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MIXED H2/H∞ CONTROL VIA NONSMOOTH OPTIMIZATION

P. APKARIAN ∗, D. NOLL † , AND A. RONDEPIERRE † ‡

Abstract. We present a new approach to mixed H2/H∞ output feedback control synthesis.
Our method uses non-smooth mathematical programming techniques to compute locally optimal
H2/H∞-controllers, which may have a pre-defined structure. We prove global convergence of our
method and present numerical tests to validate it numerically.

Key words. Mixed H2/H∞ output feedback control, multi-objective control, robustness and
performance, non-smooth optimization, trust region technique.
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1. Introduction. Mixed H2/H∞ output feedback control is a prominent exam-
ple of a multi-objective design problem, where the feedback controller has to respond
favorably to several performance specifications. Typically in H2/H∞ synthesis, the
H∞ channel is used to enhance the robustness of the design, whereas the H2 channel
guarantees good performance of the system. Due to its importance in practice, mixed
H2/H∞ control has been addressed in various ways over the years, and we briefly
review the main trends.

The interest in H2/H∞ synthesis was originally risen by three publications [22,
23, 27] in the late 1980s and early 1990s. The numerical methods proposed by these
authors are based on coupled Riccati equations in tandem with homotopy methods,
but the numerical success of these strategies remains to be established. With the
rise of LMIs in the later 1990s, different strategies which convexify the problem be-
came increasingly popular. The price to pay for convexifying is either a considerable
conservatism, or that controllers have large state dimension [29, 25].

In [45, 47, 48] Scherer developed LMI formations for H2/H∞ synthesis for full-
order controllers [48], and reduced the problem to solving LMIs in tandem with non-
linear algebraic equalities [48, 45]. In this form, H2/H∞ problems could in principle
be solved via nonlinear semidefinite programming techniques like specSDP [24, 39, 49]
or Pennon [31, 32, 36], if only these techniques were suited for medium or large size
problems. Alas, one of the disappointing lessons learned in recent years from investi-
gating BMI and LMI problems is that this is just not the case. Due to the presence of
Lyapunov variables, whose number grows quadratically with the system size, [13, p.
20ff], BMI and LMI programs quickly lead to problem sizes where existing numerical
methods fail.

Following [3, 4, 5, 6, 7], we address H2/H∞-synthesis by a new strategy which
avoids the use of Lyapunov variables. This leads to a non-smooth and semi-infinite
optimization program, which we solve with a spectral bundle method, inspired by
the non-convex spectral bundle method of [37, 38] and [3, 5]. Important forerunners
[19, 40, 28] are based on convexity and optimize functions of the form λ1◦A with affine
A. We have developed our method further to deal with typical control applications like
multi-disk [7] and multi frequency band synthesis [6], design under integral quadratic
constraints (IQCs) [4, 9, 8], and to loop-shaping techniques [2, 1].
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The structure of the paper is as follows. The problem setting is given in Section 2.
Computing the H2 and H∞ norm is briefly recalled in Sections 3 and 4. The algorithm
and its rationale are presented in Section 5. Global convergence is established in
Section 6. The implementation is discussed in Section 7, and numerical test examples
are discussed in Section 8.

2. Problem setting. We consider a plant in state space form

P :




ẋ
z∞
z2
y


 =




A B∞ B2 B
C∞ D∞ 0 D∞u

C2 0 0 D2u

C Dy∞ Dy2 0







x
w∞

w2

u


 (2.1)

where x ∈ R
nx is the state, u ∈ R

nu the control, y ∈ R
ny the output, and where

w∞ → z∞ is the H∞, w2 → z2 the H2 performance channel. We seek an output
feedback controller

K :

[
ẋK

u

]
=

[
AK BK

CK DK

] [
xK

y

]
(2.2)

where xK ∈ R
nK is the state of the controller, such that the closed-loop system,

obtained by substituting (2.2) into (2.1), satisfies the following properties:
1. Internal stability. K stabilizes P exponentially in closed-loop.
2. Fixed H∞ performance. The H∞ performance channel has a pre-specified

performance level ‖Tw∞→z∞
(K)‖∞ ≤ γ∞.

3. Optimal H2 performance. The H2 performance ‖Tw2→z2
(K)‖2 is mini-

mized among all K satisfying 1. and 2.
We will solve the H2/H∞ synthesis problem by way of the following mathematical
program

minimize f(K) := ‖Tw2→z2
(K)‖2

2

subject to g(K) := ‖Tw∞→z∞
(K)‖2

∞ ≤ γ2
∞

(2.3)

where Tw2→z2
(K, s) denotes the transfer function of the H2 closed-loop performance

channel, while Tw∞→z∞
(K, s) stands for the H∞ robustness channel. Notice that

f(K) is a smooth function, whereas g(K) is not, being an infinite maximum of max-
imum eigenvalue functions. The unknown K is in the space R

(nK+nu)×(nK+ny), so
the dimension n = (nK +ny)(nK +nu) of (2.3) is usually small, which is particularly
attractive when small or medium size controllers for large systems are sought. Notice
that as a BMI or LMI problem, H2/H∞ synthesis (2.3) would feature n2

x additional
Lyapunov variables, which would arise through the use of the bounded real lemma.
See e.g. [46, 13].

Remark. Naturally, the approach chosen in (2.3) to fix the H∞ performance and
optimize H2 performance is just one among many other strategies in multi-objective
optimization. One could just as well optimize the H∞ norm subject to a H2-norm
constraint, or minimize a weighted sum or even the maximum of both criteria. Other
ideas have been considered, and even game theoretic approaches exist [35]. �

3. The H2 norm. In program (2.3) we minimize composite functions f = ‖·‖2
2 ◦

Tw2→z2
, where ‖ · ‖2 denotes the H2-norm. Let us for brevity write T2 := Tw2→z2

for
the H2 transfer channel in (2.1). The corresponding plant P 2 is obtained by deleting
the w∞ column and the z∞ line in P . The objective function can be written as

f(K) = ‖T2(K, ·)‖
2
2 =

1

2π

∫ +∞

−∞

Tr(T2(K, jω)HT2(K, jω))dω.



Mixed H2/H∞ control via nonsmooth optimization 3

Algorithmically it is convenient to compute function values using a state space real-
ization of P 2:

P 2(s) =

[
0 D2u

Dy2 0

]
+

[
C2

C

]
(sI −A)−1[ B2 B ].

Introducing the closed-loop state space data:

A(K) =

[
A+BDKC BCK

BKC AK

]
, B2(K) =

[
B2 +BDKDy2

BKDy2

]
,

C2(K) = [ C2 +D2uDKC D2uCK ], D2(K) = D2uDKDy2 = 0,

we either assume D2u = 0 or Dy2 = 0, or that the controller K is strictly proper,
to ensure finiteness of the H2 norm. Then a realization of the closed-loop transfer
function T2 is given as:

T2(K, s) = C2(K)(sI −A(K))−1B2(K)

and (see e.g. [21]) the objective function f may be re-written as

f(K) = Tr(B2(K)T X(K) B2(K)) = Tr(C2(K) Y (K) C2(K)T ),

where X(K) and Y (K) are the solutions of two Lyapunov equations:

A(K)TX(K) +X(K)A(K) + C2(K)TC2(K) = 0,
A(K)Y (K) + Y (K)A(K)T + B2(K)B2(K)T = 0.

(3.1)

As observed in [42, Section 3], one proves differentiability of the objective f over
the set D of closed-loop stabilizing controllers K. In order to write the derivative
f ′(K)dK in a gradient form, we introduce the gradient ∇f(K) of f at K defined by:

f ′(K)dK = Tr[∇f(K)T dK],

meaning that ∇f(K) is now an element of the same matrix space as K. These results
lead to the following lemma which is an extension of [42, Theorem 3.2.]:

Lemma 3.1. The objective function f is differentiable on the open set D of
closed-loop stabilizing gains. For K ∈ D, the gradient of f at K is:

∇f(K) = 2
[
BTX(K) +DT

2uC2(K)
]
Y (K)CT + 2BTX(K)B2(K)DT

y2,

where X(K) and Y (K) solve (3.1).

4. The H∞-norm. The next element required in (2.3) is the constraint function
g = ‖ · ‖2

∞ ◦ Tw∞→z∞
, a composite function of the H∞-norm. To compute it we will

use a frequency domain representation of the H∞ norm. Let us for brevity write
T∞ := Tw∞→z∞

. The corresponding plant is P∞, obtained by deleting the w2 column
and the z2 line in P . The constraint function g may be written as

g(K) = max
ω∈[0,∞]

σ (T∞(K, jω))
2

= max
ω∈[0,∞]

λ1

(
T∞(K, jω)HT∞(K, jω)

)
,

where σ is the maximum singular value of a matrix, λ1 the maximum eigenvalue of a
Hermitian matrix. We re-write this as

g(K) = max
ω∈[0,∞]

g(K,ω), g(K,ω) = λ1

(
T∞(K, jω)HT∞(K, jω)

)
.
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Then it is clear that g(K) is nonsmooth with two possible sources of non-smoothness,
the infinite maximum, and the maximum eigenvalue function, which is convex but
nonsmooth. We present two basic results, which allow to exploit the structure of g
algorithmically. The following can be found in several places, e.g. [12, 11]:

Lemma 4.1. Let K be closed-loop stabilizing. Then g(K) = ‖T∞(K)‖2
∞ <∞, and

the set of active frequencies at K, defined as Ω(K) = {ω ∈ [0,∞] : g(K) = g(K,ω)}
is either finite, or Ω(K) = [0,∞].

The case Ω(K) = [0,∞] is when the closed-loop system is all-pass. It may very
well arise in practice, for instance, full order (nx = nK) optimal H∞ controllers are
all-pass; see [26]. A similar result holds for full order H2/H∞-control; see [20]. But
we never observed it in cases where the order of the controller nK < nx is way smaller
than the order of the system.

The following result was already used in [5, 7]. It allows to compute Clarke
subgradients of the H∞ norm and its composite function g. To represent it, we find
it convenient to introduce the notation

[
T∞(K, s) G∞

12(K, s)
G∞

21(K, s) ⋆

]
=

[
C∞(K)
C

]
(sI −A(K))−1 [ B∞(K) B ]

+

[
D∞(K) D∞u

Dy∞ ⋆

]

where the closed-loop state-space data (A(K),B∞(K), C∞(K),D∞(K)) are given by:

A(K) =

[
A+BDKC BCK

BKC AK

]
, B∞(K) =

[
B∞ +BDKDy∞

BKDy∞

]
,

C∞(K) =
[
C∞ +D∞uDKC D∞uCK

]
, D∞(K) = D∞ +D∞uDKDy∞.

