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1 Introduction

The Uncapacitated Facility Location (UFL) problem is defined as follows. We are given a set F
of ny facilities and a set C of n. clients. For every facility 7+ € F, there is a nonnegative number
fi denoting the opening cost of the facility. Furthermore, for every client 5 € C and facility ¢ € F,
there is a connection cost c;j between facility 7 and client j. The goal is to open a subset of the
facilities 7/ C F, and connect each client to an open facility so that the total cost is minimized.
The UFL problem is NP-complete, and max SNP-hard (see [4]). A UFL instance is metric if its
connection cost function satisfies a kind of triangle inequality, namely if c;; < c;jr + cirjr + ¢
for any 7,7’ € C and j,j' € F.

The UFL problem has a rich history starting in the 1960’s. The first results on approximation
algorithms are due to Cornuéjols, Fisher, and Nemhauser [1] who considered the problem with
an objective function of maximizing the “profit” of connecting clients to facilities minus the
cost of opening facilities. They showed that a greedy algorithm gives an approximation ratio of
(1—1/e) =0.632..., where e is the base of the natural logarithm. For the objective function
of minimizing the sum of connection cost and opening cost, Hochbaum [2] presented a greedy
algorithm with an O(logn) approximation guarantee, where n is the number of clients. The
first approximation algorithm with constant approximation ratio for the minimization problem
where the connection costs satisfy the triangle inequality, was developed by Shmoys, Tardos, and
Aardal [3]. Several approximation algorithms have been proposed for the metric UFL problem
after that, see for instance [4-10]. Up to now, the best known approximation ratio was 1.52,
obtained by Mahdian, Ye, and Zhang [10].

We will say that an algorithm is a A-approximation algorithm for a minimization problem
if it computes, in polynomial time, a solution that is at most A times more expensive than the
optimal solution. Specifically, for the UFL problem we define a notion of bifactor approzimation.
We say that an algorithm is a (Af,\;)-approximation algorithm if the solution it delivers has
total cost at most Ay - F* + .- C*, where F* and C* denote, respectively, the facility and the
connection cost of an optimal solution.

Guha and Khuller [4] proved by a reduction from Set Cover that there is no polynomial
time A-approximation algorithm for the metric UFL problem with A < 1.463, unless NP C
DTIME(n'°81°8™). Jain et al. [9] generalized this argument to show that the existence of a
(Af,Ac)-approximation algorithm with A, < 1+ 2e~ would imply NP C DTIM E(n'°8losn),

1.1 Ouwur contribution

We modify the (142/e)-approximation algorithm of Chudak [6], see also Chudak and Shmoys [7],
to obtain a new (1.6774,1.3738)-approximation algorithm for the UFL problem. Our linear pro-
graming (LP) rounding algorithm is the first one that achieves an optimal bifactor approximation
due to the matching lower bound of (A¢, 1+ 2e7) established by Jain et al. In fact we obtain
an algorithm for each point (A7, 1+ 2e *7) such that A; > 1.6774, which means that we have
an optimal approximation algorithm for instances dominated by connection cost (see Figure 1).

Our main technique is to sparsen the support graph corresponding to the LP solution before
clustering. The motivation for this technique is the “irregularity” of instances that are potentially
tight for the original algorithm of Chudak and Shmoys. We propose a way of measuring this
irregularity and avoiding some of the too long links in the fractional solution to save on the
connection cost of the final solution. In fact our clustering is the same as the one used by



13— ot T T

L el line of balanced
............... ;.....E....E.....E.....E.....\appru}:mﬂﬂn-r_t

: -JMSaIgnrnhm: : : : : : : : |
'I? . .- ..... SRR R . ..... ..... ..... ..... R ..... .....

R
oW

11
X S8
1T8F-

1h k- ..... o ..... ;’""".;llgl:rﬁthm.ﬂf”'é ..... ..... ..... _
ie 5 Do ; o Mahdian ef al. T

1_4_..... ..... b Ly ..... TR

connection cost coefficient

11 TSR SO LS . f ..... ]

17k S A PR : our algorithn =
: : Lo apprnmmatlnn Inwer tmund : : :

1T 11 12 1.3 14 1.5 1.5 1718 19 2 2.1 22 23 24 24
facility cost coefficient

1.1

Fig. 1. Bifactor approximation picture. The gray area corresponds to the improvement due to our algorithm.

