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Abstract. The aim of this paper is to introduce an “exact” bounded perfectly matched layer
(PML) for the scalar Helmholtz equation. This PML is based on using a non integrable absorbing
function. “Exactness” must be understood in the sense that this technique allows exact recovering of
the solution to time-harmonic scattering problems in unbounded domains. In spite of the singularity
of the absorbing function, the coupled fluid/PML problem is well posed when the solution is sought
in an adequate weighted Sobolev space. The resulting variational formulation can be numerically
dealt with standard finite elements. The high accuracy of this approach is numerically demonstrated
as compared with a classical PML technique.
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1. Introduction. The typical first step for the numerical solution by finite el-
ements or finite differences of any scattering problem in an unbounded domain is to
truncate the computational domain, which entails an inherent difficulty: to choose
boundary conditions to replace the Sommerfeld radiation condition at infinity (see for
instance [21]).

There are several techniques to deal with this: boundary element methods, infinite
element methods, Dirichlet-to-Neumann methods based on Fourier expansions, or the
use of absorbing boundary conditions. The potential advantages of each of them have
been widely studied in the literature [25, 35, 18].

If the domain of the original problem is truncated with a sphere, then the Dirichlet-
to-Neumann (DtN) boundary condition is exactly known (see [21, 32]). However, this
boundary condition involves an infinite series which must be truncated for numerical
use, thus introducing errors. Moreover, the exact DtN condition is non local, leading
to dense blocks in the linear system to be solved, when a finite element method is
used.

As a partial solution to these drawbacks, local absorbing boundary conditions
(ABCs) can be introduced to preserve the computational efficiency of the numerical
method. Those of Bayliss and Turkel [5], Engquist and Majda [19], and Feng [20]
are among the most widely used. However, in spite of the simple implementation
of lowest order ABCs, good accuracy is only achieved for higher order ones [37],
because these conditions are not fully non-reflecting on the truncated boundary of
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the computational domain. As a consequence, high accuracy using ABCs leads to a
substantial computational cost and increases the difficulty of implementation.

An alternative approach to deal with the truncation of unbounded domains is the
so called perfectly matched layer (PML) method introduced by Berenger [8, 9, 10]. It is
based on simulating a layer of absorbing material surrounding the domain of interest,
like a thin sponge which absorbs the scattered field radiated to the exterior of the
domain. This method is known as “perfectly matched” because the interface between
the fluid domain and the absorbing layer does not produce spurious reflections inside
the domain of interest, as it is the case with ABCs.

This method has been applied to different problems. It was initially, settled for
Maxwell’s equations in electromagnetism [8, 7] and subsequently used for the scalar
Helmholtz equation [36, 38, 22], advective acoustics [1, 6, 24], shallow water waves
[34], elasticity [14, 4], poroelastic media [41], and other hyperbolic problems (see for
instance [31] among many other authors). We focus our attention on wave propagation
time-harmonic scattering problems in linear acoustics, i.e., on the scalar Helmholtz
equation.

In the deduction of the PML [8], Berenger used an artificial splitting to force
the tangential components of the velocities in the acoustic medium and in the PML
layer to coincide on the interface for any frequency and any angle of incidence, thus
guaranteeing absence of spurious reflections [25]. However, this non physical splitting
has been shown unnecessary to state the PML equations. In fact, Chew and Weedon
showed in [17] that the PML equations can be obtained using a complex-valued coor-
dinate stretching, in the framework of time-harmonic wave propagation. Related to
this, Lassas et al. [28, 29] showed that the PML, and in general a family of absorbing
conditions, can be obtained by using complex Riemannian metric tensors.

Furthermore, in spite of the fact that the PML has been originally settled in Carte-
sian coordinates, Collino and Monk [12] proposed a similar complex-valued change of
coordinates to build a PML on curvilinear coordinates. This is the point of view that
we will follow in this paper.

In practice, since the PML has to be truncated at a finite distance of the domain
of interest, its external boundary produces artificial reflections. Theoretically, these
reflections are of minor importance because of the exponential decay of the acoustic
waves inside the PML. In fact, for Helmholtz-type scattering problems, Lassas and
Somersalo [27] proved, using boundary integral equation techniques, that the approx-
imate solution obtained by the PML method converges exponentially to the exact
solution in the computational domain as the thickness of the layer tends to infinity.
This result was generalized by Hohage et al. [23] using techniques based on the pole
condition. Similarly, Becache et al. [6] proved an analogous result for the convected
Helmholtz equation.

