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Numeri
al analysis of a new mixed-formulation foreigenvalue 
onve
tion-di�usion problemsC. Pierre F. PlourabouéRe
eived: date / A

epted: dateAbstra
tA mixed formulation is proposed and analyzed mathemati
ally for 
oupled
onve
tion-di�usion in heterogeneous medias. Transfer in solid parts drivenby pure di�usion is 
oupled with 
onve
tion/di�usion transfer in �uid parts.This study is 
arried out for translationnaly invariant geometries (general in-�nite 
ylinders) and unidire
tional �ows. This formulation brings to the forea new 
onve
tion/di�usion operator, the properties of whi
h are mathemati-
ally studied : its symmetry is �rst shown using a suitable s
alar produ
t. Itis proved to be self-adjoint with 
ompa
t resolvent on a simple Hilbert spa
e.Its spe
trum is 
hara
terized as being 
omposed of a double set of eigenval-ues: one 
onverging towards −∞ and the other towards +∞, thus resultingin a non-se
torial operator. The de
omposition of the 
onve
tion-di�usionproblem into a generalized eigenvalue problem permits the redu
tion of theoriginal three-dimensional problem into a two-dimensional one. Despite beingnon se
torial, a 
omplete solution on the in�nite 
ylinder, asso
iated to a step
hange of the wall temperature at the origin, is exhibited with the help ofthe operator's two sets of eigenvalues/eigenfun
tions. On the 
omputationalpoint of view, a mixed variational formulation is naturally asso
iated to theeigenvalue problem. Numeri
al illustrations are provided for axi-symmetri
alsituations, the 
onvergen
e of whi
h is found to be 
onsistent with the numer-i
al dis
retization.Keywords Conve
tion-di�usion · variational formulation · Hilbert spa
e ·mixed formulation1 Introdu
tionConve
tion-di�usion problems are of importan
e in many �elds of appli
ations inthermal, 
hemi
al or biomedi
al engineering s
ien
es. More spe
i�
ally, heat or massdi�usion 
oupled with unidire
tional 
onve
tion is present in many types of equip-ments su
h as heat pipes, heat ex
hangers (shell, tube or plate), 
hromatographs andrea
tors and mass ex
hangers in mi
ro-
hannel arti
ial devi
es, and o

urs in real bi-ologi
al tissues. This framework 
overs both parallel or 
ounter �ow 
on�gurations.A 
lassi
al strategy for des
ribing the temperature �eld T of tube like 
on�gura-tions in the applied literature is generally to assume the following separate-variable1



1 INTRODUCTION 2de
omposition:
T (x, y, z) =

∑

λ∈Λ

cλTλ(x, y)e
λz, (1)where z is the longitudinal 
oordinate along whi
h the �ow is aligned and x, y aretransverse 
oordinates. The usual subsequent steps [7℄ are then to sear
h for the�eigenvalues/eigenfun
tions� λ/Tλ and �nally 
ompute the amplitude 
oe�
ients

cλ. This strategy, although well established, raises several important questions. Toour knowledge, there is no 
omplete theoreti
al foundation for de
omposition (1).This la
k of theoreti
al framework, despite 
ommonly used terminology, does notpermit Λ and Tλ to be de�ned via an eigenvalue problem, all the more so a sym-metri
al one. On the one hand, this is a fundamental problem for the de�nition of
Λ's topology and lo
ation; though it is always assumed to be real and dis
rete. Onthe other hand, this is a pra
ti
al issue for the numeri
al 
omputation of Tλ and
oe�
ients cλ for whi
h no dire
t orthogonal properties are available from a simple,s
alar-produ
t-based, de�nition.For a 
lear understanding of these points, one needs to look ba
k to the origins.Graetz and Nusselt [9, 17℄ studied a simpli�ed version of the problem: a �uid �owingin a single du
t at high Pe
let number Pe (whi
h is the ratio of 
onve
tion to di�usiontime s
ales), when longitudinal di�usion is negligible 
ompared to radial di�usion.The du
t is assumed to be either a 
ir
ular 
ylinder or made of two parallel in�niteplates. Su
h a symmetri
 
on�guration a
tually leads to simpli�ed one-dimensionalproblems. In the 
ase of a 
ylindri
al du
t, with the radial 
oordinate denoted by
r, one 
omes ba
k to the Graetz problem

1

r
∂r (r∂rT ) = Pev(r)∂zT,with a Poiseuille paraboli
 velo
ity pro�le v(r). In this simpli�ed framework, sear
h-ing for a separate variable solution T (r, z) = f(r)g(z), �rstly leads after a straight-forward 
al
ulation to g(z) = eλPez and se
ondly leads to the eigenvalue problemde�ning f(r) now denoted Tλ(r) := f(r):

T (r, z) = Tλ(r)e
λPez, 1

r
∂r (r∂rTλ) = λvTλ, (2)whi
h allows the de�nition of λ/Tλ as eigenvalues/eigenfun
tions. Problem (2) is,moreover, symmetri
 negative, self adjoint with 
ompa
t resolvent, justifying de
om-position (1) where Λ appears as a dis
rete subset of R

−. Moreover, the 
oe�
ients cλ
an be easily 
omputed using s
alar produ
ts thanks to the symmetry of the system
cλ =

∫

T0(r)Tλ(r)rdr,where T0 is the inlet 
ondition at z = 0.These results have histori
ally justi�ed (1) as an interesting heuristi
. However,as soon as the Graetz-Nusselt framework is perturbed, none of the previous steps



1 INTRODUCTION 3
an be performed in a simple way. Indeed, many studies have explored possibleextensions to that framework. Among these extensions, two are of parti
ular im-portan
e: the extended Graetz problem where the longitudinal di�usion term isno longer negle
ted, and the 
onjugated Graetz problem in whi
h 
oupling with asolid wall where di�usion o

urs is 
onsidered. We list bellow the di�
ulties met byprevious 
ontributors when 
onsidering these extensions.Looking for a separate variable solution T (r, z) = f(r)g(z) no longer provides ina straightforward way a de�nition of the type g(z) = eλz. However assuming su
ha usual de
omposition T (r, z) = Tλ(r)e
λz, one do not get anymore an eigenvalueproblem. Pre
isely, in the 
ase of the 
onjugated Graetz problem, the new problemto be solved for Tλ reads:

{

1
r
∂r (r∂rTλ) = λPevTλ �uid part

1
r
∂r (r∂rTλ) = −λ2Tλ solid part + 
oupling 
ondition on the �uid/solid interfa
e,where the quadrati
 term λ2 is a

ounting for the axial di�usion along z. In su
ha form, one 
an see that this problem is not an eigenvalue problem on the whole�uid+solid domain.Adding axial di�usion now permits information ba
k-�ow in the z < 0 dire
tion,not only along the �ow with z > 0. Therefore both positive and negative �eigen-values� λ are physi
ally expe
ted: the previous symmetri
-negative stru
ture of theGraetz problem is no longer relevant here. However, until Papoutsakis work [18℄detailed below, no attention had been paid to this important point. Early paperson the extended/
onjugated Graetz problem [25, 1, 15, 5, 6, 13, 26, 27, 16℄ assumeda negative �spe
trum� (that 
ould, at least in prin
iple, be 
omplex) and a 
ompleteset of �eigenfun
tions� by plugging a Graetz-problem-like series solution into thedi�usion 
onve
tion equation.Still in these early works, as pointed out by Mi
helsen et al. [16℄, the di�
ulties ofdetermining both the non-orthogonal �eigenfun
tions� and the expansion 
oe�
ients

cλ appear 
riti
al. From a 
omputational point of view the strategy used by Hsuet al. [13, 26, 27℄ using the Gram-S
hmidt re-orthogonalization pro
edure has ahigh 
ost, espe
ially when approa
hing the entran
e region where a large number of�eigenvalues� is ne
essary for a 
orre
t representation of the solution.The domain de�nition and inlet 
ondition also raise new questions and di�-
ulties. In early papers, the �ow domain is set as the positive real axis and theassumption of uniform �uid temperature at the inlet has been widely used. Aspointed out in [18, 28℄, e.g., when axial di�usion is permitted, the uniform inlet
ondition is invalid sin
e the temperature would be altered by upstream 
ondu
tionbefore rea
hing the inlet lo
ation.The most important progress in over
oming these di�
ulties has been made byPapoutsakis and Ramakrishna in a series of innovative papers [19, 20, 18℄. [18℄proposes a new formulation of the extended Graetz problem, adding a se
ond un-known temperature �ux, leading to a symmetri
 eigenvalue problem. This approa
hthus answers the problem regarding the spe
trum lo
ation (real eigenvalues only)and provides a ni
e formalism for the amplitude 
oe�
ient cλ 
omputation. Thisapproa
h has been su

essfully used in a series of re
ent papers by Weigand et al.[29, 32, 31, 30℄ and Chi-Dong Ho et al. for various heat ex
hanger 
on�gurations,



2 PHYSICAL STATEMENT 4among whi
h we non-
omprehensively quote [11, 12℄.In our opinion, three important issues are still pending:1- Papoutsakis et al. formulation only 
overs symmetri
al 
on�gurations su
h as
ir
ular du
ts or re
tangular 
hannels,2- The extension to the 
onjugated Graetz problem proposed in [19, 20℄ (addingsolid parts with di�usion) remains heavy and 
ompli
ated,3- From a theoreti
al point of view, only the symmetry of the problem has beenproved: neither its self-adjointness nor the resolvent 
ompa
tness have beenproved. In parti
ular the 
ompleteness of the eigenvalue set Tλ has not beenshown yet, weakening the legitima
y of the proposed de
omposition (1).The aim of this paper is to address these issues in a very general tube 
on�gura-tion (we assume no symmetry of the tube se
tion) for any general unidire
tional ve-lo
ity pro�le (for example allowing non-Newtonian velo
ity pro�les). A major resultwe wish to a
hieve here is to derive a formulation of the initial three-dimensionalproblem into a two-dimensional one, whose numeri
al dis
retization is obviouslymu
h easier. The physi
al and geometri
al frameworks are des
ribed in se
tion 2.Se
tion 3 develops a theoreti
al investigation of Equation (1) de
omposition for thetemperature solution. Subse
tion 3.1 introdu
es a reformulation of the problemwhi
h allows the sear
h for separate variable solutions and leads to an eigenvalueproblem. In subse
tion 3.2 the fun
tional properties of the eigenvalue problem op-erator are established. It is proved to be symmetri
 and moreover self adjoint witha 
ompa
t resolvent on a basi
 Hilbert spa
e. At the end of this theoreti
al se
tion,these results are used in 3.3 to display a full de
omposition of a temperature �eldfor whi
h far �eld 
onditions are substituted for an inappropriate inlet 
ondition at
z = 0. This de
omposition appears e�
ient from a 
omputational point of viewsin
e it only exhibits the eigenvalues/eigenve
tors of the problem as well as eas-ily 
omputable 
oe�
ients using simple s
alar produ
ts. In se
tion 4, it is shownthat the eigenvalue problem is naturally equivalent to a mixed variational problem,thus providing a simple 
omputational framework to solve the eigenvalue problemin terms of mixed �nite element methods. The remaining part of this se
tion isdevoted to the analysis of the numeri
al 
onvergen
e of the method. We restri
tourselves to symmetri
 
on�gurations where analyti
al solutions are available allow-ing an a priori error estimate of the solution. In this last se
tion we notably studythe previously dis
ussed extended Graetz and 
onjugated Graetz problems.2 Physi
al statement2.1 Geometry, general assumptions and notationsThe domain 
onsidered here is an in�nite 
ylinder Z = Ω×R having a 
ross se
tion
Ω ⊂ R

2 (assumptions on Ω are stated below). The 
oordinate system relative to Ωwill be denoted by (x, y) and the axial 
oordinate by z ∈ R.The domain 
ross-se
tion Ω is assumed bounded and its boundary ∂Ω is takento be smooth (C1 regularity). Its outward normal is denoted by n. Ω is divided into
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Figure 1: Domain 
ross-se
tion Ω (left) and whole domain Z = Ω × R (right)a 
olle
tion of open sub-domains Ωi (1 ≤ i ≤ N) with smooth boundaries, disjoint(Ωi ∩ Ωj = ∅ if i 6= j) and su
h that Ω = ∪iΩi. The interfa
e between Ωi and Ωj(if non-empty) is denoted by Γij = Ωi ∩ Ωj , and its unit normal, outward from Ωitowards Ωj , will be denoted by nij . These assumptions ensure that the semi-norm
∫