Sviridenko in his 1.58-approximation algorithm [8], but we continue our algorithm in the spirit
of Chudak and Shmoys’ algorithm, which leads to a substantially easier analysis and an improved
bifactor approximation guaranty.

Our new algorithm may be combined with the (1.11, 1.7764)-approximation algorithm of Jain
et al. to obtain a 1.5-approximation algorithm for the UFL problem. This is an improvement
over the previously best known 1.52-approximation algorithm of Mahdian et al., and it cuts of
a 1/3 of the gap with the approximation lower bound by Guha and Khuler [4].

2 Preliminaries

We will review the concept of LP-rounding algorithms for the metric UFL problem. These are
algorithms that first solve the linear relaxation of a given integer programing (IP) formulation
of the problem, and then round the fractional solution to produce an integral solution with a
value not too much higher than the starting fractional solution. Since the optimal fractional
solution is at most as expensive as an optimal integral solution, we obtain an estimation of the
approximation factor.

2.1 IP formulation and relaxation

The UFL problem has a natural formulation as the following integer programming problem.
minimize Zie]—‘,jec CijTij + 2icr fivi
subject to ) ;. rxij = 1 forall jeC (1)

zij —yi <0 foralli e F,j€C(2)
zij,yi € {0, 1} for alli € F,j €C (3)



a path from client j to the facility
serving his cluster center j’

Fig. 2. A cluster. If we make sure that at least one facility is open around a cluster center j' , then any other
client j from the cluster may use this facility. Because the connection costs are assumed to be metric, the distance
to this facility is at most the length of the shortest path from j to the open facility.

A linear relaxation of this IP formulation is obtained by replacing Condition (3) by the
condition x;; > 0 for all ¢ € F,j € C . The value of the solution to this LP relaxation will serve
as a lower bound for the cost of the optimal solution. We will also make use of the following
dual formulation of this LP.

maximize ) ;. v;

subject to Zjec wij < fiforalli e F (4)
Vj — Wij Scij for alliE.?—',jGC(E))
w;ij >0 for all i € F,j €C (6)

2.2 Clustering

The first constant factor approximation algorithm for the metric UFL problem by Shmoys et al.,
but also the algorithms by Chudak and Shmoys, and by Sviridenko are based on the following
clustering procedure. Suppose we are given an optimal solution to the LP relaxation of our
problem. Consider the bipartite graph G with vertices being the facilities and the clients of the
instance, and where there is an edge between a client j and a facility ¢ if the corresponding
variable x;; in the optimal solution to the LP relaxation is positive. We call G' a support graph
of the LP solution. If two clients are both adjacent to the same facility in graph G, we will say
that they are neighbors in G.

The clustering of this graph is a partitioning of clients into clusters together with a choice of
a leading client for each of the clusters. This leading client is called a cluster center. Additionally
we require that no two cluster centers are neighbors in the support graph. This property helps
us to open one of the adjacent facilities for each cluster center. Formally we will say that a
clustering is a function g : C — C that assigns each client to the center of his cluster. For a
picture of a cluster see Figure 2.



All the above mentioned algorithms use the following procedure to obtain the clustering.
While not all the clients are clustered, choose greedily a new cluster center j, and build a cluster
from j and all the neighbors of j that are not yet clustered. Obviously the outcome of this
procedure is a proper clustering. Moreover, it has a desired property that clients are close to
their cluster centers. Each of the mentioned LP-rounding algorithms uses a different greedy
criterion for choosing new cluster centers. In our algorithm we will use the clustering with the
greedy criterion of Sviridenko [8].

2.3 Scaling and greedy augmentation

The techniques described here are not directly used by our algorithm, but they help to explain
why the algorithm of Chudak and Shmoys is close to optimal. We will discuss how scaling
facility opening costs before running an algorithm, together with another technique called greedy
augmentation may help to balance the analysis of an approximation algorithm for the UFL
problem.