When the problem is discretized to be numerically solved, the approximation error
typically becomes larger. Increasing the thickness of the PML maybe a remedy, but
not always available because of computational cost. An alternative is to take larger
values for the absorbing function involved in the complex-valued coordinate stretching.
However, Collino and Monk [13] showed that this methodology may produce an error
growth in the discretized problem. Consequently, an optimization problem arises:
given a data set and a mesh, to choose the optimal absorbing function to minimize
the error.

In this framework, Asvadurov et al. [3] proposed a pure imaginary stretching to
optimize the PML error. They recovered exponential error estimates using finite-
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difference grid optimization. However, to the best of the authors’ knowledge, the
optimization problem is still open in that there is no optimal criterion to choose the
absorbing function independently of data and meshes.

The aim of this paper is to contribute to determining optimal absorbing functions
for the PML. In fact, we propose to use a function with unbounded integral on the
PML. We show that this choice leads to a theoretically exact bounded PML. More
precisely, this kind of absorbing function on a circular annular layer allows recovering
the exact solution of the time-harmonic scattering problem in the domain of interest,
up to discretization errors, even though the thickness of the layer is finite. We will
call “exact” PML methods to those based on such absorbing functions.

Standard PML techniques based on bounded absorbing functions, lead to partial
differential equations in the PML with bounded coefficients. Thus, the theoretical
procedure to prove the well-posedness of the coupled fluid/PML problems is based
on the Freedholm alternative in standard Sobolev spaces. However, when a non
integrable absorbing function is used, the coefficients in the PML equation become
unbounded, and the natural functional framework involves a non-standard weighted
Sobolev space. In this case standard arguments cannot be applied due to the lack of
a compactness result. As an alternative, we reproduce the classical steps used for the
Helmholtz equation, taking advantage of the series representation of the solution in
the PML domain. Thus we prove a result of existence and uniqueness for the coupled
fluid/PML problem.

The analysis of the theoretical error for other PML techniques is typically based
on the construction of an analogous Dirichlet-to-Neumann operator using the solution
in the PML. We also use this approach to prove that the solution in the fluid domain
of the coupled fluid/PML problem is exactly equal to the solution of the scattering
problem in an unbounded domain.

The outline of this paper is as follows: we recall in Section 2 how the classical
time-harmonic scattering problem can be stated in a bounded domain by using a DtN
operator. Section 3 is devoted to settling PML equations based on non integrable
absorbing functions on an annular domain surrounding the physical one. Once the
fundamental solution for the PML is calculated in Section 4, a Green’s formula is
proved in Section 5. We rewrite a classical “addition theorem” for the PML funda-
mental solution in Section 6. Using these tools, we prove a characterization theorem
for the solution of the radial PML in Section 7 and derive a theorem of existence and
uniqueness of solution for the PML problem. In Section 8, we use this result to re-
cover the classical solution of the scattering problem by means of a coupled fluid/PML
problem. We prove existence and uniqueness of solution for this coupled problem and
write a variational formulation, as well. Finally, in Section 9 we report some numerical
results obtained with a standard finite element method.

2. Scattering problem. Let Ω be a bounded two-dimensional open set with a
Lipschitz boundary Γ. We aim to solve a scattering problem in the unbounded domain
R2 \ Ω, which we assume connected (see Figure 2.1). Throughout the paper we use
standard notation for Sobolev functional spaces. Consider the following Dirichlet
boundary value problem for the Helmholtz partial differential equation, which models
the wave propagation with frequency ω > 0 and velocity of propagation c > 0:
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Find u ∈ H1
loc(R2 \ Ω) such that

−∆u− k2u = 0 in R2 \ Ω,(2.1)
u = f on Γ,(2.2)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0,(2.3)

where r := |x| is the radial polar coordinate for x ∈ R2, k = ω/c is the wave
number, and f ∈ H

1
2 (Γ) is the Dirichlet boundary data. Let us remark that we

could analogously consider the corresponding Neumann boundary value problem. The
existence of solution to both problems is well known in the literature (see for instance
[40]).

Ω

ΩR

SR

ν

R2 \BR

Γ

Fig. 2.1. Scatterer and artificial circular boundary.

Let BR :=
{
x ∈ R2 : |x| < R

}
be an open ball of radius R such that Ω ⊂ BR.