Ω
|∇u|2dx is a norm on H1

0 (Ω) equivalent to the H1 norm (Poin
aré inequality)and also that H1
0 (Ω) and H1(Ωi) have 
ompa
t embedding into L2(Ω) and L2(Ωi)respe
tively (see e..g [8, 3℄).The �ow in the �uid part is assumed to be established and laminar, so thatthe velo
ity v = v(x, y)ez is along the z dire
tion and is a fun
tion of (x, y) only.The velo
ity pro�le v is only assumed bounded: v ∈ L∞(Ω), though it is physi
ally
ontinuous in all appli
ations. Solid sub-domainsΩi are taken into a

ount by setting

v|Ωi
= 0. v > 0 (resp. v < 0) on Ωi naturally means that Ωi is a �uid sub-domainwhere the �ow is in the z > 0 (resp. z < 0) dire
tion.The 
ondu
tivity k is isotropi
 but heterogeneous. Pre
isely, k is a bounded,positive and pie
ewise 
onstant fun
tion 
onstant on every Ωi:

0 < α ≤ k(x) ≤ β < +∞ a.e. in Ω , ki := k|Ωi
∈ R . (3)

Ti := T|Ωi
indi
ates the restri
tion of the fun
tion T to the sub-domain Ωi.Conventionally here, the di�erential operators div, ∇ are 
onsidered on R

2 only:divp = ∂xp1 + ∂yp2 and ∇f = (∂xf, ∂yf), for a ve
tor �eld p and a s
alar fun
tion
f respe
tively.2.2 Energy equationOn the in�nite 
ylinder Z = Ω × R. The dimensionless energy equation isdiv(k∇T ) + k∂2

zT = Pe v∂zT , (4)where Pe is the dimensionless Pé
let number. On the 
ylinder boundary ∂Z, 
on-stant temperatures are imposed, with a step 
hange at the entry z = 0:
{

T|∂Z = 1 if z < 0

T|∂Z = 0 if z > 0
. (5)Relevant limit 
onditions as z → ±∞ therefore are:

T (·, z) →
z→−∞

1 , T (·, z) →
z→+∞

0 . (6)



3 MATHEMATICAL ANALYSIS 6Coupling 
onditions at the sub-domain interfa
es also are required, physi
ally stand-ing for the 
ontinuity of the temperature (
on
entration) and of the normal heat(mass) �ux, they read:
Ti = Tj and ki∇Ti · nij = kj∇Tj · nij on Γij , (7)whenever the interfa
e Γij is non-empty, the dot produ
t naturally standing for thes
alar produ
t in R

2.3 Mathemati
al analysis3.1 Problem reformulationEquation (4) is reformulated into a system of two �rst order di�erential equations:
∂zT = Pe v k−1 T − k−1div(p) (8)
∂zp = k∇T , (9)where T still denotes the dimensionless temperature (or 
on
entration), the addi-tional unknown p denotes a ve
tor valued fun
tion on Ω.Introdu
ing the following unbounded operator A : D(A) ⊂ H 7→ H on an Hilbertspa
e H and with domainD(A) (whose de�nitions follow), system (8) takes the formof an ODE on the in�nite dimensional spa
e H with unknown Φ(z) ∈ H:

d

dz
Φ(z) = AΦ(z) , Φ(z) =

∣

∣

∣

∣

T (z)
p(z)

, A =

( Pe vk−1 −k−1div(·)
k∇· 0

)

. (10)The spa
e H is de�ned as the Hilbert spa
es produ
t H = L2(Ω) × (L2(Ω))2,where (L2(Ω))2 is the spa
e of square integrable ve
tor valued fun
tions on Ω. H isequipped with the following s
alar produ
t,
(Ψ1,Ψ2)H =

(
∣

∣

∣

∣

T1

p1

,

∣

∣

∣

∣

T2

p2

)

H

=

∫

Ω

T1T2kdx +

∫

Ω

p1 · p2k
−1dx . (11)Note that this s
alar produ
t on H is equivalent to the 
anoni
al one (taking k =

1) by using assumption (3). It has been modi�ed to ensure the symmetry of theoperator A.Relative to a homogeneous Diri
hlet boundary 
ondition, the domain D(A) is givenas D(A) := H1
0 (Ω)×H(div,Ω), where H(div,Ω) = {p ∈ (L2(Ω))2, div(p) ∈ L2(Ω)}in the distribution sense. We shall refer to [4℄ for the basi
 properties of the spa
e.Su
h a de�nition of D(A) ensures that A : D(A) ⊂ H 7→ H in (10) is well de�ned.Proposition 3.1. The operator A is dense and symmetri
:

∀ Ψ1,Ψ2 ∈ D(A) : (AΨ1,Ψ2)H = (Ψ1, AΨ2)H . (12)



3 MATHEMATICAL ANALYSIS 7Proof. The density of A dire
tly follows from its de�nition. Denoting Ψj =

∣

∣

∣

∣

Tj

pj
,

j = 1, 2, using the Green formula and the fa
t that Tj ∈ H1
0 (Ω) yields:

(AΨ1,Ψ2)H =

∫

Ω

Pe vT1T2dx −

∫

Ω

div (p1)T2dx +

∫

Ω

∇T1 · p2dx

=

∫

Ω

Pe vT2T1dx +

∫

Ω

p1 · ∇T2dx −

∫

Ω

T1div (p2) dx

= (Ψ1, AΨ2)H .

