvector 1— is possible in the second annular domain
()9, so that it is not confined in a small region near the boundary. The resulting
temperature gradients are much lower and do not diverge with the Péclet number.
Hence, the maximum temperature observed for the 1— eigenvector of figures 6¢ and
6d is indeed localized inside the second domain at a radial coordinate larger than
1/2. Obviously, the temperature values associated with this maximum are much
lower than in the case of the single cylinder, due to the smoothing effect associated
with permitting retro-diffusion in the second domain €2,.

The convergence rate, which can be computed either for the eigenvalues or the
eigenvectors, follows the same scaling as those already found for the single cylinder
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case. The convergence rate is only a little better (not shown).

5 Conclusion

This paper has presented a new approach for complex three-dimensional configura-
tions of convection-diffusion in unidirectional flows. We justify a separate variable
solution approach by defining the eigenvalue/eigenfunction decomposition of an ap-
propriate mixed operator. The theoretical analysis shows that the properties of this
operator allow a non-sectorial decomposition of the solution in longitudinally expo-
nentially decaying solutions. This approach permits full three-dimensional problem
to be numerically restricted to two-dimensions. Furthermore, a naturally efficient
numerical discretization has been proposed using finite-elements. The relevance and
efficiency of such a discretization has been analyzed in simple configurations.
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A Reference solutions in axi-symmetrical problems

In this appendix, we give some details about the analytical method used in 4 for the
analysis of the numerical results. The method is based on a property of the eigen-
functions called A—analycity: in the axi-symmetrical framework, any eigenfunction
T can be the expanded in the form

Ty(r) = Y talr) \". (22)

neN

In this description the closure functions {t,},en are independent of the eigenvalue
A considered and also of the considered boundary condition at » = 1. They can be
computed using a simple iterative process for the computation of the spectrum and
eigenfunctions with a Maple code.

The convergence of the A\-analycity method has been established for general axi-
symmetrical configurations. The proof being the topic of a forecoming paper, and
for the sake of simplicity, we focus our attention here on the treatment of the Graetz
problem. In this case, the proof for the convergence of the A-analycity method is
available in |21]. The eigenvalues T) are defined as follows, on the interval [0, 1]:

T)\(O) =1 s ACT)\ = U(T))\T s
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where A, stands for the cylindrical part of the Laplace operator A. = 1/r0,(rd,).
Eigenfunctions 7 then read (22) where the ¢, (r) fulfill the recursive scheme:

tO(T) =1 and: Actn - U(T)tn—l(T), tn(O) =0 for n>1.

We point out that this scheme actually has a unique solution thanks to the degen-
eracy of the ODE at r = 0.
The spectrum, in the case of a Dirichlet boundary condition, is thus defined as:

Az{)\, Ztn(l)/\":O} .

neN

It can be approximated using truncations, with an exponential rate of convergence.