Let SR :=
{
x ∈ R2 : |x| = R

}
be its boundary and ν its outward unit normal vector

(see Figure 2.1). The DtN operator of the problem above is defined as follows:

(2.4)
G : H

1
2 (SR) −→ H−

1
2 (SR)

g 7−→ ∂ũ

∂ν

∣∣∣∣
SR

where ũ ∈ H1
loc(R2 \BR) is the unique solution of

−∆ũ− k2ũ = 0 in R2 \BR,

ũ = g on SR,

lim
r→∞

√
r

(
∂ũ

∂r
− ikũ

)
= 0.

Let us recall that this operator is explicitly given by the following series (see [32, 35]):

Gg =
∞∑

n=−∞
gnk

[H(1)
n ]′(kR)

H(1)
n (kR)

einθ,

where θ is the angular polar coordinate of x, gn := 1/(2πR)
∫

SR
g(x) e−inθ dS is the

nth Fourier coefficient of g and H(j)
n denotes the nth Hankel function of jth kind,

j = 1, 2 (see for instance [39]).
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Problem (2.1)–(2.3) can be equivalently settled in the bounded domain ΩR :={
x ∈ R2 \ Ω : |x| < R

}
by means of this DtN operator as follows:

Find u ∈ H1(ΩR) such that

−∆u− k2u = 0 in ΩR,(2.5)
u = f on Γ,(2.6)

∂u

∂ν
= G

(
u|SR

)
on SR.(2.7)

Clearly, if u is the solution of Problem (2.1)–(2.3), then u|ΩR
is the unique solution

of the problem above.

3. Statement of the PML equation. Radial PML methods are based on sim-
ulating dissipation in an annular domain, D := {x ∈ R2 : R < |x| < R?}, surrounding
the physical domain of interest. This can be done by means of a complex-valued radial
stretching proposed by Collino and Monk [12], which leads to the following partial
differential equation written in polar coordinates:

(3.1) −1
r

(
∂

∂r

(
γ̂(r)r
γ(r)

∂û

∂r

)
+

γ(r)
γ̂(r)r

∂2û

∂θ2

)
− γ(r)γ̂(r)k2û = 0 in D,

where

(3.2) γ(r) := 1 +
i

ω
σ(r) and γ̂(r) := 1 +

i

ωr

∫ r

R

σ(s) ds,

with the so-called absorbing function σ : [R, R?) → [0,∞) being monotonically
increasing and smooth. In all what follows it is enough to consider σ ∈ C2,1([R, R?)).
Notice that we do not assume that σ(R) = 0. This function has been typically chosen
bounded (see [12]). As an alternative, we propose to choose a non integrable function,
i.e., such that

(3.3)
∫ R?

R

σ(s) ds = +∞;

for example, σ(r) := c/(R? − r).
Under the previous assumptions on σ, limr→R? |γ(r)| = limr→R? |γ̂(r)| = +∞.

Moreover, the coefficients of the differential equation (3.1) satisfy

(3.4) lim
r→R?

∣∣∣∣
γ̂(r)r
γ(r)

∣∣∣∣ = 0 and lim
r→R?

∣∣∣∣
γ(r)
γ̂(r)r

∣∣∣∣ = +∞.

Indeed, given ε > 0, let Aε :=
∫ R?−ε

R
σ(s) ds. Because of (3.3), ∃r ∈ (R? − ε, R?) such

that
∫ r

R?−ε
σ(s) ds ≥ Aε. Then

∫ r

R

σ(s) ds =
∫ R?−ε

R

σ(s) ds +
∫ r

R?−ε

σ(s) ds ≤ 2
∫ r

R?−ε

σ(s) ds ≤ 2εσ(r).

Hence,

lim
r→R?

1
σ(r)

∫ r

R

σ(s) ds = 0,
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which together with the definitions of γ and γ̂, and the fact that R ≤ r ≤ R? yield
(3.4).

To end this section, we write the equation (3.1) in a more compact form. Let
{er, eθ} be the canonical polar-coordinates basis. Let us recall the expressions of the
divergence and gradient operators in this basis:

grad v =
∂v

∂r
er +

1
r

∂v

∂θ
eθ,

and, for w = wrer + wθeθ,

div w =
1
r

(
∂

∂r
(rwr) +

∂wθ

∂θ

)
.

It is straightforward to show that the PML equation (3.1) can be written as
follows:

− div(Agrad û)− γ(r)γ̂(r)k2û = 0 in D,

where

(3.5) A :=
(

arr 0
0 aθθ

)
, with arr(r) :=

γ̂(r)
γ(r)

and aθθ(r) :=
γ(r)
γ̂(r)

.