3.2 Spe
tral analysis of AIn this se
tion, the main theoreti
al result of our study is proved. We show that Ais self adjoint and that (0 ex
epted), its spe
trum is made of eigenvalues of �niteorder only, the 
orresponding eigenfun
tions forming a Hilbert (
omplete) base of
(Ker A)⊥ = Ran A. We observe that denoting by Ψn = (Tn,pn) the 
omponents ofthe nth eigen-fun
tion (AΨn = λnΨn), and introdu
ing T (x, y, z) = eλnzTn(x, y), wehave: div(k∇Tn) + λ2

nkTn = λnPe vTn and div(k∇T ) + k∂2
zT = Pe v∂zT ,and T is a solution of the original energy equation (4). In
identally, we also re
overthe so-
alled eigen-values/fun
tions of the previously quoted literature [1, 2, 6, 5, 13,26, 27, 15, 25℄. This theorem therefore brings full legitima
y to the de
ompositionsroutinely found in the literature.Theorem 3.2. A : D(A) ⊂ H 7→ H is self-adjoint and has a 
ompa
t resolvent.We introdu
e the Kernel of A , Ker A = {(0,p), p ∈ H0(div,Ω)}, whereH0(div,Ω) =

{p ∈ H(div,Ω), div p = 0}. Then there exists a Hilbert base (Ψn)n∈N
of Ran A =

(Ker A)⊥ 
omposed of eigen-fun
tions: Ψn ∈ D(A), AΨn = λnΨn, ‖Ψn‖H = 1. The
oordinates of Ψn are denoted Ψn = (Tn,pn) = (Tn, k∇Tn/λn). We therefore have
D(A) =

{

Ψ ∈ H ,
∑

n

|λn(Ψ,Ψn)H|
2 < +∞

}

, AΨ =
∑

n

λn(Ψ,Ψn)HΨn ,for all Ψ ∈ D(A).Moreover this base 
an be split into two parts (

Ψ+
i

)

i∈N
and (

Ψ−
i

)

i∈N
su
h that:

0 > λ+
1 ≥ · · · ≥ λ+

j ≥ · · · → −∞ , 0 < λ−1 ≤ · · · ≤ λ−j ≤ · · · → +∞ , (13)The 
orresponding eigen-fun
tions are denoted Ψ±
n . Eigen-values(fun
tions), a

ord-ing to this de
omposition, are respe
tively 
alled upstream (+) and downstream (-). In the proof, we shall use the following regularity result (see[14℄ p. 192-196):



3 MATHEMATICAL ANALYSIS 8Lemma 3.3. For any f ∈ L2(Ω). there exists a unique T ∈ H1
0 (Ω) satisfyingdiv(k∇T ) = f in the distribution sense. That solution also satis�es on ea
h sub-domain Ωi: Ti ∈ H2(Ωi), div(k∇T ) = f in L2(Ωi) (strong sense) and ‖Ti‖H2(Ωi) ≤

C‖f‖L2(Ω) (C independent on f). Moreover T satis�es on every interfa
e Γi,j the
oupling 
onditions (7) in the tra
e sense.Proof. A is dense and symmetri
. Sin
e vk−1 ∈ L∞(Ω), A is also a 
ontinuousperturbation of the symmetri
 operator A0 : D(A) ⊂ H 7→ H de�ned as A0 =
(

0 −k−1div(·)
k∇· 0

). Using the Kato-Relish theorem (see e.g. [23℄ p. 163), theself-adjointness of A0 implies the self-adjointness of A. To prove the self-adjointnessof A0, one shows that A0 + i has range H (see e.g. [22℄).Let us �x (f,q) ∈ H. We sear
h for T ∈ H1
0 (Ω) su
h that:

∀ ϕ ∈ H1
0 (Ω) :

∫

Ω

Tϕkdx+

∫

Ω

k∇T · ∇ϕdx =

∫

Ω

∇ϕ · qdx−

∫

Ω

iϕfkdx .On the right one 
learly has a 
ontinuous linear form on H1
0 (Ω), whereas the left sideexhibits a symmetri
, positive, 
ontinuous and 
oer
ive bilinear produ
t on H1

0 (Ω).As a result, the Lax-Milgram theorem applies (see e.g. [8℄) ensuring the existen
eand uniqueness of su
h a T . Let us de�ne ip = q − k∇T ∈ (L2(Ω))2. From theabove equality we obtain:
∀ ϕ ∈ C∞

c (Ω) :

∫

Ω

ip · ∇ϕdx =

∫

Ω

k(if + T )ϕdx .This equality shows that, in the distribution sense, div(p) ∈ L2(Ω) and we have
p ∈ H(div,Ω). Thus Ψ = (T,p) ∈ D(A) and one has (A0 + i)Ψ = (f,q), so provingthe self adjointness of A0 and A.To prove that A has a 
ompa
t resolvent, we introdu
e the pseudo inverse of
A, A−1 : Ran A 7→ (Ker A)⊥ ∩ D(A) = Ran A ∩ D(A) and we prove that A−1 is
ompa
t.For this let us 
onsider a bounded sequen
e (fn,qn) ∈ Ran A. There is a unique
(Tn,pn) ∈ Ran A∩D(A) satisfying A(Tn,pn) = (fn,qn). (Tn) then satis�es k∇Tn =
qn and therefore forms a bounded sequen
e in H1

0 (Ω). The 
ompa
t embedding
H1

0 (Ω) 7→ L2(Ω) thus implies that (Tn) is relatively 
ompa
t in L2(Ω).We now introdu
e ϕn ∈ H1
0 (Ω) the unique variational solution to div(k∇ϕn) =Pe vTn − kfn. Let us prove that pn = k∇ϕn. Sin
e A(Tn, k∇ϕn) = (fn,qn), wehave to 
he
k that (Tn, k∇ϕn) ∈ (Ker A)⊥:

∀ p ∈ H0(div,Ω) :

(
∣

∣

∣

∣

Tn

k∇ϕn
,

∣

∣

∣

∣

0
p

)

H

=

∫

Ω

∇ϕn · pdx = −

∫

Ω

ϕndiv(p)dx = 0Lemma 3.3 then applies and ensures that ϕn|Ωi
∈ H2(Ωi) and that, (Pe vTn − kfn),being bounded in L2(Ω), (ϕn|Ωi

) is bounded in H2(Ωi). Therefore both 
omponentsof (∇ϕn|Ωi
) are bounded in H1(Ωi), thus implying that both 
omponents of (pn|Ωi

)



3 MATHEMATICAL ANALYSIS 9also are bounded in H1(Ωi). The 
ompa
t embedding H1(Ωi) ⊂ L2(Ωi) then ensuresthat (pn) is relatively 
ompa
t in L2(Ω).Consequently, A−1 is 
ompa
t and self adjoint on the separable spa
e Ran A.Therefore there exists a Hilbert base (Ψn)n∈N
for Ran A made of eigen-fun
tions:

Ψn ∈ D(A), Aψn = λnΨn.
A−1 being 
ompa
t, 0 is the only limit point for sub-sequen
es of (1/λn) and thus
{−∞,+∞} are the only two possible limit points for sub-sequen
es of (λn). It iseasily seen that, whatever the value of α ∈ R, A + α is bounded neither belownor above. The spe
trum is therefore also neither bounded below nor above. Thus
{−∞,+∞} are both limit points for the spe
trum, implying de
omposition (13).3.3 Solution derivationThe results of the previous se
tion are used here to derive the solution Φ(z) =
(T (z),p(z)) to (8)-(10) su
h that T satis�es the boundary, limit and interfa
e 
on-ditions in (5)-(6) and (7). We point out that the boundary 
ondition (5) impliesthat, for z < 0, one does not have Φ(z) ∈ D(A). For this to be taken into a
ount,we shall 
onsider the (maximal) extension A to operator A:

• D(A) = H1(Ω) ×H(div,Ω),
• A : D(A) 7→ H has the same algebrai
 expression as A in (10).Unlike A, A is not symmetri
:

(AΨ1,Ψ2)H = (Ψ1, AΨ2)H +

∫

∂Ω

T1p2 · nds−

∫

∂Ω

T2p1 · nds , (14)for all pairs of fun
tions in D(A), with the usual notations.De�nition 3.4. We shall de�ne a solution to (8)-(10) with 
onditions (5),(6) and(7) as a fun
tion Φ : z ∈ R 7→ Φ(z) = (T (z),p(z)) ∈ H su
h that:
• Φ ∈ C (R,H) (
ontinuity on R),
• Φ ∈ C1 (R − {0},H) (
ontinuous Fre
het di�erentiability on R − {0}),
• ∀z ∈ R − {0}, Φ(z) ∈ D(A) and d

dz
Φ(z) = AΦ(z),and su
h that T satis�es the limit 
ondition (6) as z → ±∞ in H's norm and theboundary, interfa
e 
onditions (5)-(7) for all z 6= 0 in the tra
e sense.That formalism being stated:Proposition 3.5. There exists a unique solution Φ to (8)-(10) with 
onditions(5),(6) and (7). De�ning the 
onstants (αn),

αn :=
1

λ2
n

∫

∂Ω

k∇Tn · nds =
1

λn

∫

∂Ω

pn · nds, (15)



3 MATHEMATICAL ANALYSIS 10this solution is given as follows:
Φ(z) =











−
∑

n

αnΨn +
∑

n

α−
n e

λ−

n zΨ−
n z ≤ 0

−
∑

n

α+
n e

λ+
n zΨ+

n z ≥ 0
(16)The expression 
an moreover be simplifyed and the temperature �eld is given by:

T (z) =











1 +
∑

n

α−
n e

λ−

n zT−
n z ≤ 0

−
∑

n

α+
n e

λ+
n zT+

n z ≥ 0
(17)Sin
e A is not se
toral (is not the in�nitesimal generator of an analyti
 semi-group, see e.g. [10℄), some pre
autions have to be taken in demonstrating the propo-sition. A detailed proof follows.Proof. Using the Hilbert base (Ψn) of (Ker A)⊥, the solution Φ is sought in theform Φ(z) =

∑

n(Φ(z),Ψn)HΨn. All 
oe�
ients must therefore satisfy the ODE
d

dz
(Φ(z),Ψn)H = (AΦ(z),Ψn)H. Then using (14), the boundary 
ondition (5) andthe equality k∇Tn = λnpn, we �nd that
d

dz
(Φ,Ψn)(z) = (Φ,AΨn)(z) + ω(z)

∫

∂Ω

pn · nds = λn(Φ,Ψn)(z) + λnαnω(z) ,where ω(z) = 0 when z > 0 and ω(z) = 1 otherwise. Looking for a bounded and
ontinuous solution to this ODE on R gives us a unique solution, a

ording to λn'ssign (λ+
n < 0 and λ−n > 0):

(Φ,Ψ−
n )(z) =

{

α−
n

(

eλ−

n z − 1
)

z < 0

0 z > 0
, (Φ,Ψ+

n )(z) =

{

−α+
n z < 0

−α+
n e

λ+
n z z > 0

.This gives us de
omposition (16) and the uniqueness of the solution. Let us nowprove that Φ de�ned by (16) is a solution with the sense in 3.4.Consider the (unique) fun
tion ϕ∞ ∈ H1
0 (Ω) su
h that div(k∇ϕ∞) = Pe v. Weintrodu
e Φ∞ =

∣

∣

∣

∣

1
k∇ϕ∞

∈ H, a fun
tion that 
learly satis�es Φ∞ ∈ D(A), AΦ∞ =

0 and Φ∞ ∈ (Ker A)⊥. Let us prove that Φ∞ = −
∑

n αnΨn (thus explaining how togo from (16) to (17)). Sin
e λnpn = k∇Tn:
(Φ∞,Ψn)H =

∫

Ω

Tnkdx+
1

λn

∫

Ω

k∇ϕ∞ · k∇Tnk
−1dx =

∫

Ω

Tnkdx−
1

λn

∫

Ω

Pe vTndx,and using the equality λnkTn = Pe vTn −
1

λn
div(k∇Tn), we obtain

(Φ∞,Ψn)H = −
1

λ2
n

∫

Ω

k∇Tn · nds = − αn .
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n αnΨn = Φ∞ ∈ H, and it follows that Φ±
∞ = −

∑

n α
±
n Ψn ∈ H and Φ∞ =

Φ−
∞ + Φ+

∞. We use the fa
t that Φ ∈ D(A) if and only if ∑

n |λn(Φ,Ψn)H|
2 < +∞.Sin
e λ+

n →
n

−∞ (resp. λ−n →
n

+∞), it is straightforward to 
he
k that the twofun
tions,
f(z) =

∑

n

α−
n Ψ−

n e
λ−

n z , g(z) =
∑

n

α+
n Ψ+

n e
λ+

n z,satisfy:
• f ∈ C ((−∞, 0],H), g ∈ C ([0,+∞),H) (
ontinuity),
• f ∈ C1 ((−∞, 0),H), g ∈ C1 ((0,+∞),H) (
ontinuous Fre
het di�erentiabil-ity),
• for z < 0 (resp. z > 0), f(z) ∈ D(A) (resp. g(z) ∈ D(A)) and d

dz
f(z) = Af(z)(resp. d

dz
g(z) = Ag(z)).The fun
tion Φ in (16) 
an be rewritten as Φ(z) = Φ∞ + f(z), z ≤ 0 and Φ(z) =