The greedy augmentation technique introduced by Guha and Khuller [4] (see also [5]) is the
following. Consider an instance of the metric UFL problem and a feasible solution. For each
facility ¢ € F that is not opened in this solution, we may compute the impact of opening facility
1 on the total cost of the solution, also called the gain of opening i, denoted by g;. The greedy
augmentation procedure, while there is a facility ¢ with positive gain g;, opens a facility ig that
maximizes the ratio of saved cost to the facility opening cost %, and updates values of g;. The
procedure terminates when there is no facility whose opening would decrease the total cost.

Suppose we are given an approximation algorithm A for the metric UFL problem and a real
number § > 1. Consider the following algorithm Ss(A).

1. scale up all facility opening costs by a factor d;
2. run algorithm A on the modified instance;

3. scale back the opening costs;

4. run the greedy augmentation procedure.

Following the analysis of Mahdian, Ye, and Zhang [10] one may prove the following lemma.

Lemma 1. Suppose A is a (Af,\c)-approzimation algorithm for the metric UFL problem, then
S5(A) is a (Af +1n(6),1+ Acgl)-appmximation algorithm for this problem.

This method may be applied to balance an (Af,\:)-approximation algorithm with Ay << A..
However, our 1.5 approximation algorithm will be balanced differently. It will be a composition
of two algorithms that have opposite imbalances.

3 Sparsening the graph of the fractional solution

Suppose that for a given UFL instance we have solved its LP relaxation, and that we have an
optimal primal solution (z*,y*) and the corresponding optimal dual solution (v*,w*). Such a
fractional solution has facility cost F* = ), » fiy; and connection cost C* =}, F.jec CigTij-
Each client j has its share v; of the total cost. This cost may again be divided into a client’s

. . b . . . o “«_ x o
fractional connection cost C’j = icr cija;;, and his fractional facility cost Ff =wv; C’j.



3.1 Motivation and intuition

The idea behind the sparsening technique is to make use of some irregularities of an instance
if they occur. We call an instance regular if the facilities that fractionally serve a client j are
all at the same distance from j. For such an instance the algorithm of Chudak and Shmoys
produces a solution whose cost is bounded by F* + (1 + %)C*, which also follows from our
analysis in Section 4. It remains to use the technique described in section 2.3 to obtain an
optimal 1.463. . .-approximation algorithm for such regular instances.

The instances that are not regular are called irregular. Difficult to understand are the irregu-
lar instances. In fractional solutions for these instances particular clients are fractionally served
by facilities at different distances. Our approach is to divide facilities serving a client into two
groups, namely close and distant facilities. We will remove links to distant facilities before the
clustering step, so that if there are irregularities, distances to cluster centers should decrease.

We measure the local irregularity of an instance by comparing a fractional connection cost
of a client to the average distance to his distant facilities. In the case of a regular instance,
the sparsening technique gives the same results as technique described in section 2.3, but for
irregular instances sparsening also takes some advantage of the irregularity.

3.2 Details

We will start by modifying the primal optimal fractional solution (z*,y*) by scaling the y-
variables by a constant v > 1 to obtain a suboptimal fractional solution (z*,v-y*). Now suppose
that the y-variables are fixed, but that we now have a freedom to change the z-variables in
order to minimize the total cost. For each client j we change the corresponding z-variables so
that he uses his closest facilities in the following way. We choose an ordering of facilities with
nondecreasing distances to client j. We connect client j to the first facilities in the ordering so
that for any facilities ¢ and ¢’ such that ¢’ is later in the ordering if z;; < y; than z;; = 0.

Without loss of generality, we may assume that this solution is complete (i.e. there are no
i € F,j € C such that 0 < z;; < y;). Otherwise we may split facilities to obtain an equivalent
instance with a complete solution - see [8][Lemma 1] for a more detailed argument.

Let (Z,y) denote the obtained complete solution. For a client j we say that a facility ¢ is
one of his close facilities if it fractionally serves client j in (Z,7). If Z;; = 0, but facility i was
serving client j in solution (x*,y*), then we say, that i is a distant facility of client j.

v % _O*
5-1 Zie{ieﬂiij:o} cijry; —C;

Definition 1. Let r,(j) = 7

J
the instance. It is the average distance to a distant facility minus the fractional connection
cost (which is the general average distance to both close and distant facilities), divided by the
fractional facility cost of a client j.

be the measure of a local irreqularity of

. Cr=>2 5 Tij . . . .
Let . (j) = % =74(j) * (v — 1) denote the fractional connection cost minus the
average distance to a close facility, divided by the fractional facility cost of a client j.