Let us emphasize that matrix A is written in the polar coordinates basis. Therefore,
for the concrete evaluation of any expression involving A (like that above), all the
vector fields and the differential operators must be written in the same basis.

4. PML fundamental solution. We consider the following complex change of
variable, proposed by Collino and Monk in [12]:

r̂(r) := γ̂(r)r = r +
i

ω

∫ r

R

σ(s)ds, r ∈ [R, R?).

The assumed smoothness of σ is enough to ensure that r̂ ∈ C2([R, R?)). We also
define a complex-valued function d(·, ·) which plays a similar role to the standard
Euclidean distance. This new “complex distance” between two points x and y in D,
with respective polar coordinates (rx, θx) and (ry, θy), is given by

d(x, y) :=
√

r̂2
x + r̂2

y − 2r̂xr̂y cos(θy − θx),(4.1)

where r̂x = r̂(rx), r̂y = r̂(ry) and the square root is chosen so that Re(
√

z) > 0
for z 6= 0. This makes sense since, for x 6= y, straightforward computations show
that the radicand either has a positive imaginary part or is a positive real number.
Consequently d(x, ·) takes values in {z ∈ C : Re(z) > 0, Im(z) ≥ 0}.

Remark 4.1. The usual distance between two points x and y can be written as
follows:

|x− y| =
∣∣rxeiθx − ryeiθy

∣∣ =
√

(rxeiθx − ryeiθy )(rxe−iθx − rye−iθy ).

If we substitute in the previous equation the radial coordinates rx and ry by the complex
values r̂(rx) and r̂(ry), respectively, we obtain the complex-valued function

√
(r̂xeiθx − r̂yeiθy )(r̂xe−iθx − r̂ye−iθy ),



AN EXACT BOUNDED PERFECTLY MATCHED LAYER 7

which coincides with d(x, y) as defined by (4.1).
Straightforward computations allow us to show the following result.
Lemma 4.2. For all x, y ∈ D, there holds:
i) For fixed x ∈ D, there exist three positive constants C1, C2 and ρ, which

depend on x, such that,

C1 |x− y| ≤ |d(x, y)| ≤ C2 |x− y| ,
for all y ∈ D such that |y − x| < ρ.

ii) d(x, y) = 0 if and only if x = y.
For fixed x ∈ D, d(x, ·) is infinitely differentiable with respect to θy, but the

differentiability with respect to ry depends on the regularity of σ. The assumed
smoothness of σ is enough to ensure that d(x, ·) ∈ C2(D \ {x}).

The following lemma collects several limits that will be used in the sequel. The
corresponding proofs are straightforward. From now on, to simplify the notation, we
denote γy = γ(ry) and γ̂y = γ̂(ry). Accordingly, we denote Ay instead of A when γy

and γ̂y are used in the definition (3.5).
Lemma 4.3. For fixed x ∈ D, there holds uniformly in θy ∈ (−π, π]:

|d(x,y)| = O (Im(d(x, y))) , as ry → R?,

lim
ry→R?

Im(d(x, y)) = +∞,

lim
ry→R?

d(x, y)
r̂y

= 1,

∣∣∣∣
∂ d(x,y)

∂θy

∣∣∣∣ = O(1), as ry → R?.

Now we are in a position to compute a fundamental solution of the PML equation,
i.e., a solution Φ (in the sense of distributions) of

(4.2) − divy(Ay grady Φ(x, y))− γyγ̂yk2Φ(x,y) = δx in D′(D),

δx being the Dirac’s delta supported at point x ∈ D.
Theorem 4.4. For fixed x ∈ D,

(4.3) Φ+(x, y) :=
i

4
H(1)

0 (k d(x, y)),

and

(4.4) Φ−(x, y) := − i

4
H(2)

0 (k d(x, y)),

are solutions of (4.2).
Proof. Let x ∈ D be fixed. First, we are going to prove that

(4.5) − 1
ry

(
∂

∂ry

(
γ̂yry

γy

∂Φ±(x,y)
∂ry

)
+

γy

γ̂yry

∂2Φ±(x, y)
∂θ2

y

)
− γyγ̂yk2Φ±(x, y) = 0,

for all y ∈ D \ {x}. Notice that d(x, ·) ∈ C2(D \ {x}) and takes values in the half
complex plane Re z > 0. Hence Φ± ∈ C2(D \ {x}), since the Hankel functions are
analytical in the complex plane except along the negative real axis.
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Since H(1)
0 (z) and H(2)

0 (z) are solutions of the following equation (see [2]):

v′′(z) +
1
z
v′(z) + v(z) = 0, z 6= 0,

the change of variable z = k d(x,y) allows us to conclude (4.5).

x

D̃ε

R

R?