−g(z), z ≥ 0 (whi
h fun
tions a
tually mat
h at z = 0 using Φ∞ = Φ−
∞ + Φ+

∞). Itis therefore 
ontinuous on R, Fre
het di�erentiable on R − {0}, Φ(z) ∈ D(A) and
d

dz
Φ(z) = AΦ(z) for z ∈ R − {0} sin
e AΦ∞ = 0. It is also 
lear that T (z) satis�esthe limit 
ondition (6) and the boundary 
ondition (5) for z 6= 0.It remains to be proved that it also satis�es the interfa
e 
onditions (7) for z 6= 0. Forthis, let us 
onsider the previously introdu
ed fun
tion f whose 
omponents will bedenoted as f(z) = (t(z),p(z)). Sin
e λ−n →

n
+∞, it is easy to 
he
k that, for z < 0,

Af(z) ∈ D(A). Therefore k∇t(z) ∈ H(div,Ω) whi
h implies that div(k∇t)(z) ∈
L2(Ω) for z < 0. Applying 3.3, it follows that t(z) satis�es the interfa
e 
onditions(7). The same result applies to g(z) for z > 0 and, as a result, to T (z) for z 6= 0.4 Mixed variational formulation and approximation4.1 Mixed variational formulationLet us 
onsider the following variational problem: �nd (λ, T,p) ∈ R × L2(Ω) ×
H(div,Ω) su
h that, ∀(u,q) ∈ L2(Ω) ×H(div,Ω),

∫

Ω

Pe vTudx −

∫

Ω

udiv(p)dx = λ

∫

Ω

Tukdx (18)
−

∫

Ω

Tdiv(q)dx = λ

∫

Ω

p · qk−1dx . (19)It is 
lear that whenever Ψn is an eigen-fun
tion as given in theorem 3.2, then
(λn, Tn,pn) satis�es the variational problem above. Conversely if (λ, T,p) satis�es(18)-(19) for all (u,q) ∈ L2(Ω) × H(div,Ω), then the se
ond line implies that T ∈
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H1

0 (Ω) (using the dense embedding of H(div,Ω) into H1/2(∂Ω)′, see [4℄). Therefore
Ψ = (T,p) ∈ D(A) and satis�es AΨ = λΨ. Thus Ψ = Ψn for some n and solving(18)-(19) is equivalent to �nding all the eigen-values/fun
tions of operator A.4.2 Axi-symmetri
al implementationIn order to test this variational formulation, we have derived a one-dimensionalversion of the problem whi
h is interesting in the 
ase of an axi-symmetri
al 
on�g-urations. The motivation is to test the 
onvergen
e of the problem numeri
ally onknown solutions. The simplest 
ase is 
onve
tion-di�usion inside a single 
ylinder forwhi
h, in the limit of large Pé
let number, we should re
over the Graetz spe
trum[9℄ for the operator A. In this se
tion we 
onsider the somewhat more general 
aseof two 
on
entri
 
ylinders, for whi
h Ω = Ω1 ∪Ω2, with Ω1 an inner disk �lled withliquid and Ω2 an outer solid 
orona. When the size of the se
ond domain to set tozero, the single 
ylinder problem is found again as a parti
ular 
ase.A liquid �ows inside Ω1 with a unidire
tional, longitudinal, dimensionless velo
ity
v(r)ez whi
h varies from a maximal value at the 
ylinder 
enter r = 0 to zero at theboundary with the se
ond 
ylinder pla
ed at r = r0. We 
hoose the dimensionlessvelo
ity to follow the usual Poiseuille �ow pro�le v(r) = 2Pe(r2

0 − r2), althoughany 
ontinuous pro�le being zero at the boundary 
ould be 
hosen. The velo
itynormalization is set so that normalized surfa
e averaged velo
ity �ux is the Pé
letnumber :
1

‖Ω1‖

∫

Ω1

v(r)dΩ1 = PeWhere ‖Ω1‖ = πr2
0 is the inner disk area asso
iated with the �rst inner 
ylinderse
tion. In 
orona Ω2 the velo
ity is taken to be zero; no 
onve
tion o

urs in thisse
ond domain. Continuity of �ux and temperature (7) are applied at the domainfrontier ∂Ω2 ∩ ∂Ω2 with uniform 
ondu
tivity k = 1. The radial dimensionlessdistan
e is 
hosen so that r = 1 
orresponds to the outer boundary of the se
ond
ylinder ∂Ω2 − ∂Ω1 ∩ ∂Ω2 where a homogeneous Diri
hlet boundary 
ondition (5) is
hosen.Problem (18)-(19) is approximated on a regular one-dimensional mesh dis
retizing
oordinate r ∈ [0, 1] with index i on grid r = i/n with i ∈ {1, n}. We adopthere the 
lassi
al mixed �nite element approximation of order 0 of Raviart andThomas P0×RT0 (see e.g. [4℄) to the present axi-symmetri
al 1D formulation. Baseelements for the s
alar T are therefore P0 pie
ewise 
onstant fun
tions over the gridelements, whereas base elements for the 've
tor ' p are the P1 
ontinuous pie
ewisea�ne fun
tions over the grid elements: thus re-establishing the �ux 
ontinuity atthe grid points.The generalized linear eigenvalue problem resulting from this dis
retization 
hoi
eis as follows:
AΨn =

(

a b

bT 0

)

Ψn = λn

(

c 0
0 d

)

Ψn, (20)Where Ψn is a 2n 
omponent ve
tor whose �rst n 
omponents are the dis
retetemperature �eld Tn = (Ti)i∈{1,n} approximating Tλ and the following n + 1 to 2n
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omponents des
ribe pn approximating the gradient �eld pλ = ∂rTλ/λ whi
h is one-dimensional in this axi-symetri
al 
ontext. The n×n matri
es a, b, c and d 
an be
omputed analyti
ally and admit the following 
oe�
ients :
aij = −δij