Observe, that for every client j the following hold (see Figure 3):

— his average distance to a close facility equals DS, (j) = Cr —ri(4) - F},

— his average distance to a distant facility equals DJ),(j) = C +7,(j) - F},

— his maximal distance to a close facility is at most the average distance to a distant facility,
Diae(4) < Day(4) = C5 +14(3) - F

max
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Fig. 3. Distances to facilities serving client j; the width of a rectangle corresponding to facility 7 is equal to ;.
Figure explains the meaning of r, (7).

Consider a bipartite support graph G obtained from the solution (Z,y), where each client is
directly connected to his close facilities. We will greedily cluster this graph in each round choosing
the cluster center to be an unclustered client j with the minimal value of DS (5) + DC__ ().
With such a clustering, each cluster center has a minimal value of DS (§) + DS ,.(j) among all
clients in this cluster.

4 Our new algorithm

Consider the following algorithm A1(v):

1. Solve the LP relaxation of the problem to obtain a solution (z*,y*).

2. Scale up the value of the facility opening variables y by a constant v > 1, then change

the value of the z-variables so as to use the closest possible fractionally open facilities (see

Section 3.2).

If necessary, split facilities to obtain a complete solution (Z, 7).

4. Compute a greedy clustering for the solution (Z,7), choosing as cluster centers unclustered
clients minimizing DS, () + DS . (4)-

5. For every cluster center j, open one of his close facilities randomly with probabilities T;;.

6. For each facility 7 that is not a close facility of any cluster center, open it independently with
probability y,.

7. Connect each client to an open facility that is closest to him.

@

In the analysis of this algorithm we will use the following result:



X

distant facilities of j

Fig. 4. Facilities that client 7 may consider: his close facilities, his distant facilities, and eventually close facilities
of his cluster center j'.

Lemma 2. Given n independent events ey, ea, . .., e, that occur with probabilities p1,p2,...,Dn
respectively, the event e Uea U ...Ue, (i.e. at least one of e;) occurs with probability at least

1-— ﬁ’ where e denotes the base of the natural logarithm.
e~i=1"1

Theorem 1. Algorithm Al(y = 1.67736) produces a solution with expected cost E[cost(SOL)| <
1.67736 - F* +1.37374- C*

Proof. The expected facility opening cost of the solution is
E[FSOL] = Zie]—' fivi =" Zie]—' fiyi =~ - F*.

To bound the expected connection cost we show that for each client j there is an open
facility within a certain distance with a certain probability. If j is a cluster center, one of his
close facilities is open and the expected distance to this open facility is DS, (5) = C; —r(5)- F}.

If 7 is not a cluster center, he first considers his close facilities (see Figure 4). If any of them
is open, the expected distance to the closest open facility is at most Dg) (7). From Lemma 2,
with probability p. > (1 — %), at least one close facility is open.

Suppose none of the close facilities of j is open, but at least one of his distant facilities is
open. Let pg denote the probability of this event. The expected distance to the closest facility
is then at most D2 (5).

If neither any close nor any distant facility of client j is open, then he connects himself to
the facility serving his cluster center g(j) = j'. Again from Lemma 2, such an event happens
with probability ps < e% In such a case j has to pay the following two parts of his connection
cost. First, to a facility 7 that is fractionally serving both j and j' in (Z,7y) which is at most
DS (7). Second, from i to the open facility around 5/, say 4'. If ¢; j < DS, ('), then obviously
cjrir < DS..(5") and the total distance is at most DS, (5') + DS, (5'). If ¢;jy > DS, (j'), then
the average distance to other close facilities of j' is even smaller, therefore the expected distance
between j’ and the open facility i’ is at most Dg’; (7). Hence the expected length of the second
part is again at most D, (5') + DS .. (5'). Since the clusters were built with the greedy clustering

algorithm, DG, (5") + D02 (i) < D&, (3) + Diaz ()
Therefore, the expected total connection cost is
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Fig. 5. Figure presents performance of our algorithm for different values of parameter 7. The solid line corresponds
to regular instances with r,(j) = 0 for all j and it coincides with the approximability lower bound curve. The
dashed line corresponds to instances with r,(j) = 1 for all j. For a particular choice of v we get a horizontal
segment connecting those two curves; for v ~ 1.67736 the segment becomes a single point. Observe that for
instances dominated by connection cost only a regular instance may be tight for the analysis.