Lemma 4.2. (See [5, Section IV], [14, p. 304]). Suppose K is closed-loop
stabilizing and Ω(K) is finite. Then the Clarke subdifferential of g at K is the set

∂g(K) =



ΦY : Y = (Yω)ω∈Ω(K), Yω � 0,

∑

ω∈Ω(K)

Tr(Yω) = 1, Yω ∈ S
rω



 ,

where rω is the multiplicity of λ1

(
T∞(K, jω)HT∞(K, jω)

)
, and where

ΦY =
∑

ω∈Ω(K)

2Re
(
G∞

21(K, jω)T∞(K, jω)HQωYωQ
H
ω G

∞
12(K, jω)

)T
.

Here the columns of the m×rω matrix Qω form an orthonormal basis of the eigenspace
of T∞(K, jω)HT∞(K, jω) ∈ S

m associated with its maximum eigenvalue.
Remark. Notice that the result extends to the all-pass case by replacing convex

combinations over a finite set Ω(K) by Radon probability measures on [0,∞]. This
may still be exploited algorithmically, should the case of an all-pass system ever arise
in practice. Since this never occurred in our tests, this line is not investigated here.
�

5. Nonsmooth algorithm. In this central Section we present our main result,
a nonsmooth and nonconvex optimization method for program (2.3). In subsection
5.1 we will have a look at the necessary optimality conditions for program (2.3). The
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algorithm is elaborated and presented in Subsections 5.2 - 5.4. The convergence proof
will follow in Section 6.

As the reader will notice, our method can be applied to a larger class of programs
with a structure similar to (2.3). In consequence, during what follows we aim at a
certain level of generality. In particular, to comply with the more standard notation in
optimization, we denote the decision variable as x ∈ R

n, where n = (nK + nu)(nK +
ny) in our previous terminology. This means vectorization of the matrix variable
previously denoted K.

5.1. Optimality conditions. Following an idea in [41], we address program
(2.3) by introducing a progress function:

F (y;x) = max
{
f(y) − f(x) − µ[g(x) − γ2

∞]+; [g(y) − γ2
∞] − [g(x) − γ2

∞]+
}
,(5.1)

where µ > 0 is a fixed parameter. All we need to know about f is that it is of class
C2, while g is assumed of the form

g(x) = max
ω∈[0,∞]

g(x, ω) = max
ω∈[0,∞]

λ1(G(x, ω))

with G : R
n × [0,∞] → S

m of class C2 in the variable x ∈ R
n, and jointly continuous

in (x, ω). This is in accordance with our previous terminology, where G(x, ω) =
T∞(K, jω)HT∞(K, jω) with x = vec(K), and where m = nz∞

or m = nw∞
, and

where n = (nK + ny)(nK + nu). We have the following preparatory
Lemma 5.1. 1) If x̄ ∈ R

n is a local minimum of (2.3), then x̄ is also a local
minimum of F (·; x̄). In particular, this implies 0 ∈ ∂1F (x̄; x̄).

2) If x̄ satisfies the F. John necessary optimality conditions for program (2.3),
then 0 ∈ ∂1F (x̄; x̄).

3) Conversely, suppose 0 ∈ ∂1F (x̄; x̄) for some x̄ ∈ R
n. Then we have the follow-

ing possibilities:
(i) Either g(x̄) > γ2

∞, then x̄ is a critical point of g, called a critical point of
constraint violation.

(ii) Or g(x̄) ≤ γ2
∞, then x̄ satisfies the F. John necessary optimality conditions

for program (2.3). In addition, there are two sub-cases
(iia) Either x̄ is a Karush-Kuhn-Tucker (KKT) point of (2.3), or
(iib) x̄ fails to be a KKT-point of (2.3). This could only happen when g(x̄) =

γ2
∞ and at the same time 0 ∈ ∂g(x̄).

Proof. a) Let us prove statement 1). Notice that F (x̄; x̄) = 0. We therefore have to
show F (x; x̄) ≥ 0 for x in a neighborhood of x̄. If x is feasible in (2.3), i.e., g(x) ≤ γ2

∞,
then F (x; x̄) = max{f(x)−f(x̄); g(x)−γ2

∞} ≥ f(x)−f(x̄) ≥ 0 for x in a neighborhood
of x̄. Here we use the fact that x̄, being optimal, is feasible, so [g(x̄)− γ2

∞]+ = 0. On
the other hand, when x is infeasible, we find F (x; x̄) ≥ g(x) − γ2

∞ > 0. This settles
statement 1).

b) To prepare the remaining statements, let us first notice that 0 ∈ ∂1F (x̄; x̄)
is equivalent to the following condition: There exists 0 ≤ t̄ ≤ 1 such that 0 =
t̄f ′(x̄) + (1 − t̄)φ for some φ ∈ ∂g(x̄), where both branches of F (x̄; x̄) have to be
active as soon as 0 < t̄ < 1. The latter allows to distinguish the cases g(x̄) > γ2

∞ and
g(x̄) ≤ γ2

∞.
c) First consider the case g(x̄) > γ2

∞. Here the left hand branch of F (x̄; x̄), being
strictly negative, cannot be active, which means t̄ = 0. In consequence, 0 ∈ ∂g(x̄).
This is the case of a critical point of constraint violation, so it proves (i) in 3).
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d) Next consider the case g(x̄) ≤ γ2
∞. In order to show that x̄ satisfies the F. John

necessary optimality conditions, it remains to check complementarity. If g(x̄) = γ2
∞,

there is nothing to prove, so assume g(x̄) < γ2
∞. Then the right hand branch of

F (x̄; x̄) is negative, so it cannot be active, meaning that (1− t̄) = 0. Since this is the
Lagrange multiplier for the constraint, this proves the first part of statement 3 (ii).

e) It remains to distinguish the two cases (iia) and (iib). Let us see in which
cases a F. John critical point can fail to satisfy the KKT-conditions. That concerns
the case where t̄ = 0, and at the same time g(x̄) ≤ γ2

∞. But g(x̄) < γ2
∞ is impossible

here, because the right hand branch of F (x̄; x̄) has to be active. Then it turns out
that g(x̄) = γ2

∞ and 0 ∈ ∂g(x̄) is the only case where KKT fails. It may be considered
as the limiting case of a critical point x̄ of constraint violation. This settles all cases
in statement 3).

f) Finally, to prove statement 2), let x̄ satisfy the F. John necessary optimality
conditions for (2.3). From b) we immediately see that it also satisfies 0 ∈ ∂1F (x̄; x̄).

Remark. 1) Lemma 5.1 shows why we should search for points x̄ satisfying
0 ∈ ∂1F (x̄; x̄). It also indicates that minimizing F leads to so-called phase I/phase
II methods (see [41, section 2.6]). Namely, as long as iterates stay infeasible, the
right hand term in F is dominant, so reducing F reduces constraint violation. This
corresponds to phase I. Once a feasible iterate has been found, phase I terminates
successfully and iterates will henceforth stay feasible. This is where phase II begins
and f is optimized.

2) Condition (i) above addresses the case where phase I fails because iterates get
stuck at a limit point x̄ with value g(x̄) > γ2

∞, which is a local minimum (a critical
point) of g alone. A first-order method may get trapped at such points, and in classical
mathematical programming second order techniques are used to avoid them. Here we
are working with a nonsmooth program, where second order methods are difficult to
come up with (see however [38], where such a method is discussed, and also [11]).
Fortunately, in H2/H∞ control, feasible iterates are usually available, so phase I can
even be avoided. Notice also that case (iib) may be considered the limiting case of (i).

3) In [43] Sagastizábal and Solodov use a different progress function, referred to
as an improvement function, which does not feature the penalty term µ[g(x)− γ2

∞]+.
Since this term equals 0 in phase II, both criteria lead to the same steps in phase II,
and differences could only occur in phase I. Now observe that with the improvement
function, every step has to be a descent step for both the objective f and the con-
straint g. In contrast, in our approach, when reducing constraint violation, a slight
increase in f not exceeding µ[g(x) − γ2

∞]+ is granted. This helps the algorithm in
not being trapped at infeasible local minima of f alone, and is therefore a possi-
ble advantage. Naturally, the difficulty of local minima of g alone (local minima of
constraint violation) remains with both criteria. We will come back to this issue in
section 7.5, where numerical results are discussed. It turns out that a sound choice of
µ is important and gives better numerical results. �

5.2. First local model. In this Section we introduce a local model for F in a
neighborhood of the current iterate x. Let us first introduce an approximation of g
in a neighborhood of x, by linearizing the operator y 7→ G(y, ω) around x:

g̃(y;x) = max
ω∈[0,∞]

λ1 (G(x, ω) +G′(x, ω)(y − x)) (5.2)

= max
ω∈[0,∞]

max
Z∈C

Z • (G(x, ω) +G′(x, ω)(y − x)) ,
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where C = {Z ∈ S
m : Z � 0, tr(Z) = 1}, and where the derivative G′(x, ω) refers to

the variable x. Notice that g̃(x;x) = g(x). By Taylor’s theorem we expect g̃(y;x) to
be a good approximation of g(y) for y in a neighborhood of x.

We now obtain an approximation of F in a neighborhood of x by introducing:

F̃ (y;x) = max
{
f ′(x)(y − x) − µ[g(x) − γ2

∞]+; [g̃(y;x) − γ2
∞] − [g(x) − γ2

∞]+
}
.

(5.3)

Notice that F̃ (x;x) = F (x;x), and that F̃ (y;x) is close to F (y;x) for y close to x.
The following result renders these statements exact:

Lemma 5.2. Let B ⊂ R
n be a bounded set. Then there exists L > 0 such that for

all x, y ∈ B:

|g(y) − g̃(y;x)| ≤ L‖y − x‖2 and |F (y;x) − F̃ (y;x)| ≤ L‖y − x‖2.

Proof. By Weyl’s theorem we have λm(E) ≤ λ1(A+ E) − λ1(A) ≤ λ1(E), for all
matrices A,E ∈ S

m. We apply this to A = G(y, ω) and A+E = G(x, ω)+G′(x, ω)(y−
x). Then E = O(‖y − x‖2), uniformly over x, y ∈ B and uniformly over ω ∈ [0,∞],
which is a compact set. Here we use the fact that the operators G(·, ω) are of class
C2 in x and jointly continuous in (x, ω). More precisely

sup
ω∈[0,∞]

sup
z∈co(B)

‖G′′(z, ω)‖ <∞.

This proves |g(y) − g̃(y;x)| ≤ L1‖y − x‖2 for some L1 > 0 and all x, y ∈ B.
Moreover, f is of class C2, so that by Taylor’s formula there exists L2 > 0 such

that |f(y) − f(x) − f ′(x)(y − x)| ≤ L2‖y − x‖2 uniformly over x, y ∈ B. With
L = max{L1, L2} we obtain

|F (y;x) − F̃ (y;x)| ≤ max {|f(y) − f(x) − f ′(x)(y − x)|; |g(y) − g̃(y;x)|}
≤ L‖y − x‖2.