R̃

O

Fig. 4.1. Domain D̃ε.

Next, let ϕ ∈ D(D) and R̃ ∈ (R, R?) be such that supp ϕ ⊂ D̃ := {x ∈ D : |x| <
R̃}. Let ε > 0 be sufficiently small so that S(x, ε) := {x ∈ R2 : |x− y| = ε} ⊂ D̃.
Finally, let D̃ε = {y ∈ D : |x − y| > ε, |y| < R̃} (the blue region in Fig. 4.1) and n
its outward unit normal vector. We have

−〈divy(Ay grady Φ±(x,y)) + γyγ̂yk2Φ±(x,y), ϕ〉

= − lim
ε→0

∫

D̃ε

Φ±(x, y)(divy(Ay grady ϕ(y)) + γyγ̂yk2ϕ(y)) dy

= lim
ε→0

(∫

S(x,ε)

Ay grady Φ±(x, y) · n ϕ(y) dSy

−
∫

S(x,ε)

Ay grady ϕ(y) · n Φ±(x,y) dSy

)
= ϕ(x) = 〈δx, ϕ〉,

where we have used (4.5) and Lemma A.3 (which is proved in the appendix). Thus
we conclude the theorem.

We finish this section by studying some decay properties of the fundamental
solution Φ+.

Lemma 4.5. For fixed x ∈ D, there holds uniformly in θy ∈ (−π, π]:

lim
ry→R?

√
γ̂yγyΦ+(x, y) = 0,

lim
ry→R?

√
γ̂y

γy

∂Φ+(x, y)
∂ry

= 0,

lim
ry→R?

√
γy

γ̂y

∂Φ+(x, y)
∂θy

= 0.
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Proof. Let x ∈ D fixed. Using the asymptotic classical estimates for Hankel
functions (see [39]) and Lemma 4.3, we can check that Φ+(x, ·) and their derivatives
go to zero exponentially and uniformly in all the directions, as ry → R?. This allows
us to conclude the three limits.

5. PML Green’s formula. The aim of this section is to obtain an integral
representation of the solutions of the PML equation (3.1). We search for smooth
solutions which, furthermore, belong to the functional space

V :=

{
v ∈ D′(D) : ‖v‖2V :=

∫ R?

R

∫ π

−π

∣∣∣∣
γ̂(r)r
γ(r)

∣∣∣∣
∣∣∣∣
∂v

∂r

∣∣∣∣
2

dθ dr

+
∫ R?

R

∫ π

−π

∣∣∣∣
γ(r)
γ̂(r)r

∣∣∣∣
∣∣∣∣
∂v

∂θ

∣∣∣∣
2

dθ dr +
∫ R?

R

∫ π

−π

|γ̂(r)γ(r)r| |v|2 dθ dr < +∞
}

.

As a first step, we restrict our analysis to solutions of (3.1) in the space

W := V ∩ C1(D?) ∩ C2(D),

where

D? := D ∪ SR = {x ∈ R2 : R ≤ |x| < R?}.
Since the weights involved in the definition of V belong to L1

loc(R, R?) and are positive,
V is a Banach space when endowed with the norm ‖·‖V (see Kufner & Sändig [26])
and, moreover, V ⊂ H1

loc(D
?) and so v ∈ H1(K) even for compact sets K intersecting

SR.
First, we prove two preliminary results.
Lemma 5.1. If v ∈ V, then

lim
R̃→R?

∫

SR̃

|γ̂| |v|2 dS = 0.

Proof. For v ∈ V, we define the complex-valued function F given by

F (r) :=
∫

Sr

γ̂ |v|2 dS =
∫ π

−π

rγ̂(r) |v(r, θ)|2 dθ.

From the definition of V , it is immediate to check that F and γF belong to L1(R,R?).
We also define

G(r) : =
∫ π

−π

∂

∂r

(
rγ̂(r) |v(r, θ)|2

)
dθ

= γ(r)
∫ π

−π

|v(r, θ)|2 dθ + 2rγ̂(r)
∫ π

−π

Im
(

∂v

∂r
(r, θ)v̄(r, θ)

)
dθ.

For v ∈ V, the first term in the above sum is integrable in (R,R?). Regarding the
second term, we have

∫ R?