Pe
2r0n4 (2i− 1)(2i2 − 2i− 2r2

0n
2 + 1)

bij = − 1
n

( δiji+ δi−1j(1 − i) )
cij = δij

2i−1
2n2

dij = − 1
12n2 ( δij8i + δi−1j(2i− 1) + δi+1j(2i+ 1) ) ,

(21)where (i, j) ∈ {1, n}2 and δ is the Krone
ker symbol.4.3 Numeri
al results and 
onvergen
eIn the generalized eigenvalue problem (20), one notes that the matri
eA is symmetri
and that the right hand side mass-matrix Diag(c,d) is symmetri
 positive de�nite.Therefore, problem (20) 
an be numeri
ally solved using the variant of the Lan
zosalgorithm for generalized eigenvalue problems (see e.g. [24℄). The resulting �rsteigenve
tors and eigenvalues were 
omputed using the Fortran library ARPACKand spar
e matrix storage. The results presented here 
orrespond to two parti
ular
on�gurations:
• a single 
ylinder with a single radial domain Ω1 for whi
h r0 = 1 and,
• two 
on
entri
 
ylinders whose radius ratio is two, so that r0 = 1/2.We study the numeri
al 
onvergen
e of the �rst eigenvalues and �rst eigenve
torswhen the Pé
let number is varied from low to high values. We systemati
ally 
om-pared the dis
rete numeri
al results with referen
e solutions obtained with anotheriterative method explained in the appendix A.4.3.1 Single 
ylinder : r0 = 1In the 
ase of a single 
ylinder, for large values of the Pé
let number, the upstreampart of A's spe
trum (positive eigenvalues λ−n asso
iated with the z < 0 region)is di�
ult to 
ompute numeri
ally for it diverges with Pe [21℄. In 
ontrast, thedownstream part of the spe
trum (negative eigenvalues λ+

n asso
iated with the z > 0region) 
onverges to the Graetz spe
trum, and de
ays to zero as 1/Pe when the Pé
letnumber in
reases.Let us �rst dis
uss the eigenvalue 
onvergen
e. Figure 2 illustrates the relativeerror E =
√

(λn − λ)2/λ asso
iated with the �rst two downstream eigenvalues λ+
1and λ+

2 and for the �rst upstream one λ−1 . it 
an be seen in this �gure that the
onvergen
e of the numeri
al estimation is 
onsistent with the 
hosen 
lassi
al mixed�nite element approximation spa
e P0×RT0, for whi
h a∼ 1/n behavior is expe
ted.Furthermore, the strong in�uen
e of the Pé
let number on 
onvergen
e rate 
an alsobe observed. For small Pé
let number, the spe
trum is almost symmetri
al, so thatone expe
ts the 
onvergen
e for λ+
1 and λ−1 to be very 
lose, as observed on �gure2a. In 
ontrast, as the Pé
let number in
reases, there is a distin
t shift in the
onvergen
e 
urve. The 
loser the eigenvalue is to zero, the easier it is to 
ompute.
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log10 nFigure 2: (a) Relative numeri
al error for eigenvalue λ+
1 , λ+

2 and λ−1 for Pe = 0.1.The dotted lines 
orresponds to a −1 slope asso
iated with a ∼ 1/n behavior. (b)Same 
onvention as (a) for Pe = 10.Sin
e λ−1 diverges with Pe, it is more di�
ult to approximate numeri
ally and,then, the relative error asso
iated with λ−1 in �gure 2b is 30% larger than the oneasso
iated with λ+
1 for Pe = 10. This di�eren
e further in
reases with Pé
let number.We also wish to illustrate the numeri
al 
onvergen
e on the eigenfun
tion. Figure3 illustrates the eigenve
tor 
omputation for the temperature and gradient �eldsasso
iated with λ+
1 , λ+

2 and λ−1 eigenvalues. In the 
ase of small Pé
let numbers,the asymptoti
 symmetry of the eigenvalue spe
trum also implies a symmetry ofthe eigenve
tors,dswhi
h is 
learly visible when 
omparing the 1+ and 1− �elds inFigure 3. The asso
iated leading order eigenfun
tion shows a single maximum at
r = 0, the 
ylinder 
enter, and obviously de
reases to zero at r = 1 for the Diri
hletboundary 
ondition to be ful�lled. When the asso
iated eigenvalue order in
reases,the 
orresponding eigenfun
tion has as many os
illations as the eigenvalue order.For example for λ+

2 , two 
riti
al points 
an be seen, a minimum and a maximum,for the eigenfun
tion in Figure 3. The superposition between the dis
rete numeri
al
omputation and the �exa
t� solution is also illustrated in Figure 3. One 
an seethat the 
omparison for the gradient depi
ted in Figure 3(b) is rough for n = 20, butno di�eren
e is visible between the two for n = 320 in Figure 3(d). The 
onvergen
eto the exa
t solution is also illustrated in �gure 4 for Pe = 10. In this 
ase the twoeigenfun
tions asso
iated with λ+
1 and λ−1 di�er markedly. The �rst one, asso
iatedwith λ+

1 , still rea
hes a maximum at the tube 
enter r = 0, whereas the maximumposition of the se
ond one, asso
iated with λ−1 , is shifted 
lose to the tube boundaryat r = 1. Furthermore, this se
ond eigenfun
tion de
ays to zero at the tube 
enter.The reason for this distin
t behavior is now the opposite role of 
onve
tion for thesetwo temperature pro�les. For the downstream eigenfun
tion asso
iated with λ+
1 ,longitudinal 
onve
tion prevails over di�usion. Sin
e this 
onve
tion is maximum atthe tube 
enter, it di
tates the shape of the 
orresponding temperature pro�le. Forthe upstream eigenfun
tion asso
iated with λ−1 , retro-di�usion is the only me
hanismfor this temperature to display a ba
k-�ow exponential de
ay. Hen
e, sin
e the
onve
tion is maximal at the tube 
enter, retro-di�usion is maximum at the tube
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1−(d)Figure 3: (a) Temperature �eld T (i/n) i ∈ {1, n} for dis
retization n = 20 andPe = 0.1 for the �rst two downstream eigenve
tors 1+ and 2+ and the �rst upstreameigenve
tor 1−. Normalization T (0) = 1 has been imposed. (b) Temperature gradi-ent p = ∂rT (i/n)/λ for dis
retization n = 20 and Pe = 0.1. (
) Same 
onvention as(a) for dis
retization n = 320. (d) Same 
onvention as (b) for dis
retization n = 320.boundary, where the velo
ity vanishes. A boundary layer develops near r = 1, thethi
kness of whi
h de
ays to zero as the Pé
let number diverges. This boundarylayer is responsible for the numeri
al di�
ulties arising in the 
omputation of theupstream part of the spe
trum at large Pé
let numbers. The slower 
onvergen
e ofthe eigenve
tors 1− is 
learly visible in �gure 4a and 4b for a rough dis
retizationof n = 20 points. Although in this 
ase, the �rst two downstream eigenfun
tions,
1+ and 2+ are well approximated by the 
orresponding eigenve
tors, this is not the
ase for the upstream one 1−. Nevertheless, for a su�
ient dis
retization of n = 320points, the 
onvergen
e 
an be satisfa
tory as illustrated on �gure 4
,d.We �nally wish to illustrate the 
onvergen
e on the eigenve
tor by 
omputingthe relative error E =