It is convenient to represent the local model (5.2) differently. Let us introduce

α(ω,Z) = [Z •G(x, ω) − γ2
∞] − [g(x) − γ2

∞]+ ∈ R, φ(ω,Z) = G′(x, ω)⋆Z ∈ R
n,

where dependence on the point x is suppressed for convenience. Then the right hand
branch of F̃ (y;x) may be written as the envelope of cutting planes

[g̃(y;x) − γ2
∞] − [g(x) − γ2

∞]+ = sup
ω∈[0,∞]

sup
Z∈C

α(ω,Z) + φ(ω,Z)T (y − x).

Adding the left hand branch of F̃ (y;x) by introducing

α0 = −µ[g(x) − γ2
∞]+, φ0 = f ′(x),

we can introduce

G = co ({(α(ω,Z), φ(ω,Z)) : ω ∈ [0,∞], Z ∈ C} ∪ {(α0, φ0)}) .

Then the local model F̃ (y;x) may be written as

F̃ (y;x) = max{α+ φT (y − x) : (α, φ) ∈ G}. (5.4)

The advantage of (5.4) over (5.3) is that elements (α, φ) of G are easier to store than
elements (ω,Z) ∈ [0,∞]× C. Also, as we shall see, it is more convenient to construct
approximations Gk of G. This is addressed in the next section.
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5.3. Second local model and tangent program. Suppose x is the current
iterate of our algorithm to be designed. In order to generate trial steps away from
x, we will recursively generate approximations F̃k(y;x) of F̃ (y;x), referred to as the
working models. Using (5.4), these will be of the form

F̃k(y;x) = max{α+ φ⊤(y − x) : (α, φ) ∈ Gk}, (5.5)

where Gk ⊂ G. In particular, F̃k(y;x) ≤ F̃ (y;x), with exactness F̃k(x;x) = F̃ (x;x) =
F (x;x) = 0 at y = x. Moreover, our construction presented below assures that

∂1F̃k(x;x) ⊂ ∂1F (x;x) for all k and that the F̃k get closer to F̃ as k increases. In
tandem with the proximity control management described in Section 6, this will also
assure that the F̃k get closer to the true F . Once the set Gk is formed, a new trial
step yk+1 is computed via the tangent program:

min
y∈Rn

F̃k(y;x) + δk

2 ‖y − x‖2. (5.6)

Here δk > 0 is the so-called proximity control parameter, which is specified anew at
each step. How this should be organized will be explained in section 6.

Notice that by convexity yk+1 is a solution of (5.6) as soon as

0 ∈ ∂1F̃k(yk+1;x) + δk(yk+1 − x). (5.7)

The first question is what happens if the solution of the program (5.6) is yk+1 = x?
Lemma 5.3. Suppose yk+1 = x is solution of the tangent program (5.6). Then

0 ∈ ∂1F (x;x).

This is indeed clear in view of (5.7), because we get 0 ∈ ∂1F̃k(x;x), which implies

0 ∈ ∂1F (x;x) by the property ∂1F̃k(x;x) ⊂ ∂1F (x;x) of a working model. The

conclusion is that as soon as 0 6∈ ∂1F (x;x), then 0 6∈ ∂1F̃k(x;x), and the trial step
yk+1 will always offer something new. In particular, if 0 6∈ ∂1F (x, x), then we know

for sure that F̃k(yk+1;x) < F̃ (x;x) = 0, so that there is always a progress predicted

by F̃k.
Remark. In the light of Lemma 5.3 it may seem natural to confine the test

0 ∈ ∂1F̃ (x;x) (step 2 of the algorithm) to the first instance of the tangent program

k = 1. Indeed, if 0 ∈ ∂1F̃1(x;x), then the first tangent program will detect this and
return y2 = x, in which case we quit. However, notice that this does not work the
other way round. If 0 ∈ ∂1F (x;x), then the tangent program based on F̃k may still
find yk+1 6= x, in which case we would not necessarily stop the inner loop. Only when
∂1F̃k(x;x) = ∂1F (x;x) are we certain that yk+1 = x. In other words, if we wish to
confine the test in step 2 of the algorithm to the first instance of the tangent program
in step 4, we have to use the full subdifferential ∂1F̃1(x;x) = ∂1F (x;x). As soon as
y2 6= x, then the inner loop is entered, and this condition is no longer required for the
following F̃k. In any case, letting ∂1F̃k(x;x) = ∂1F (x;x) does not pose a numerical
problem if ∂1F (x;x) is not exceedingly large. �

From now on we assume 0 /∈ ∂1F (x, x). The solution yk+1 of (5.6) is then predict-
ing a decrease of the value of the progress function (5.1) at yk+1. This gives yk+1 the
option to improve over the current iterate x and become the new iterate x+. For this
to happen, we have to make sure that F̃k is a good model of F in the neighborhood
of x.

According to standard terminology, when yk+1 is accepted as the new iterate x+,
it is called a serious step, while trial points yk+1 which are rejected are called null
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steps. If yk+1 is a null step and has to be rejected, we use it to improve the model
Gk+1 at the next sweep.

Let us now show in detail how to construct the sets Gk. We choose them of the
form

Gk = co (G0 ∪ Gc
k ∪ G∗

k) , k = 1, 2, . . . , (5.8)

where we refer to G0 as the subgradient elements, to Gc
k as the cutting planes, and

to G∗
k as the aggregate element. The first property concerns G0, which is held fixed

during the iteration k.

Lemma 5.4. Let ω0 ∈ Ω(x) be any of the active frequencies at x. Choose a nor-
malized eigenvector e0 associated with the maximum eigenvalue g(x) = λ1(G(x, ω0)) of
G(x, ω0), and let Z0 := e0e

T
0 ∈ C. If we let (α0, φ0) ∈ G0 and (α(ω0, Z0), φ(ω0, Z0)) ∈

G0, and if G0 ⊂ Gk, then we have F̃k(x;x) = F (x;x) = 0 at all times k.

In practice it is useful to enrich the set G0 so that it contains the subdifferential
∂1F (x;x) at x. This can be arranged in those cases where Ω(x), the set of active
frequencies, is finite. For every ω ∈ Ω(x) let rω ≥ 1 be the eigenvalue multiplicity
of λ1 (G(x, ω)). Let the rω columns of Qω be an orthonormal basis of the maximum
eigenspace of G(x, ω). Then put

G0 = co

({
(α(ω,Zω), φ(ω,Zω)) : ω ∈ Ω(x), Zω = QT

ωYωQω,

Yω ∈ S
rω , Yω � 0,Tr(Yω) = 1} ∪ {(α0, φ0)}

)
. (5.9)

We observe that this set is not finitely generated, but can be handled as a semidefinite
programming constraint via the matrices Yω. However, for our convergence proof it
would be sufficient to keep just the one element required by Lemma 5.4 in G0.

Let us now look at the cutting plane sets Gc
k. Here we use a recursive construction.

Suppose the solution yk+1 of tangent program (5.6) based on the latest model Gk is a
null step. Then we need to improve the next model Gk+1, and this is done by including
a cutting plane in the new set Gc

k+1, which cuts away the unsuccessful trial step yk+1.

Lemma 5.5. Let yk+1 be the solution of tangent program (5.6) at stage k and
suppose yk+1 is a null step. Suppose the right hand branch of (5.3) is active at
yk+1, and let ωk+1 ∈ [0,∞] and Zk+1 ∈ C be one of the pairs where the maxi-
mum (5.2) is attained, that is, g̃(yk+1;x) − γ2

∞ − [g(x) − γ2
∞]+ = α(ωk+1, Zk+1) +

φ(ωk+1, Zk+1)
T (yk+1 − x). If we keep (α(ωk+1, Zk+1), φ(ωk+1, Zk+1)) ∈ Gc

k+1 then

F̃k+1(y
k+1;x) = F̃ (yk+1;x).

Remark. 1) Following standard terminology, we refer to this procedure as the
cutting plane element. In fact, adding ωk+1 and Zk+1 to the approximations at the
next step k + 1 will cut away the unsuccessful null step yk+1, paving the way for a
better yk+2 at the next sweep.
2) If the right hand branch in (5.3) is not active, it suffices to have the pair (α0, φ0) ∈
Gk+1. As we keep this in G0 anyway, no action on cutting planes is required in this
event, i.e. we may have Gc

k+1 = ∅. �

In practice it will be useful to enrich the set Gc
k+1 by what we call anticipating

cutting planes. Let us again consider the case of a finite set Ω(x). We select a finite
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extension Ωe(x) of Ω(x) along the lines described in [5]. We let

Gc
k+1 = co

(
{(α(ωk+1, Zk+1), φ(ωk+1, Zk+1))} ∪ (5.10)

{
(α(ω,Zω), φ(ω,Zω)) : ω ∈ Ωe(x) \ Ω(x), Zω = QT

ωYωQω, Yω � 0,Tr(Yω) = 1
} )

,

where the columns of Qω are an orthonormal basis of some invariant subspace of
λ1 (G(x, ω)). Notice that for ω ∈ Ωe(x) \ Ω(x), the support planes belonging to
(α(ω,Zω), φ(ω,Zω)) are indeed different in nature from those retained in G0, because
they will not be exact at y = x. We may have α(ω,Zω) < 0, so these planes resemble
cutting planes, which are exact at the null steps yk+1.

Notice that convergence theory requires only (α(ωk+1, Zk+1), φ(ωk+1, Zk+1)) ∈
Gc

k+1 for the element of Lemma 5.5.
Remark. Notice that the planes in G0 are exact at x, while genuine cutting

planes are exact at the null steps yk+1. Anticipated cutting planes need not be exact
anywhere, but we have observed that they often behave similar to true cutting planes
and can help to avoid a large number of unsuccessful null steps. �

We need yet another process to improve the model Gk+1, which in the nonsmooth
terminology is referred to as aggregation, and which is needed in order to avoid storing
an increasing number of cutting planes. Suppose that the solution yk+1 of the old
tangent program (5.6) based on Gk is a null step. By the optimality condition we have

0 ∈ ∂1F̃k(yk+1;x) + δk(yk+1 − x). Using the representation (5.4) and the form (5.8),
we find (α0, φ0) ∈ G0, (αk+1, φk+1) ∈ Gc

k and (α∗
k, φ

∗
k) ∈ G∗

k together with convex
coefficients τ0 ≥ 0, τk+1 ≥ 0, τ∗k ≥ 0, τ0 + τk+1 + τ∗k = 1, such that

0 = τ0φ0 + τk+1φk+1 + τ∗kφ
∗
k + δk(yk+1 − x).

We put α∗
k+1 = τ0α0 + τk+1αk+1 + τ∗kα

∗
k ∈ R, φ∗k+1 = τ0φ0 + τk+1φk+1 + τ∗kφ

∗
k ∈ R

n

and keep (α∗
k+1, φ

∗
k+1) ∈ G∗

k+1, calling it the aggregate element. Notice that we have
(α∗

k+1, φ
∗
k+1) ∈ G by convexity. Altogether, this shows

0 = φ∗k+1 + δk(yk+1 − x). (5.11)

Lemma 5.6. Keeping the aggregate element (α∗
k+1, φ

∗
k+1) in the new G∗

k+1 assures

F̃k+1(y
k+1;x) ≥ F̃k(yk+1;x), and that (5.11) is satisfied.