R

∣∣∣∣2rγ̂(r)
∫ π

−π

Im
(

∂v

∂r
(r, θ)v̄(r, θ)

)
dθ

∣∣∣∣ dr

≤ 2

(∫ R?

R

∫ π

−π

∣∣∣∣
γ̂(r)r
γ(r)

∣∣∣∣
∣∣∣∣
∂v

∂r

∣∣∣∣
2

dθ dr

) 1
2

(∫ R?

R

∫ π

−π

|γ̂(r)γ(r)r| |v|2 dθ dr

) 1
2

,
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which is again finite for v ∈ V. Thus G ∈ L1(R,R?). Moreover, straightforward com-
putations show that G is the distributional derivative of F . Hence F ∈ W1,1(R, R?)
and, consequently, F ∈ C([R, R?]).

Now we can conclude the lemma by showing that limr→R? F (r) = 0. We proceed
by contradiction. Suppose limr→R? F (r) 6= 0; in such a case, since |γ| > 1 and γ is
not integrable near r = R?,

∫ R?

R
|γF | dr = ∞, which would contradict the fact that

γF ∈ L1(R, R?).
Lemma 5.2. If û ∈ W is a solution of (3.1) and v ∈ V, then

lim
R̃→R?

∫

SR̃

γ̂

γ

∂û

∂r
v dS = 0.

Proof. Let R̃ ∈ (R, R?). Since v ∈ V ⊂ H1
loc(D

?), if we multiply (3.1) by v ∈ V
and integrate by parts in D̃ := {x ∈ R2 : R < |x| < R̃}, we obtain

∫

SR̃

γ̂

γ

∂û

∂r
v dS =

∫

D̃

γ̂

γ

∂û

∂r

∂v

∂r
+

∫

D̃

γ

γ̂

∂û

∂θ

∂v

∂θ
− k2

∫

D̃

γγ̂ûv +
∫

SR

1
γ

∂û

∂r
v dS

(5.1)

=
∫ R̃

R

[∫

Sr

(
γ̂

γ

∂û

∂r

∂v

∂r
+

γ

γ̂

∂û

∂θ

∂v

∂θ
− k2γγ̂ûv

)
dS

]
dr +

∫

SR

1
γ

∂û

∂r
v dS.

Because of the definition of V, the expression between brackets above belongs to
L1(R, R?). Consequently, if we define

H(R̃) :=
∫

SR̃

γ̂

γ

∂û

∂r
v dS,

then, according to (5.1), H ∈ C([R, R?]). On the other hand, from the Cauchy-
Schwarz inequality, we have

∫ R?

R

|γ(r)H(r)| dr =
∫ R?

R

∣∣∣∣
∫ π

−π

γ̂(r)r
∂û

∂r
v dθ

∣∣∣∣ dr

≤
(∫ R?

R

∫ π

−π

∣∣∣∣
γ̂(r)r
γ(r)

∣∣∣∣
∣∣∣∣
∂û

∂r

∣∣∣∣
2

dθ dr

) 1
2

(∫ R?

R

∫ π

−π

|γ̂(r)γ(r)r| |v|2 dθ dr

) 1
2

.

which is finite for û, v ∈ V. Thus, γH ∈ L1(R,R?) and, hence, the same argument
used to prove the previous lemma, allow us to conclude that limr→R? H(r) = 0.

Now, the following step is to establish an integral representation of the solution
of the PML equation.

Theorem 5.3. If û ∈ W is a solution of (3.1), then the following Green’s formula
holds:

(5.2) û(x) =
1

γ(R)

∫

SR

(
∂Φ+(x, y)

∂ry
û(y)− ∂û

∂ry
(y)Φ+(x, y)

)
dSy, x ∈ D.

Proof. We fix an arbitrary x ∈ D and use the notation from Fig. 4.1. As shown
in the proof of Theorem 4.4, Φ+(x, ·) satisfies (4.5). Hence, since Ay is diagonal, by
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using the Green’s second theorem and (3.1), we have
∫

∂D̃ε

(
Ay grady û(y) · n Φ+(x, y)−Ay grady Φ+(x, y) · n û(y)

)
dSy(5.3)

=
∫

D̃ε

(
div(Ay grady û(y))Φ+(x,y)− div(Ay grady Φ+(x, y))û(y)

)
dy = 0,

where n is the outward unit normal vector to D̃ε.
By using Lemma A.3 and (5.3), we obtain

û(x) = lim
ε→0

(∫

S(x,ε)

Ay grady Φ+(x,y) · n û(y) dSy

−
∫

S(x,ε)

Ay grady û(y) · n Φ+(x,y) dSy

)

=
1

γ(R)

∫

SR

(
∂Φ+(x, y)

∂ry
û(y)− ∂û

∂ry
(y)Φ+(x, y)

)
dSy

−
∫

SR̃

γ̂y

γy

∂Φ+(x, y)
∂ry

û(y) dSy +
∫

SR̃

γ̂y

γy

∂û

∂ry
(y)Φ+(x, y) dSy.