E[Cs0L] < Yjec (Pe - DS,(4) + pa - DE,() + ps - (DS,00(5) + DG (3') + DS, (5")))
< Yjec ((pe +ps) - DS, (§) + (pa + 2ps) - D, (5))
= Syec (e +22) - (CF = 4() - ) + (pa+ 20) - (C +74(5) - )
= ((pe + pa + ps) + 2ps) - C*
+ e ((Be D) - (=ry(0) - (v = 1) - F) + (pa + 20) - (4 5) - F) )
(1+2ps) - C* + Yjec <F;‘ 1(3) - (Pa + 2ps — (v — 1) - (pe -I—ps))>
SU+2)C+ T (Fml) G+ d - (-1 (1= 1+ 1))

Therefore, with v = 9 &~ 1.67736 such that 1 + 35 — (y0 — 1) - (1 — 1 + k=) = 0, we have

e

E[Csor] < (14 &) - C* < 1.37374 - C*. O

The algorithm A1 with v = 1+ (for a sufficiently small positive €) is essentially the algorithm
of Chudak and Shmoys.

5 The 1.5-approximation algorithm

In this section we will combine our algorithm with an earlier algorithm of Jain et al. to obtain
an 1.5-approximation algorithm for the metric UFL problem.

In 2002 Jain, Mahdian and Saberi [9] proposed a primal-dual approximation algorithm (the
JMS algorithm). Using a dual fitting approach they have shown that it is a 1.61-approximation
algorithm. In a later work of Mahdian, Ye and Zhang [10] the following was proven.

Lemma 3 ([10]). The cost of a solution produced by the JMS algorithm is at most 1.11 x F*
+ 1.7764 x C*, where F* and C* are facility and connection costs in an optimal solution to the
linear relaxation of the problem.



Theorem 2. Consider the solutions obtained with the A1 and JMS algorithms. The cheaper of
them is expected to have a cost at most 1.5 times the cost of the optimal fractional solution.

Proof. Consider the algorithm A2 that with probability p = 0.313 runs the JMS algorithm and
with probability 1 — p runs the Al algorithm. Suppose that you are given an instance, and F™*
and C* are facility and connection costs in an optimal solution to the linear relaxation of the
problem for this instance. Consider the expected cost of the solution produced by algorithm A2
for this instance. E[cost] < p-(1.11- F*4+1.7764-C*) 4+ (1 —p) - (1.67736 - F* + 1.37374 - C*)
1.4998 - F* +1.4998 - C* < 1.5% (F* 4+ C*) < 1.5 OPT.

ol

Instead of the JMS algorithm we could take the algorithm of Machdian et al. [10] - the
MYZ($) algorithm that scales the facility costs by §, runs the JMS algorithms, scales back the
facility costs and finally runs the greedy augmentation procedure. With a notation introduced
in Section 2.3, the MYZ(d) algorithm is the Ss(JMS) algorithm. The MYZ(1.504) algorithm
was proven [10] to be a 1.52-approximation algorithm for the metric UFL problem. We may
change the value of § in the original analysis to observe that MYZ(1.1) is a (1.2053,1.7058)-
approximation algorithm. This algorithm combined with our A1 (1.67736,1.37374)-approximation
algorithm gives a 1.4991-approximation algorithm, which is even better than just using JMS and
A1, but it gets more complicated and the additional improvement is tiny.

6 Universal randomized clustering procedure

In this section we discuss a different approach to clustering. We propose to modify the greedy
clustering algorithm by choosing consecutive cluster centers randomly with uniform distribution.
The output of such a process is obviously random, but we may still prove some statements about
probabilities. The following lemma states that the obtained clustering is expected to be “fair”.

Lemma 4. Given a graph G = (F UC, E) and assuming that a clustering g was obtained by
the above described random process, for every two distinct clients j and j', the probability that
g(j) = 7' is equal the probability that g(j') = j.