To conclude this section, let us outline how the tangent program based on the
form (5.4) and (5.8) is solved. Notice first that elements of G0 ∪ Gc

k have the same
form (α(ω,Zω), φ(ω,Zω)), where ω ∈ Ωe(x) for some finite extension of Ω(x), and
Zω = QT

ωYωQω for some Yω � 0, Tr(Yω) = 1. To this we add the aggregate element

(α∗
k, φ

∗
k), and the element (α0, φ0) coming from the left hand branch of F̃ . This means,

after relabelling the finite set Ωe(x) as {ω1, . . . , ωp}, we can write (5.6) in the form

min
y∈Rn

max

{
α0 + φT

0 (y − x); max
r=1,...,p

max
Yr�0,Tr(Yr)=1

αr(Yr) + φr(Yr)
T (y − x);

αp+1 + φT
p+1(y − x)

}
+
δk
2
‖y − x‖2,

where αr(Yr) = α(ωr, Zωr
), etc., and where the aggregate element (α∗

k, φ
∗
k) is rela-

belled (αp+1, φp+1). Replacing the maximum over the three branches by a maximum
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over the convex hull of the three does not change the value of this program. Us-
ing Fenchel duality, we may then swap the min and max operators. The then inner
minimum can be computed explicitly, which leads to the expression

yk+1 = x−
1

δk

(
τ0φ0 +

p∑

r=1

τrφr(Yr) + τp+1φp+1

)
,

where (τ, Y ) is the dual variable. Substituting this back into the dual program, using
linearity of φ(Y ) in Y , and re-writing τrYr as a new matrix Yr with Tr(Yr) = τr, leads
to the dual program

maximize τ0α0 +

p∑

r=1

αr(Yr) + τp+1αp+1 −
1

2δk

∥∥∥∥∥τ0φ0 +

p∑

r=1

φr(Yr) + τp+1φp+1

∥∥∥∥∥

2

subject to τ0 ≥ 0, τp+1 ≥ 0, Yr � 0 and τ0 +

p+1∑

r=0

Tr(Yr) + τp+1 = 1

which we recognize as the concave form of a semidefinite program (SDP), as soon as
we write φr(Yr) in its original form G′(x, ωr)

⋆QT
ωr
YrQωr

. The return formula becomes

yk+1 = x−
1

δk

(
τ∗0φ0 +

p∑

r=1

φr(Y
∗
r ) + τ∗p+1φp+1

)
, (5.12)

where the dual optimal solution is (τ∗0 , Y
∗
1 , . . . , Y

∗
p , τ

∗
p+1). Notice that this SDP is

usually of small size, so that solving a succession of these programs seems a satisfactory
strategy.

To conclude, we consider the case of particular interest, where the eigenvalue mul-
tiplicity of all matrices involved is 1, or where we decide to keep only one eigenvector
for each leading eigenvalue. If λ1(G(x, ω)) has eigenvalue multiplicity rω = 1, the ma-
tricesQω are just column vectors eω, where eω is the normalized eigenvector associated
with λ1(G(x, ω)) and Yω = 1. Similarly, for the latest cutting plane we then haveQω =
eω for the normalized eigenvector of λ1

(
G(x, ω) +G′(x, ω)(yk+1 − x)

)
. In this case

the sets G0, G
c
k are finite, and so Gk itself is a polyhedron co{(α0, φ0), . . . , (αp+1, φp+1)}

where card(Ωe(x)) = p. In this case the dual program is a convex quadratic program
which can be solved very efficiently:

maximize

p+1∑

r=0

τrαr −
1

2δk

∥∥∥∥∥

p+1∑

r=0

τrφr

∥∥∥∥∥

2

subject to τr ≥ 0, r = 0, . . . , p+ 1 and

p+1∑

r=0

τr = 1

with dual optimal solution τ∗, and the return formula is yk+1 = x−
1

δk

p+1∑

r=0

τ∗r φr.

5.4. The algorithm. In this section we present the nonsmooth spectral bundle
algorithm for program (2.3).
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Algorithm 1. Proximity control algorithm for the H2/H∞ program (2.3)

Parameters: 0 < γ < γ̃ < Γ < 1.
1: Initialize outer loop. Find initial x1 such that f(x1) <∞ and g(x1) <∞. Put

outer loop counter j = 1.
2: Outer loop. At outer loop counter j, stop at the current iterate xj if 0 ∈
∂1F (xj ;xj). Otherwise compute Ω(xj) and continue with inner loop.

3: Initialize inner loop. Choose approximation G1 of G as in (5.8), where G0

contains (α(ω0, Z0), φ(ω0, Z0)) for some fixed ω0 ∈ Ω(xj) and Z0 = e0e
T
0 , where

e0 is a normalized eigenvector associated with λ1(G(xj , ω0)). Possibly enrich G0

as in (5.9). Initialize Gc
1 = ∅, G∗

1 = ∅, but possibly enrich using anticipated cutting
planes (5.10). Initialize proximity parameter δ1 > 0. If memory element for δ is
available, use it to initialize δ1. Put inner loop counter k = 1.

4: Trial step. At inner loop counter k for given approximation Gk and proximity
control parameter δk > 0, solve tangent program:

min
y∈Rn

F̃k(y;xj) +
δk
2
‖y − xj‖2,

whose solution is yk+1.
5: Test of progress. Check whether

ρk =
F (yk+1;xj)

F̃k(yk+1;xj)
≥ γ.

If this is the case, accept trial step yk+1 as the new iterate xj+1 (serious step).
Compute new memory element δ+ as:

δ+ =





δk
2

if ρk > Γ

δk otherwise
Increase outer loop counter j → j + 1, and go back to step 2. If ρk < γ continue
inner loop with step 6 (null step).

6: Cutting plane. Select a frequency ωk+1 where g̃(yk+1, xj) is active and
pick a normalized eigenvector ek+1 associated with the maximum eigenvalue
of G(xj , ωk+1) + G′(xj , ωk+1)(y

k+1 − xj). Put Zk+1 = ek+1e
T
k+1 and assure

(α(ωk+1, Zk+1), φ(ωk+1, Zk+1)) ∈ Gc
k+1. Possibly enrich Gc

k+1 by anticipating cut-
ting planes as in (5.10).

7: Aggregation. Keep aggregate pair (α∗
k+1, φ

∗
k+1) as in (5.11) in G∗

k+1.
8: Proximity control. Compute control parameter

ρ̃k =
F̃ (yk+1;xj)

F̃k(yk+1;xj)
.

Update proximity parameter δk as

δk+1 =





δk, if ρk < γ and ρ̃k < γ̃

2δk if ρk < γ and ρ̃k ≥ γ̃
Increase inner loop counter k and go back to step 4.

6. Management of the proximity parameter. In this Section the conver-
gence proof of algorithm 1 will be given.

To begin with, let us explain the management of the proximity control parameter
in steps 5 and 8. Notice that there are two control mechanisms, governed by the
control parameters ρk and ρ̃k. In step 5, test parameter ρk compares the current
model F̃k to the truth F . The ideal case would be ρk ≈ 1, but we accept yk+1 = xj+1
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much earlier, namely if ρk ≥ γ, where the reader might for instance imagine γ = 1
4 .

Let us call yk+1 bad if ρk < γ. So null steps are bad, while serious steps are not bad.
Imagine further that Γ = 3

4 , then steps yk+1 with ρk > Γ are good steps. In the good

case the model F̃k seems very reliable, so we can relax proximity control a bit at the
next outer step. This is arranged by memorizing δ+ = δk/2 in step 5 of the algorithm.

It is more intriguing to decide what we should do when ρk < γ, meaning that yk+1

is bad (a null step). Here we need the second control parameter ρ̃k in step 8 to support

our decision. Adopting the same terminology, we say that the agreement between F̃
and F̃k is bad if ρ̃k < γ̃. If this is the case, we keep δk+1 = δk unchanged, being
reluctant to increase the δ-parameter prematurely, and continue to rely on cutting
planes and aggregation, hoping that this will drive F̃k closer to F̃ (and also to F )
and bring home the bacon in the end. On the other hand, if ρ̃k ≥ γ̃, then we have to
accept that driving F̃k closer to F̃ alone will not do the job, simply because F̃ itself
is too far from the true F . Here we need to tighten proximity control, by increasing
δk+1 = 2δk at the next sweep. This is done in step 8 and brings F̃ closer to F .

Remark. Notice that the control parameters ρk and ρ̃k in steps 5 and 8 are well
defined because we only enter the inner loop when 0 6∈ ∂1F (x;x), in which case we

have F̃k(yk+1;x) < F̃k(x;x) = 0. �

6.1. Finiteness of inner loop. Let x be the current iterate of the outer loop.
We start our convergence analysis by showing that the inner loop terminates after a
finite number of updates k with a serious step yk+1 = x+. This will be proved in the
next three Lemmas.

Recall that yk+1 is solution of the tangent program (5.6) and may be obtained
from the dual optimal solution by the return formula (5.12), which is of the form

yk+1 = x−
1

δk


τ0f ′(x) +

∑

ω∈Ωe(x)

τωG
′(x, ω)⋆Zω




for a finite extension Ωe(x) of Ω(x) and for certain Zω ∈ C. Since the sequence δk in
the inner loop is nondecreasing, we have the following

Lemma 6.1. The solutions yk+1 of (5.6) satisfy

‖yk+1‖ ≤ ‖x‖ + δ−1
1

(
‖f ′(x)‖ + max

ω∈[0,∞]
‖G′(x, ω)⋆‖

)
<∞. (6.1)

We are now ready to prove finite termination of the inner loop. Our first step is
the following

Lemma 6.2. Suppose the inner loop turns forever and creates an infinite sequence
yk+1 of null steps with ρk < γ. Then there must be an instant k0 such that the control
parameter ρ̃k satisfies ρ̃k < γ̃ for all k ≥ k0.

Proof. Indeed, by assumption none of the trial steps yk+1 passes the acceptance
test in step 5, so ρk < γ at all times k. Suppose now that ρ̃k ≥ γ̃ an infinity of times
k. Then according to step 8 the proximity control parameter δk is increased infinitely
often, meaning δk → ∞.