To conclude the proof, it is enough to show that the last two integrals goes to zero as
R̃ → R?. For the first one we use Lemmas 4.5 and 5.1. For the second one, first we
replace Φ+(x,y) by ζ(y)Φ+(x,y) where ζ is a smooth cutoff in a neighborhood of x
which takes the value 1 in a neighborhood of SR? including SR̃. Thus, the value of
the integral does not change and ζ(y)Φ+(x,y) ∈ V, because of Lemma 4.5. Hence,
the integral goes to zero as R̃ → R? as a consequence of Lemma 5.2.

6. Addition theorem. To characterize the solution of the PML equation, it is
useful to write the fundamental solution as a series involving Bessel functions of first
kind and order n, which we denote as usual by Jn.

Theorem 6.1. Let x ∈ D be fixed. For all y ∈ D such that |y| < |x|, there holds:

(6.1) Φ+(x,y) =
i

4

∞∑
n=−∞

H(1)
n (kr̂x) Jn (kr̂y) ein(θx−θy).

This series and its term by term first derivatives with respect to ry are absolutely and
uniformly convergent on compact subsets of the set {y ∈ R2 : R ≤ |y| < |x|}.

Proof. Let R̃ ∈ [R, |x|). First, we define the following functions:

φ(y) :=





i

4
H(1)

0 (k |x− y|), if 0 ≤ |y| < R,

Φ+(x, y), if R ≤ |y| < R?,

and, for each n ∈ N,

un(y) :=

{
Jn (kry) einθy , if 0 ≤ |y| < R,

Jn (kr̂y) einθy , if R ≤ |y| ≤ R̃.

All these functions are continuous for |y| < R̃, analytic for |y| < R and C2 for
R ≤ |y| ≤ R̃. Moreover, they satisfy

lim
r→R+

1
γ

∂φ

∂r
= lim

r→R−

∂φ

∂r
and lim

r→R+

1
γ

∂un

∂r
= lim

r→R−

∂un

∂r
, n ∈ N.
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Furthermore, straightforward computations allow us to show that all of them are
solutions of the PML equation (3.1) in R ≤ |y| < R̃ and solutions of the Helmholtz
equation in 0 < |y| < R.

Next, we proceed as in the proof of the addition theorem for the Helmholtz
equation (see [15]), taking care that the Helmholtz equation is substituted by the
PML equation for R ≤ |y| < R̃. Thus we obtain

(6.2)
∫

SR̃

γ̂

γ

(
un

∂φ

∂r
− ∂un

∂r
φ

)
dS = 0.

On the other hand, straightforward computations allow us to show that, for all
n ∈ N, if we define

(6.3) vn(y) := H(1)
n (kr̂y) einθy , y ∈ D,

then vn are solutions of the PML equation (3.1) and belong to W. By applying the
analogous of Theorem 5.3 for vn instead of û, on the annular domain R̃ < |y| < R?

instead of D, and taking into account that φ = Φ+(x, ·) in this domain, we obtain

(6.4)
∫

SR̃

γ̂

γ

(
vn

∂φ

∂r
− ∂vn

∂r
φ

)
dS = vn(x).

Now, multiplying equation (6.2) by H(1)
n (kr̂(R̃)) and (6.4) by Jn(kr̂(R̃)), we have:

∫

SR̃

γ̂

γ

(
H(1)

n (kr̂(R̃))un
∂φ

∂r
−H(1)

n (kr̂(R̃))
∂un

∂r
φ

)
dS = 0,

∫

SR̃

γ̂

γ

(
Jn(kr̂(R̃))vn

∂φ

∂r
− Jn(kr̂(R̃))

∂vn

∂r
φ

)
dS = Jn(kr̂(R̃))vn(x).