√

(Ψn − Ψ,Ψn − Ψ)H/(Ψ,Ψ)H built with the H norm (11)for a dis
rete eigenve
tor Ψn to 
onverge to the theoreti
al one Ψ. Figure 5 showsthe 
onvergen
e of the relative error for in
reasing point number n. As expe
ted,
1/n behavior is observed for both Pe = 0.1 and Pe = 10, but the error is larger inthe latter 
ase.
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log10 nFigure 5: (a) Relative error for eigenve
tors asso
iated with eigenvalues λ+
1 , λ+

2 and
λ−1 for Pe = 0.1. The dotted lines 
orresponds to a −1 slope asso
iated with a
∼ 1/n behavior. (b) Same 
onvention as (a) for Pe = 10.4.3.2 Two 
on
entri
 
ylinders : r0 = 1/2In the 
ase where two domains are present, it is interesting to test the numeri
alimplementation of the �ux and temperature 
ontinuity (7) between the two domainsin this formulation. Figure 6 shows some eigenfun
tion pro�les at the same Pé
let



4 MIXED VARIATIONAL FORMULATION AND APPROXIMATION 17numbers as those previously illustrated for the single 
ylinder 
ase, Pe = 0.1 andPe = 10. It 
an be observed on this �gure that the temperature 
ontinuity at the
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1−(d)Figure 6: (a) Temperature �eld T (i/n) i ∈ {1, n} for dis
retization n = 20 andPe = 0.1 for the �rst two positive eigenve
tors 1+ and 2+ and the �rst negativeeigenve
tor 1−. Normalization T (0) = 1 has been imposed. (b) Same 
onve
tion as(a) for for dis
retization n = 320. (
) Same 
onvention as (a) Pe = 10. (d) Same
onvention as (b) for dis
retization n = 320.domain border r = r0 = 1/2 is ex
ellent even for a modest dis
retization n = 20. Thesame observation 
an be made on the gradient �eld. The 
onvergen
e to the exa
tsolution whi
h 
an be visually 
he
ked on �gure 6
 is better than the one previouslyobtained with the same parameter in �gure 4a. This is due to the fa
t that thereis no boundary layer in the latter 
ase when two domains are present. The retro-di�usion of the upstream eigenve
tor 1− is possible in the se
ond annular domain
Ω2, so that it is not 
on�ned in a small region near the boundary. The resultingtemperature gradients are mu
h lower and do not diverge with the Pé
let number.Hen
e, the maximum temperature observed for the 1− eigenve
tor of �gures 6
 and6d is indeed lo
alized inside the se
ond domain at a radial 
oordinate larger than
1/2. Obviously, the temperature values asso
iated with this maximum are mu
hlower than in the 
ase of the single 
ylinder, due to the smoothing e�e
t asso
iatedwith permitting retro-di�usion in the se
ond domain Ω2.The 
onvergen
e rate, whi
h 
an be 
omputed either for the eigenvalues or theeigenve
tors, follows the same s
aling as those already found for the single 
ylinder
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ase. The 
onvergen
e rate is only a little better (not shown).5 Con
lusionThis paper has presented a new approa
h for 
omplex three-dimensional 
on�gura-tions of 
onve
tion-di�usion in unidire
tional �ows. We justify a separate variablesolution approa
h by de�ning the eigenvalue/eigenfun
tion de
omposition of an ap-propriate mixed operator. The theoreti
al analysis shows that the properties of thisoperator allow a non-se
torial de
omposition of the solution in longitudinally expo-nentially de
aying solutions. This approa
h permits full three-dimensional problemto be numeri
ally restri
ted to two-dimensions. Furthermore, a naturally e�
ientnumeri
al dis
retization has been proposed using �nite-elements. The relevan
e ande�
ien
y of su
h a dis
retization has been analyzed in simple 
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al results. The method is based on a property of the eigen-fun
tions 
alled λ−analy
ity : in the axi-symmetri
al framework, any eigenfun
tion
Tλ 
an be the expanded in the form

Tλ(r) =
∑

n∈N

tn(r) λn . (22)In this des
ription the 
losure fun
tions {tn}n∈N are independent of the eigenvalue
λ 
onsidered and also of the 
onsidered boundary 
ondition at r = 1. They 
an be
omputed using a simple iterative pro
ess for the 
omputation of the spe
trum andeigenfun
tions with a Maple 
ode.The 
onvergen
e of the λ-analy
ity method has been established for general axi-symmetri
al 
on�gurations. The proof being the topi
 of a fore
oming paper, andfor the sake of simpli
ity, we fo
us our attention here on the treatment of the Graetzproblem. In this 
ase, the proof for the 
onvergen
e of the λ-analy
ity method isavailable in [21℄. The eigenvalues Tλ are de�ned as follows, on the interval [0, 1]:

Tλ(0) = 1 , ∆cTλ = v(r)λT ,
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ylindri
al part of the Lapla
e operator ∆c ≡ 1/r∂r(r∂r).Eigenfun
tions Tλ then read (22) where the tn(r) ful�ll the re
ursive s
heme:
t0(r) = 1 and: ∆ctn = v(r)tn−1(r) , tn(0) = 0 for n ≥ 1 .We point out that this s
heme a
tually has a unique solution thanks to the degen-era
y of the ODE at r = 0.The spe
trum, in the 
ase of a Diri
hlet boundary 
ondition, is thus de�ned as:

Λ =

{

λ ,
∑

n∈N

tn(1) λn = 0

}

.It 
an be approximated using trun
ations, with an exponential rate of 
onvergen
e.