Using the fact that yk+1 is the optimal solution of the tangent program (5.6) gives

0 ∈ ∂1F̃k(yk+1;x) + δk(yk+1 − x). Using convexity of F̃k(·;x), we deduce that

−δk(yk+1 − x)T (x− yk+1) ≤ F̃k(x;x) − F̃k(yk+1;x)
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Using F̃k(x;x) = F (x;x) = 0, assured by keeping (α(ω0, Z0), φ(ω0, Z0)) ∈ G0 ⊂ Gk at
all times (Lemma 5.4), we obtain

δk‖y
k+1 − x‖2

−F̃k(yk+1;x)
≤ 1. (6.2)

Next, applying Lemma 5.2 to the bounded set B = {yk+1 : k ∈ N} ∪ {x} gives

∣∣∣F (yk+1;x) − F̃ (yk+1;x)
∣∣∣ ≤ L‖yk+1 − x‖2 (6.3)

for some L > 0 and every k ∈ N. Now we expand the control parameters ρk and ρ̃k

as follows:

ρ̃k = ρk +
F (yk+1;x) − F̃ (yk+1;x)

−F̃k(yk+1;x)

≤ ρk +
L‖yk+1 − x‖2

−F̃k(yk+1;x)
≤ ρk +

L

δk
(using (6.3) and then (6.2))

Since L/δk → 0, we deduce lim sup ρ̃k ≤ lim sup ρk ≤ γ < γ̃, which contradicts ρ̃k > γ̃
for infinitely many k.

So far we know that if the inner loop turns forever, this implies ρk < γ and ρ̃k < γ̃
from some counter k0 onwards. Our next Lemma shows that this cannot happen. We
refer the interested reader to [18, Proposition 4.3], where essentially the same result
is proved. For the sake of completeness and the coherence of notation we give our
own proof below.

Lemma 6.3. Suppose the inner loop turns forever and produces iterates yk+1 with
ρk < γ and ρ̃k < γ̃ for all k ≥ k0. Then 0 ∈ ∂1F (x;x).

Proof. 1) Step 8 of the algorithm tells us that from counter k0 onwards we are
in the case where the proximity parameter is no longer increased. We may therefore
assume that it remains unchanged for k ≥ k0, that is, δ := δk for all k ≥ k0.

2) For later use, let us introduce the function

ψk(y;x) = F̃k(y;x) + δ
2‖y − x‖2.

As we have seen already, the necessary optimality condition for the tangent program
implies

δ‖yk+1 − x‖2 ≤ F (x;x) − F̃k(yk+1;x) = −F̃k(yk+1;x).

Now remember that in step 7 of the algorithm we keep the aggregate (α∗
k+1, φ

∗
k+1) ∈

Gk+1. Let us define the function

ψ∗
k(y;x) = α∗

k+1 + φ∗T
k+1(y − x) + δ

2‖y − x‖2.

We claim that

ψ∗
k(yk+1;x) = ψk(yk+1;x) and ψ∗

k(y;x) ≤ ψk+1(y;x). (6.4)

Indeed, the inequality on the right is clear because (α∗
k+1, φ

∗
k+1) is retained in Gk+1

and therefore contributes to the supremum building ψk+1. As for the equality on the
left, observe that the aggregate subgradient φ∗k is the one which realizes the necessary
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optimality condition for tangent program (5.6) at stage k. Now ψk(·;x) is just the
objective of this program, so the function ψ∗

k(·;x) must be exact at yk+1.
We now prove the relationship

ψ∗
k(y;x) = ψ∗

k(yk+1;x) + δ
2‖y − yk+1‖2. (6.5)

Indeed, notice that ψ∗
k is a quadratic function, so expanding it gives

ψ∗
k(y;x) = ψ∗

k(yk+1;x) + ∇ψ∗
k(yk+1;x)T (y − yk+1)

+ 1
2 (y − yk+1)T∇2ψ∗

k(yk+1;x)(y − yk+1).

But ∇2ψ∗
k(yk+1;x) = δI, so in order to establish (6.5), we have but to show that

∇ψ∗
k(yk+1;x) = 0. To prove this observe that

∇ψ∗
k(yk+1;x) = φ∗k+1 + δ(yk+1 − x)

= −δ(yk+1 − x) + δ(yk+1 − x) = 0 (using (5.11))

so (6.5) is proved. Using this and the previous relations gives

ψk(yk+1;x) ≤ ψ∗
k(yk+1;x) + δ

2‖y
k+2 − yk+1‖2 (using (6.4) left)

= ψ∗
k(yk+2;x) (using (6.5))

≤ ψk+1(y
k+2;x) (using (6.4) right)

≤ ψk+1(x;x) (yk+2 is minimizer of ψk+1)

= F̃k(x;x) = F (x;x) = 0.

This proves that the sequence ψk(yk+1;x) is monotonically increasing and bounded
above, so it converges to some limit ψ∗ ≤ F (x;x) = 0. Since the term δ

2‖y
k+2−yk+1‖2

is squeezed in between two terms with the same limit ψ∗, we deduce:

δ
2‖y

k+2 − yk+1‖2 → 0.

Since the sequence yk+1 is bounded by Lemma 6.1, we deduce using a geometric
argument that:

‖yk+2 − x‖2 − ‖yk+1 − x‖2 → 0. (6.6)

Recalling the relation F̃k(y;x) = ψk(y;x) − δ
2‖y − x‖2, we finally obtain

F̃k+1(y
k+2;x)−F̃k(yk+1;x) (6.7)

= ψk+1(y
k+2;x) − ψk(yk+1;x) − δ

2‖y
k+2 − x‖2 + δ

2‖y
k+1 − x‖2

which converges to 0 due to ψk(yk+1;x) → ψ∗ proved above and property (6.6).
3) Let (αk+1, φk+1) be the cutting plane element obtained from the null step yk+1

which we retain in Gk+1. By construction this defines an affine support plane of F̃ (·;x)
at yk+1. But on the other hand the pair (αk+1, φk+1) also contributes to building of

the new model F̃k+1(·;x), so the new model must be exact at yk+1, because always

F̃k+1 ≤ F̃ , so the value of F̃ is the best F̃k+1 could possible attain. In other words,

φk+1 is also a subgradient of F̃k+1(·;x) at yk+1. That means

φT
k+1(y − yk+1) ≤ F̃k+1(y;x) − F̃k+1(y

k+1;x).
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Using F̃k+1(y
k+1;x) = F̃ (yk+1;x) we therefore have

F̃ (yk+1;x) + φT
k+1(y − yk+1) ≤ F̃k+1(y;x). (6.8)

Now observe that

0 ≤ F̃ (yk+1;x) − F̃k(yk+1;x)

= F̃ (yk+1;x) + φT
k+1(y

k+2 − yk+1) − F̃k(yk+1;x) − φT
k+1(y

k+2 − yk+1)

≤ F̃k+1(y
k+2;x) − F̃k(yk+1;x) + ‖φk+1‖‖y

k+2 − yk+1‖ (using (6.8))

and this term tends to 0 because of (6.7), boundedness of φk+1, and because yk+1 −
yk+2 → 0. We conclude that

F̃ (yk+1;x) − F̃k(yk+1;x) → 0. (6.9)

4) We now show that F̃k(yk+1;x) → F (x;x) = 0, and therefore by (6.9) also

F̃ (yk+1;x) → F (x;x) = 0. Suppose contrary to the claim that η := F (x;x) −

lim sup F̃k(yk+1;x) > 0. Choose 0 < θ < (1 − γ̃)η. It follows from (6.9) that there
exists k1 ≥ k0 such that

F̃ (yk+1;x) − θ ≤ F̃k(yk+1;x)

for all k ≥ k1. Using ρ̃k < γ̃ for all k ≥ k1 gives

γ̃(F̃k(yk+1;x) − F (x;x)) ≤ F̃ (yk+1;x) − F (x;x)

≤ F̃k(yk+1;x) + θ − F (x;x).

Passing to the limit implies γ̃η ≥ η − θ, contradicting the choice of θ. This proves
η = 0 as claimed.

5) Having shown F̃k(yk+1;x) → F (x;x) = 0, we now argue that we must have
yk+1 → x. This follows from the definition of yk+1, because

ψk(yk+1;x) = F̃k(yk+1;x) + δ
2‖y

k+1 − x‖2 ≤ ψk(x;x) = F (x;x) = 0.

Since F̃k(yk+1;x) → 0 by part 4), we have indeed yk+1 → x. To finish the proof,
observe that 0 ∈ ∂1ψk(yk+1;x) implies

δ(x− yk+1)T (y − yk+1) ≤ F̃k(y;x) − F̃k(yk+1;x)

≤ F̃ (y;x) − F̃k(yk+1;x) (6.10)

for every y. Passing to the limit gives

0 ≤ F̃ (y;x) − F̃ (x;x),

because the left hand side in (6.10) converges to 0 in view of yk+1 → x, and since

F̃k(yk+1;x) → F (x;x) by 3) above. Since ∂1F̃ (x;x) ⊂ ∂1F (x;x), we are done.

6.2. Convergence of outer loop. Let us consider the sequence (xj)j∈N of
serious steps generated by algorithm 1. We want to show that 0 ∈ ∂1F (x̄; x̄) for
every accumulation point x̄ of (xj)j∈N. We start by proving that under reasonable
hypotheses, the sequence of serious iterates of our algorithm is bounded.

Lemma 6.4. Suppose the following two hypotheses are satisfied:
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(H1) g is weakly coercive in the sense that if a sequence xj satisfies ‖xj‖ → ∞ and
g(xj) > γ2

∞, then g(xj) is not strictly monotonically decreasing.
(H2) f is weakly coercive on the level set {x ∈ R

n : g(x) ≤ γ2
∞} in the following

sense: if xj is a sequence of feasible iterates with ‖xj‖ → ∞, then f(xj) is
not strictly monotonically decreasing.

Then the sequence xj of serious iterates with starting point x1 generated by our algo-
rithm is bounded.

Proof. There are two cases to be discussed.
a) Suppose the iterates are all infeasible g(xj) > γ2

∞. In that case we use axiom
(H1). Notice that in phase I we have g(xj+1) − g(xj) ≤ F (xj+1, xj) < 0, so the
sequence g(xj) is strictly decreasing. Then xj is bounded by axiom (H1).

b) Suppose next that the iterates are feasible for j ≥ j0. In phase II we have
F (xj+1, xj) = max{f(xj+1) − f(xj), g(xj+1) − γ2

∞} ≤ 0, hence f(xj+1) < f(xj) for
j ≥ j0. Then by axiom (H2) the sequence xj could not be unbounded.

Remark. Notice that axiom (H2) is certainly satisfied if f is coercive in the usual
sense on the feasible set, that is, if f(xj) → ∞ for feasible iterates with ‖xj‖ → ∞.
Similarly, (H1) could be replaced by the hypothesis that the set {x ∈ R

n : γ2
∞ <

g(x) ≤ g(x1)} is bounded. �

We are now ready to prove convergence of the outer loop of algorithm 1:
Theorem 6.5. Let axioms (H1) and (H2) be satisfied. Then every accumulation

point x̄ of the sequence of serious steps xj generated by the algorithm satisfies 0 ∈
∂1F (x̄; x̄). In particular, x̄ is either a critical point of constraint violation, or a F.
John critical point of the mixed H2/H∞ program (2.3).

Proof. The second part of the statement follows from Lemma 5.1. Let us prove
0 ∈ ∂1F (x̄; x̄).