Proof. Let C(G) denote the maximal (over the possible random choices of the algorithm) number
of clusters that can be obtained from G with the random clustering procedure. The proof will
be an induction on C(G). Fix any j,j' € C such that j is a neighbor of j' in G (if they are not
neighbors, neither ¢g(j) = j' nor g(j') = j can occur). Suppose C(G) = 1, then Prg(j) = j'] =
Prlg(i") = j] = 1/IC]|.

Let us now assume that C(G) > 1. There are two possibilities, either one of j, ;' gets to
the first cluster or they both avoid it. Consider the first case (the first chosen cluster center is
either j or j/ or one of their neighbors). If j (j') is chosen as a cluster center, then g(j') = j
(9(j) = 7'). Since they are chosen with the same probability, the contribution of the first case
to the probability of g(j') = j is equal to the contribution to the ppb. of g(j) = j'. If neither
of them gets chosen as a cluster center but at least one gets into the new cluster, then neither
g(3") = 7 nor g(j) = j' is possible.

Now consider the second case (neither of j and j' gets into the first cluster). Consider the
graph G’ obtained from G by removing the first cluster. The random clustering proceeds like
it has just started with the graph G’, but the maximal number of possible clusters is smaller
C(G") < C(G)—1. Therefore, by the inductive hypothesis, in a random clustering of G’ the ppb.



that g(j') = j is equal the ppb. that g(j) = j'. Hence, the second case contribution to those
probabilities for the clustering of the original graph G is also equal. O

If g(j) = j' in a clustering g of graph G we will say that client 5’ offers a support to client
j. The main idea behind the clustering algorithms for the UFL problem is that we may afford
to serve each cluster center directly (because they are never neighbors in G) and all the other
clients are offered a support from their cluster centers. A non-central client may either accept a
support and connect himself via his cluster center (that is what all non-central clients do in the
algorithm of Shmoys et al.), or he may try to get served locally, and if it fails, he will accept the
support (this is the way the Chudak and Shmoys’ algorithm works). In both those algorithms the
probability that an offer of support is accepted is estimated to be constant. Therefore, we may
modify those algorithms to use the random clustering procedure and do the following analysis.

For any two clients j and j’, the probability that j accepts a support of j' is equal to the
probability that j' accepts the support of 7. Let ¢ be a facility on a shortest path from j to
j'. When we compute the expected connection cost of a client j, we observe that with certain
probability p he accepts a support of j’. In such a case he must pay for the route via 7 and j’
to the facility directly serving j7'. In this situation we will say that j is paying only for the part
until facility 4, and the rest is paid by j’, but if 7 would be supporting 7' he would have to pay
a part of 7’s connection cost, which is the length of the path from 7 via j to the facility serving
j. We may think of it as each client having a bank account, and when he accepts a support he
makes a deposit, and when he offers a support and the support is accepted, then he withdraws
money to pay a part of the connection cost of the supported client. From Lemma 4 we know
that for a client j the probability that he will earn on 5’ is equal to the probability that he will
lose on j'. Therefore, if the deposed amount is equal to the withdrawal, the expected net cash
flow is zero.

The above analysis shows that randomizing the clustering phase of the above mentioned
algorithms would not worsen their approximation ratios. Although it does not make much sense
to use a randomized algorithm if it has no better performance guarantee, the random clustering
has an advantage of allowing the analysis to be more local and uniform.

7 Concluding remarks

With the 1.52-approximation algorithm of Mahdian et al. it was not clear for the authors if
a better analysis of the algorithm could close the gap with the approximation lower bound of
1.463 by Guha and Khuler. Byrka and Aardal [11] have recently given a negative answer to this
question by constructing instances that are hard for the MYZ algorithm. Similarly, we now do
not know if our new algorithm A1(y) could be analyzed better to close the gap. Construction
of hard instances for our algorithm remains an open problem.

The technique described in Section 2.3 enables to move the bifactor approximation guaranty
of an algorithm along the approximability lower bound of Jain et al. (see Figure 1) towards
higher facility opening costs. If we developed a technique to move the analysis in the opposite
direction, together with our new algorithm, it would imply closing the approximability gap for
the metric UFL problem. It seems that with such an approach we would have to face the difficulty
of analyzing an algorithm that closes some of the previously opened facilities.
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