1) We first prove convergence F (xj+1;xj) → 0, (j → ∞). By construction, we
know that F (xj+1;xj) ≤ 0 for every j ∈ N. We now distinguish two cases:

1st case: there exists j0 ∈ N such that g(xj0) ≤ γ2
∞. From that index onwards we

have

F (xj+1;xj) = max
{
f(xj+1) − f(xj); g(xj+1) − γ2

∞

}
≤ 0,

hence f(xj+1) ≤ f(xj) and g(xj) ≤ γ2
∞. That means the sequence (f(xi))i∈N is

monotone decreasing from j0 onwards. For any accumulation point x̄ of (xj)j∈N, con-
tinuity of f shows f(x̄) is an accumulation point of (f(xi))i∈N, and by the monotone
sequences theorem, this implies f(xj) −→ f(x̄). Now for j ≥ j0 we have

F (xj+1;xj) = max
{
f(xj+1) − f(xj); g(xj+1) − γ2

∞

}
,

hence: lim inf
j→∞

F (xj+1;xj) ≥ lim
j→∞

f(xj+1)−f(xj) = 0. In tandem with F (xj+1;xj) ≤ 0

this clearly implies F (xj+1;xj) → 0, (j → ∞).

2nd case: g(xj) > γ2
∞ for all j ∈ N. Here

F (xj+1;xj) = max
{
f(xj+1) − f(xj) − µ[g(xj) − γ2

∞]; g(xj+1) − g(xj)
}
≤ 0.

Hence (g(xj))j∈N is monotonically decreasing. As in the first case, we prove that by
continuity of g, g(x̄) is an accumulation point and so a limit point of (g(xj))j∈N. We
deduce in the same way that F (xj+1;xj) → 0.

2) Suppose that at the jth stage of the outer loop the inner loop accepts a serious
step at k = kj . Then xj+1 = ykj+1. By the definition of ykj+1 as minimizer of the



18 P. Apkarian, D. Noll and A. Rondepierre

tangent program (5.6), this means

δkj

(
xj − xj+1

)
∈ ∂1F̃kj

(xj+1;xj).

By the subgradient inequality this gives

δkj

(
xj − xj+1

)T (
xj − xj+1

)
≤ F̃kj

(xj ;xj) − F̃kj
(xj+1;xj) = −F̃kj

(xj+1;xj),

where F̃kj
(xj ;xj) = F (xj ;xj) = 0 by Lemma 5.4. Since xj+1 = ykj+1 was accepted

in step 4 of the algorithm, we have ρkj
≥ γ, i.e.: −F̃kj

(xj+1;xj) ≤ −γ−1F (xj+1;xj).
Altogether

0 ≤ δkj
‖xj − xj+1‖2 ≤ −γ−1F (xj+1;xj).

Since F (xj+1;xj) converges to 0 by part 1), we deduce δkj
‖xj − xj+1‖2 → 0. We

claim that this implies φj = δkj

(
xj − xj+1

)
→ 0, (j → ∞).

3) Suppose on the contrary that there exists an infinite subsequence j ∈ N of N

such that ‖φj‖ = δkj
‖xj − xj+1‖ ≥ η > 0 for some η > 0 and every j ∈ N . Therefore

δkj
‖xj − xj+1‖2 ≥ η‖xj − xj+1‖ ≥ 0

for j ∈ N , which implies (xj −xj+1)j∈N → 0. That is only possible when (δkj
)j∈N →

∞. We now argue that there exists yet another infinite subsequence N ′ of N with
the property that δkj

→ ∞, (j ∈ N ′), and such that in addition for each j ∈ N ′, the
doubling rule to increase δk in step 7 of the algorithm was applied at least once before
xj+1 = ykj+1 was accepted by the inner loop. To construct N ′, we associate with
every j ∈ N the last outer-loop instant j′ ≤ j where the δ-parameter was increased
at least once while the inner loop was turning, and we let N ′ consist of all these j′,
j ∈ N . It could happen that j′ = j, but in general we only know that

2δkj′−1
≤ δkj′

and δkj′
≥ δkj′+1

≥ · · · ≥ δkj
.

The latter ensures δkj′
→ ∞, j′ ∈ N ′.

Let us say that for j ∈ N ′, the doubling rule was applied for the last time at
δkj−νj

for some νj ≥ 1. That is, we have δkj−νj+1 = 2δkj−νj
, while the δ parameter

was frozen during the remaining steps before acceptance, i.e.:

δkj
= δkj−1 = · · · = δkj−νj+1 = 2δkj−νj

. (6.11)

Recall from step 7 of the algorithm that we have ρk < γ and ρ̃k ≥ γ̃ for those k,
where the step was not accepted and the doubling rule was applied. That is,

ρkj−νj
=

F (xj ;xj) − F (ykj−νj+1;xj)

F (xj ;xj) − F̃kj−νj
(ykj−νj+1;xj)

=
F (ykj−νj+1;xj)

F̃kj−νj
(ykj−νj+1;xj)

< γ

and

ρ̃kj−νj
=

F (xj ;xj) − F̃ (ykj−νj+1;xj)

F (xj ;xj) − F̃kj−νj
(ykj−νj+1;xj)

=
F̃ (ykj−νj+1;xj)

F̃kj−νj
(ykj−νj+1;xj)

≥ γ̃.

By definition of ykj−νj+1 and according to (6.11), we now have

1
2δkj

(
xj − ykj−νj+1

)
∈ ∂1F̃kj−νj

(ykj−νj+1;xj).
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Using F̃kj−νj
(xj ;xj) = F (xj ;xj) = 0 and the subgradient inequality for F̃kj−νj

(·;xj)
at ykj−νj+1 gives

1
2δkj

(
xj − ykj−νj+1

)T (
xj − ykj−νj+1

)
≤ F̃kj−νj

(xj ;xj) − F̃kj−νj
(ykj−νj+1;xj)

≤ −F̃kj−νj
(ykj−νj+1;xj).

This could also be written as

δkj
‖xj − ykj−νj+1‖2

−F̃kj−νj
(ykj−νj+1;xj)

≤ 2. (6.12)

Now we know from Lemma 6.4 that the set of serious iterates xj is bounded. In
tandem with Lemma 6.1, which relates the norm of the null steps yk+1 to the norm
of xj , we deduce that the set B = {xj : j ∈ N} ∪ {yk+1 : k = 1, . . . , kj , j ∈ N} is
bounded. Then Lemma 5.2 provides L > 0 such that

|F (ykj−νj+1;xj) − F̃ (ykj−νj+1;xj)| ≤ L‖ykj−νj+1 − xj‖2 (6.13)

for all j ∈ N ′. Now expanding the expression ρ̃kj−νj
gives

ρ̃kj−νj
= ρkj−νj

+
F (ykj−νj+1;xj) − F̃ (ykj−νj+1;xj)

−F̃kj−νj
(ykj−νj+1;xj)

≤ ρkj−νj
+

L‖xj − ykj−νj+1‖2

−F̃kj−νj
(ykj−νj+1;xj)

(using (6.13))

≤ ρkj−νj
+

2L

δkj

(using (6.12))

Since ρj < γ and L/2δkj
→ 0 for the infinite subsequence j ∈ N ′, we deduce

lim supj∈N ′ ρ̃kj−νj
≤ lim supj∈N ′ ρkj−νj

≤ γ < γ̃, contradicting ρ̃j ≥ γ̃ > γ for the in-
finitely many j ∈ N ′. This proves that an infinite sequence j ∈ N with ‖φj‖ ≥ η > 0
could not exist. The conclusion is that (φj)j∈N = (δkj

(xj − xj+1))j∈N converges to 0.
4) Let x̄ be an accumulation point of the sequence of serious steps xj and pick a

convergent subsequence xj → x̄, j ∈ N . We have to prove 0 ∈ ∂1F (x̄; x̄).

Since φj = δkj
(xj − xj+1) is a subgradient of F̃kj

(·, xj) at ykj+1 = xj+1 we have

φT
j h ≤ F̃kj

(xj+1 + h;xj) − F̃kj
(xj+1;xj)

≤ F̃ (xj+1 + h;xj) − F̃kj
(xj+1;xj) (using F̃kj

≤ F̃ )

for every test vector h ∈ R
n. Now we use the fact that ykj+1 = xj+1 was accepted in

step 4 of the algorithm. That means

−F̃kj
(xj+1;xj) ≤ −γ−1F (xj+1;xj).

Combining these two estimates gives

φT
j h ≤ F̃ (xj+1 + h;xj) − γ−1F (xj+1;xj) (6.14)

for every test vector h. Now fix h′ ∈ R
n and choose the test vector hj = xj −xj+1 +h′

for j ∈ N ′. Substituting this in (6.14) we obtain

δkj
‖xj − xj+1‖2 + φT

j h
′ ≤ F̃ (xj + h′;xj) − γ−1F (xj+1;xj). (6.15)
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Now observe that δkj
‖xj − xj+1‖2 → 0 by part 2), and φj = δkj

(xj − xj+1) → 0 by
part 3). This means that the left hand side of (6.15) converges to 0. As for the terms
on the right, recall that F (xj+1;xj) → 0 by part 1) of the proof. Finally, by joint

continuity of F̃ (·; ·), the term F̃ (xj + h′;xj) converges to F̃ (x̄+ h′; x̄). We conclude,

passing to the limit j ∈ N ′ in (6.15), and using F̃ (x̄; x̄) = 0, that

0 ≤ F̃ (x̄+ h′; x̄) = F̃ (x̄+ h′; x̄) − F̃ (x̄; x̄).

As this works for every h′ ∈ R
n, we have shown 0 ∈ ∂1F̃ (x̄; x̄), hence also 0 ∈

∂1F (x̄; x̄).

7. Implementation. Algorithm 1 has been implemented for both structured
and unstructured mixed synthesis, and we use the enriched versions of G0 and Gc

k to
speed up convergence. Notice that in some of the examples in section 8, the controller
has to be strictly proper to ensure well-posedness of the H2 norm. (Namely DK = 0
in (2.2) when D2u and Dy2 are non zero in the plant (2.1)). In those cases the data in
(2.2) are no longer freely assigned, the parameterizations being K = K(AK , BK , CK)
with a linear operator K. More general types of parameterizations would equally well
fit into our approach, and are referred to as structural constraints on the controller.

7.1. Stopping criteria. Notice that algorithm 1 is a first order method, which
may be slow in the neighborhood of a local solution of (2.3). As in [5], we have there-
fore implemented termination criteria, which avoid pointless computational efforts
during the final phase, where iterates make minor progress. Our first stopping test
checks criticality 0 ∈ ∂1F (x;x) by computing

inf{||h|| : h ∈ ∂1F (x;x)} < ε1.

Notice that this program is similar (but easier) than the SDP discussed in Section
5.3, because the linear terms in that cast are not needed.

A second test compares the progress of the local model around the current iterate:

|F (x+;x)| ≤ ε2. (7.1)

Our third test compares the relative step length to the controller gains:

||x+ − x|| ≤ ε3(1 + ||x||). (7.2)

For stopping, we require that either the first, or the second and third be satisfied.

7.2. Choice of the performance level γ∞. In all test examples we first com-
pute (locally) optimal H2 and H∞ controllers K2 and K∞. It is now trivial (see e.g.
[10]) that the performance level γ∞ in program (2.3) has to satisfy

‖T∞(K∞)‖∞ ≤ γ∞ < ‖T∞(K2)‖∞. (7.3)

Indeed, the mixedH2/H∞ problem (2.3) is infeasible for γ∞ < ‖T∞(K∞)‖∞, while for
γ∞ ≥ ‖T∞(K2)‖∞ the optimalH2 controllerK2 is also optimal for (2.3). Disregarding
complications due to (multiple) local minima, it would make sense, in a specific case
study, to consider the entire one parameter family K(γ∞) of solutions of (2.3) as
a function of the gain value γ∞ over the range (7.3), as this would transform K∞

continuously into K2 (see e.g. figure 7.1). In our tests we only compute K(γ∞) for
those values γ∞ which allow comparison to previous results in the literature.
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Fig. 7.1. H2/H∞ optimal static controllers K(γ∞) = (K1(γ∞), K2(γ∞)) ∈ R
2 for the vehicular

suspension control problem. [‖T∞(K∞)‖∞, ‖T∞(K2)‖∞] ∋ γ∞ 7→ K(γ∞) continuously transforms
the H∞ optimal gain K∞ into the H2 optimal gain K2.

Table 7.1 reports the problem dimensions nx, ny, nu and the synthesized controller
orders nK . Columns 5 and 6 report ‖T∞(K∞)‖∞ and ‖T∞(K2)‖∞, which are the
bounds in (7.3), needed to choose γ∞ correctly. In column 4 we report ‖T2(K2)‖2,
because it gives a lower bound on the optimal value ‖T2(K(γ∞))‖2 of (2.3).

Notice that in columns ‖T2(K2)‖2 and ‖T∞(K∞)‖∞ we would expect decreasing
values for a fixed example as nK increases. However, in ’CM4’ the orders 0 and 50 give
successively 9.2645e− 01 and 9.3844e− 01, which is not as it should be, because the
order 50 controller is worse than the static controller. This phenomenon is due to the
fact that in all cases nK < nx, we only compute local minima of the H∞ program, and
similarly, of the H2 program. As nK increases, more local minima appear, and it may
be very difficult to improve the situation. This is obviously very unsatisfactory, and
appropriate procedures to initialize at a given order nK are currently investigated.

7.3. Initialization by a stabilizing controller. In all our test examples, we
use the techniques in [11] to compute a closed-loop stabilizing initial K0, which is
not necessarily feasible for (2.3). This allows to test phase I of our method. K∞

may always be chosen as a feasible initial iterate, so that phase I could in principle
be avoided, but we prefer to use various ways to initialize algorithm 1. In the full
order case nK = nx, K2 and K∞ are computed by AREs as routinely available in
the MATLAB control toolbox. In the reduced order case nK < nx, things are more
complicated, and minima are in general only local. The locally optimal H∞ controller
K∞ is computed by the method of [5], which uses the initial closed loop stabilizing
K0 to initialize the procedure. Methods to compute K2 in the reduced order case
nK < nx are discussed in [42]. Since the objective function f(K) is not defined
everywhere, standard software for unconstrained programming may face difficulties,
and we have implemented a Polak-Rivière conjugate gradient method (with a special
safeguard to stay in the set D of exponentially stabilizing controllers) to compute K2.
An alternative is of course to use algorithm 1 with γ∞ so large that γ∞ > ‖T∞(K2)‖2

can be assured. But this is often slow, because algorithm 1 is a first order method.
This confirms the observation of the authors of [42], who report slow convergence
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Problem (nx, ny , nu) nK ‖T2(K2)‖2 ‖T∞(K2)‖∞ ‖T∞(K∞)‖∞

Academic ex. [10] (2, 1, 1) 0 6
1
4

3√
5

1

Academic ex. [44] (3, 1, 1) 3 7.748 23.586 9.5196

Vehicular (4, 2, 1) 0 32.416 6.3287 4.8602
suspension [50] 2 32.299 6.1828 4.8573

4 32.267 6.3260 4.6797

Four Disks [27] (8, 1, 1) 2 0.5319 3.1658 0.31411
4 0.4767 2.6194 0.31393
8 0.3782 1.39 0.27537

From COMPleib:
’AC14’ (40, 4, 3) 1 21.369 230.8318 104.15

10 8.1039 100.4121 100.11
20 7.5628 100.3566 100

’BDT2’ (82, 4, 4) 0 7.9389e-01 1.3167 0.67421
10 7.8877e-01 1.1386 0.72423
41 7.7867e-01 1.1302 0.77405

’HF1’ (130, 1, 2) 0 5.8193e-02 0.4611 0.44721
10 5.8151e-02 0.4617 0.44721
25 5.8149e-02 0.4613 0.44721

’CM4’ (240, 1, 2) 0 9.2645e-1 1.6546 0.81650
50 9.3844e-1 4.2541 0.81746

Table 7.1

Problem dimensions and bounds obtained from locally optimal H2 and H∞ synthesis for the
test examples in section 8.

for H2-synthesis based on first order (gradient type) methods and recommend using
second order methods instead.

7.4. Stability constraint. Notice that closed-loop stability of K is not a con-
straint in the usual sense of mathematical programming, because the set D of closed-
loop exponentially stabilizing K is an open domain. In the cast (2.3), closed-loop
stability K ∈ D is a hidden constraint, which may cause problems because the func-
tions f and g are not defined outside D. The strategy which we adopt here is to
compute an initial closed-loop stabilizing controller K0 ∈ D, and ignore the hidden
constraint during the optimization process. Since f(K0) < ∞ and g(K0) < ∞, our
algorithm produces iterates Kj with f(Kj) < ∞ and g(Kj) < ∞ at all times j, and
most of the time this assures that Kj remains closed-loop stabilizing, i.e., Kj ∈ D.

7.5. Choice of µ. In [41, section 2.6] a similar progress function is discussed
for objectives which are maxima of finite or infinite families of smooth functions,
but a line search method is obtained. In both cases convergence theory works for
arbitrary values of the parameter µ, so that no immediate insight into the choice of
µ is obtained. Yet in practice the choice of µ may influence the actual performance
of the algorithm.

Figure 7.2 and Table 7.2 present the numerical results of our nonsmooth algorithm
for the four disks problem presented in section 8. After computing an initial stabilizing
controller K0, the nonsmooth algorithm is run with four different values of the penalty
parameter µ, including the case µ = 0 to compare with the improvement function of
[43].

As we can see in Table 7.2, for µ = 0 the algorithm fails to reach a feasible point.
This is indeed a case where we could identify the final K of phase I where g(K) > γ2

∞

as a local minimum of f alone. Recall that when µ = 0, every descent step of the
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µ=0   (43 iter.)

µ=0.1 (24 iter.)

µ=0.5 (53 iter.)

µ=10  (36 iter.)

Fig. 7.2. Full order mixed H2/H∞ synthesis for the four disks problem: the values of the H2

norm in relation to the number of serious steps are shown for four different values of the penalty
parameter µ. Here we choose: µ ∈ {0, 0.1, 0.5, 10}. Vertical lines point out the instant at which the
iterates become feasible.

Problem Four Disks [27]

(nx, ny , nu) (8, 1, 1)
γ∞ 0.6
µ 0 0.1 0.5 10

Serious steps 43 24 53 36
‖T2(K(γ∞))‖2

2
0.1795 0.2087 0.2054 0.2068

‖T∞(K(γ∞))‖∞ 0.7411 0.6000 0.6000 0.6000
Stop test Tests (7.1) and (7.2) Criticality

Table 7.2

Data and numerical results of H2/H∞ synthesis for the four disks for four different values of µ.

improvement function is a descent step of both f and g, and the algorithm gets then
trapped as soon as it reaches a local minimum of either f or g. Choosing µ > 0
allows a possible increase of the objective f during phase I, so that being trapped at
an infeasible local minimum of f alone can be avoided.

Among the choices µ > 0 we have noticed that when µ is not too small, the number
of iterations to reach a feasible point decreases as µ increases. However choosing too
large a µ as shown by the two last columns in Table 7.2, does not give the best results
either, so this trend seems to be true only on a certain range. Nothing decisive can
be proposed to date, but µ of the same order of magnitude as the progress function
without the penalty term gave so far the best results in practice.

7.6. Choice of Γ. The last issue we address is the choice of Γ, which is crucial,
because step 5 is the only place in the algorithm where the proximity parameter δk
can be reduced. Too large a Γ gives few reductions of δk, and since the latter is often
increased during the inner loop, this bears the risk of exceedingly large δk, causing
the algorithm to stop.

To illustrate this observation, we have run the four disks example in Section 8
for three different values Γ ∈ {0.4, 0.6, 0.8}. The results are illustrated in Figure 7.3.
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We observe that the number of iterations increases with the values of Γ. The best
numerical results were obtained for Γ = 0.6, and this is the value we retained for all
the numerical tests. At least over a certain range one can say that the larger Γ, the
smaller the steps accepted as serious steps x→ x+, and the more outer iterations are
needed to reach the same H2 performance.

0 10 20 30 40 50 60 70 80
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Γ = 0.6
Γ = 0.8
Γ = 0.4

Fig. 7.3. Full order mixed H2/H∞ synthesis for the four disks problem: the values of the H2

norm versus the number of serious steps for three different values of the parameter Γ ∈ {0.4, 0.6, 0.8}.

Problem Four Disks [27]

(nx, ny , nu) (8, 1, 1)
γ∞ 0.6
µ 0.5
Γ 0.4 0.6 0.8

serious steps 36 53 77
‖T2(K(γ∞))‖2

2
0.2062 0.2054 0.2106

‖T∞(K(γ∞))‖∞ 0.6000 0.6000 0.6000

8. Numerical experiments. In this section we test our nonsmooth algorithm
on a variety of H2/H∞ synthesis problems from the literature.

8.1. Two academic examples. We first present two academic examples whose
models are described in [10] and [44, example 1]. Notice that the first one is simple
enough to allow explicit computation of static output feedback controllers u = Ky
for H2, H∞ and H2/H∞ synthesis. The problem data are given in Table 7.1.

Table 8.1 confirms that our proximity control algorithm successfully performs the
H2/H∞ synthesis on the two considered examples. We not only improve the results
computed by LMI approaches in [10] and [44], we even obtain the theoretical values
of the H2 and H∞ norms.

8.2. Vehicular suspension controller design. The model of the vehicular
suspension is described in [15] and [50]. We first focus on static H2/H∞-synthesis.
The H∞ performance level in (2.3) is chosen as γ∞ = 5.225 and the optimal solution
we obtain is

K(γ∞) = [ 41600 2393 ].
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Problem Academic ex. [10] Academic ex. [44]

(nx, ny , nu) (2, 1, 1) (3, 1, 1)
µ 10 1

nK 0 0 1 3
γ∞ 2 1.2 1.2 23.6 12

Serious steps 6 8 14 83 56
‖T2(K(γ∞))‖2 1.5651 1.5735 1.5394 7.7484 10.4538
‖T∞(K(γ∞))‖∞ 1.3416 1.2 1.2 23.591 12.0000

K(γ∞) [ − 0.8165 ] [ − 0.9458 ] Kf1
Kf2

Kf3

Stop test Criticality

(LMI) H2 norm - 1.5778 - 8.07 -
Explicit H2 norm - 1.5735 - 7.748 -

Table 8.1

Results of H2/H∞ synthesis for two academic examples

Kf1
=

»

−1.437 −0.8101
0.8141 −0.4998

–

, Kf2
=

2

6

4

−2.5810 1.0823 −0.0623 −0.5097
−0.5748 −1.5170 2.1121 1.6238
−0.1396 −2.8266 −2.1852 1.7986

0.2724 −0.4702 −2.6967 0

3

7

5

Kf3
=

2

6

4

−1.9113 −0.7161 −1.8332 −0.0065
0.6940 −4.4787 1.7584 −2.1896
0.5231 −3.2821 −3.0458 3.4518

−3.2830 1.1238 −2.6107 0

3

7

5

The H2 norm computed by our algorithm is ||T2(K(γ∞))||2 = 34.446, compared
to 35.8065 obtained in [50], which gives an improvement of 3.8%. Moreover, the
H∞ performance is ||T∞(K(γ∞))||∞ = 5.2250, compared to 5.0506 obtained in [50].
This shows that the H∞ constraint is not active in the heuristic [50], highlighting
the inevitable conservatism of the LMI approaches. In contrast, our method always
attains the constraint within the numerical precision.

These results are shown in Table 8.2, which also gives the results of H2/H∞

synthesis for dynamic controllers of order nK = 2, 4. Notice that in the first column

Problem Vehicular suspension controller design [50]

(nx, ny , nu) (4, 2, 1)
nK 0 0 2 4
µ 1 1 102 102

γ∞ 10 5.225 5.225 5.225
Serious steps 502 155 496 157
‖T2(K(γ∞))‖2 32.474 34.446 33.312 33.311
‖T∞(K(γ∞))‖∞ 6.2641 5.2250 5.2250 5.2236

K(γ∞) [ 37016 1473 ] [ 41600 2393 ] Kf1
Kf2

Stop test Criticality
Table 8.2

Mixed H2/H∞ synthesis for the vehicular suspension problem

Kf1
=

2

4

0.0895 0.3310 0.7272 0.0644
−0.0670 −0.1540 0.4871 −0.0103

0.7986 0.2764 0.1618 1.7366

3

5 e + 03

Kf2
=

2

6

6

6

4

−0.2156 −0.5614 −0.0012 0.0006 −0.0927 0.0817
0.0728 0.1511 −0.0042 0.0020 −0.5677 −0.0378
0.0010 −0.0003 0.0011 0.0044 0.0004 0.0005
0.0044 −0.0018 −0.0006 −0.0018 0.0007 0.0005
0.4743 −0.2764 0.0004 0.0004 0.0922 1.7370

3

7

7

7

5

e + 03

of Table 8.2 by choosing the H∞ performance level γ∞ > γ2 = ‖T∞(K2)‖∞ where
‖T∞(K2)‖∞ is given in Table 7.1, the H2/H∞ solution is close to the solution of the
H2 synthesis.
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8.3. Four disks. The four disks model is originally described in [16] and has
previously been studied to evaluate reduced-order design methods. The open loop
plant is of order nx = 8 and has two stable poles.

We first focus on mixed H2/H∞ synthesis of full order controllers in order to
compare our nonsmooth algorithm to the original Riccati equation approach in [27].
The results are presented in Table 8.3. We also give results of H2/H∞ synthesis of
reduced-order controllers in Table 8.4.

Problem Four Disks [27]

(nx, ny , nu) (8, 1, 1)
µ 0.1 0.1 0.1 0.1 0.5

γ∞ 1 0.9 0.8 0.7 0.52
Serious steps 35 17 29 49 39
‖T2(K(γ∞))‖2

2
0.1558 0.1612 0.1707 0.1829 0.2299

‖T∞(K(γ∞))‖∞ 1.000 0.9000 0.8000 0.7000 0.5200
Stop test Criticality

Square H2 norm in [27] 0.168 0.176 0.187 0.203 0.262
H∞ norm in [27] .855 0.797 0.732 0.661 0.511

Improvement 7.26% 8.41 % 8.72% 9.90% 12.25%
Table 8.3

Full order mixed H2/H∞ synthesis for the four disks problem (nK = 8): the square H2 norm
is computed in order to compare our results to those in [27]

Problem Four Disks [27]

(nx, ny , nu) (8, 1, 1)
µ 1

γ∞ 0.52
nK 2 4 6 7

Serious steps 23 18 30 47
‖T2(K(γ∞))‖2 0.2321 0.2308 0.23041 0.2304
‖T∞(K(γ∞))‖∞ 0.52 0.52 0.52 .52

Stop test Criticality
Table 8.4

Reduced order mixed H2/H∞ synthesis for the four disks problem.

As can be seen in Table 8.3, our method gives significant improvement over the
older results in [27] based on coupled Riccati equations. This highlights the reduction
of conservatism of our approach compared to Riccati and LMI methods.

8.4. COMPleib examples. The models in this section are from the COMPleib
collection [34]: aircraft model ’AC14’, distillation tower ’BDT2’, heat flow in a thin rod
’HF1’ and cable mass model ’CM4’. They are originally designed for H∞ synthesis,
so an H2 channel was added as suggested by F. Leibfritz [33, 34]. The same channel is
used for both H2 and H∞ performance in example ’AC14’, while we choose B2 = B∞

and Dy2 = 0 for the three others models. This way the H2 norm is well-posed.
In each example, we first choose the H∞ performance level γ∞ larger than

‖T∞(K2)‖∞. In doing this we have to obtain an estimate of the optimal H2 per-
formance ‖T2(K2)‖2 given in Table 7.1. Numerical results are in Tables 8.5 and 8.6.

As an illustration, Figs. 8.1 and 8.2 show the evolution of the H2 and H∞ norms
for example ’BDT2’ during the first iterations.

In Fig. 8.1 we observe phase I and phase II of the algorithm. As long as iterates
remain infeasible, descent steps to reduce constraint violation are generated, some-
times causing the objective to increase. As soon as the feasible domain g(x) ≤ γ2

∞ is



Mixed H2/H∞ control via nonsmooth optimization 27

Pb (nx, ny , nu) nK γ∞ Serious steps ‖T2(K(γ∞))‖2 ‖T∞(K(γ∞))‖∞
’AC14’ (40, 4, 3) 1 1000 300(max.) 21.370 231.31

10 1000 300(max.) 8.7813 101.26
1 200 263⋆ 21.476 200
20 200 300(max.) 7.9879 100

’BDT2’ (82, 4, 4) 0 10 148⋆ 8.0402e-01 1.0585
10 10 543⋆ 7.6480e-01 1.1438
0 0.8 324⋆ 7.9092e-01 7.9999e-01
10 0.8 404⋆ 7.7146e-01 0.8000
41 0.8 115⋆ 7.8882e-01 0.8000

’HF1’ (130, 1, 2) 0 10 7 5.8193e-02 4.6087e-01
0 0.45 7⋆ 5.8795e-02 4.4999e-01
10 0.45 7⋆ 5.8706e-02 4.5000e-01
25 0.45 33⋆ 5.8700e-02 4.4993e-01

’CM4’ (240, 1, 2) 0 10 5⋆ 9.2645e-01 1.6555
0 1 20⋆ 9.8438e-01 1
25 1 15⋆ 9.5330e-01 1.000
50 1 41⋆ 9.4038e-01 1.000

Table 8.5

Results of mixed H2/H∞ synthesis for test examples from COMPleib - Criticality is pointed
out by a ⋆ on the number of serious steps

Problem γ∞ K(γ∞)

’BDT2’ 10

2

6

6

4

−0.6186 −0.1426 −0.5414 4.929
0.6357 −0.5457 −3.851 16.85

−0.07527 0.2962 −1.287 6.601
0.9223 0.4668 −4.091 22.34

3

7

7

5

.8

2

6

6

4

−0.9207 0.9647 −5.4243 9.8225
0.7452 −1.3280 −4.4241 −0.8141

−0.7119 2.1754 −10.226 14.3827
0.0887 1.7433 −13.4102 12.1358

3

7

7

5

’HF1’ 10 [ − 0.1002 − 1.1230 ]
.45 [ − 0.2521 − 1.116 ]

’CM4’ 10 [ − 0.5448 − 1.3322 ]
1 [ − 0.5146 − 0.8073 ]

Table 8.6

Static H2/H∞ output feedback controllers for examples from COMPleib

reached, descent of the objective f begins, and iterates stay feasible.

Fig. 8.2 shows the frequency plot ω 7→ λ1

(
T∞(Ki, jω)HT∞(Ki, jω)

)
of the H∞

constraint during the first 6 iterations (serious steps) Ki, i = 1, . . . , 6, along with
the second eigenvalue λ2 (in blue). As can be seen, the maximum ‖T∞(Ki)‖

2
∞ is

sometimes attained at a single marked peak ω, while other cases feature rather a flat
plateau in the low frequency band. Multiple peaks appear usually at the end of the
process, but cannot be ruled out at any moment, as shown by the lower right plot,
which has a plateau where λ1 and λ2 are close. Stars indicate frequencies kept in the
extended set Ωe(Ki).

9. Conclusion. We have studied and tested a nonlinear mathematical program-
ming approach to the mixed H2/H∞ controller synthesis problem. The importance
of this problem was recognized in the late 1980s, but approaches based on AREs
could not be brought to work satisfactory. It is possible to characterize the optimal
H2/H∞-controller by way of the Q-parameterization, but as soon as the controller has
to satisfy additional structural constraints, like for instance reduced order nK < nx,
an analytic solution does not exist. In that situation convexity methods based on
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Fig. 8.1. Example ’BDT2’ - H2 norm during the first 50 iterations
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Fig. 8.2. Example ’BDT2’ - Largest and second largest eigenvalues versus frequency in loga-
rithmic scale - first 6 iterations. Observe that the second eigenvalue λ2 is strictly below the first one
on the range ω ≤ 104, except for the bottom right plot, where coalescence on a low frequency band
seems to occur.

LMIs and AREs are then no longer suitable, and finding the globally optimal so-
lution is known to be NP -hard. In consequence, we propose a strategy based on
local optimization, which comes with a weaker certificate, but has the benefit to work
in practice. The problem being nonconvex, nonsmooth and semi-infinite, we have
developed a nonsmooth constrained programming technique suited for the H2/H∞

problem and other programs of a similar structure. The new method has been tested
on several benchmark studies and shown to perform better than existing methods.
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