If we subtract the first from the second equation, taking into account that H(1)
n (kr̂(R̃))un =

Jn(kr̂(R̃))vn on SR̃, we have

Jn(kr̂(R̃))vn(x) =
(
H(1)

n (kr̂(R̃))kγ(R̃) J′n(kr̂(R̃))(6.5)

− Jn(kr̂(R̃))kγ(R̃)[H(1)
n ]′(kr̂(R̃))

) γ̂(R̃)
γ(R̃)

∫ π

−π

φ einθ dθ

=− 2i

π

∫ π

−π

φ einθ dθ,

where we have used the explicit value of the Wronskian H(1)
n (z) J′n(z)−Jn(z)[H(1)

n ]′(z) =
−2i/(πz) (see [2]).

Since φ ∈ C(D?), φ|SR̃
admits a Fourier series, i.e.,

(6.6) φ(y) =
∞∑

n=−∞
φne−inθy , y ∈ SR̃,

where, from (6.5) and (6.3),

(6.7) φn :=
1
2π

∫ π

−π

φ einθ dθ =
i

4
H(1)

n (kr̂x) Jn(kr̂(R̃))einθx .
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Finally, we conclude (6.1) from (6.6) and (6.7), since r̂(R̃) = r̂y, for y ∈ SR̃.
The uniform convergence of the series (6.1) and its term by term first derivatives

on compact subsets of {y ∈ R2 : R ≤ |y| < |x|} is straightforward from the uniform
convergence of the analogous series in the addition theorem for the fundamental solu-
tion of the Helmholtz equation (see [15]), and the fact that |r̂(r)| is a monotonically
increasing function.

7. Existence and uniqueness of solutions for the PML equation. Now
we are able to characterize the smooth solutions of the PML equation (3.1):

Theorem 7.1. If û ∈ W is a solution of (3.1), then there exists a sequence {an}
such that, for all x ∈ D,

û(x) =
∞∑

n=−∞
an H(1)

n (kr̂x) einθx .

Proof. Let u ∈ W be a solution of (3.1). For fixed x ∈ D, if we apply the Green’s
formula (5.2) and Theorem 6.1, then we have

û(x) =
1

γ(R)

∫

SR

(
∂Φ+(x, y)

∂ry
û(y)− ∂û

∂ry
(y)Φ+(x, y)

)
dSy

=
1

γ(R)

∫

SR

(
i

4

∞∑
n=−∞

kγ(R)H(1)
n (kr̂x) Jn

′(kR)ein(θx−θy) û(y)

− ∂û

∂ry
(y)

i

4

∞∑
n=−∞

H(1)
n (kr̂x) Jn(kR)ein(θx−θy)

)
dSy

=
∞∑

n=−∞
an H(1)

n (kr̂x) einθx ,

where

an =
i

4
1

γ(R)

∫

SR

(
kγ(R) Jn

′(kR)e−inθy û(y)− ∂û

∂ry
(y) Jn(kR)e−inθy

)
dSy.

Now, we prove the existence and uniqueness of smooth solutions of the following
problem for the PML equation with Dirichlet data g:

Find û ∈ W such that

−div(Agrad û)− γγ̂k2û = 0 in D,(7.1)
û = g on SR.(7.2)

Theorem 7.2. If g ∈ Hs(SR) with s > 3/2, then there exists a unique solution
û ∈ W of (7.1)-(7.2). Moreover, this solution is given by

(7.3) û(x) =
∞∑

n=−∞

gn

H(1)
n (kR)

H(1)
n (kr̂x) einθx ,

where gn are the Fourier coefficients of g: gn = 1/(2πR)
∫

SR
g(x)e−inθx dS. Moreover

the series and its term by term first derivatives converge uniformly on compact subsets
of D?.
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Proof. First, we are going to prove that û as defined by (7.3) belongs to W. We
split the proof into three steps. The first one consists in proving that û ∈ C2(D).
This step is essentially identical to what is known for the Helmholtz problem. Thus,
taking into account classical estimates of the Hankel functions of first kind for large
order (see [39]), for x in any compact subset of D and N large enough,


 ∑

|n|≥N

∣∣∣∣∣
gn

H(1)
n (kR)

H(1)
n (kr̂x) einθx

∣∣∣∣∣




2

≤
∑

|n|≥N

∣∣∣∣∣
H(1)

n (kr̂x)

H(1)
n (kR)

∣∣∣∣∣

2 ∑

|n|≥N

|gn|2

≤ C ‖g‖2L2(SR)

∑

|n|≥N

(
R

|r̂x|
)2|n|

,

where we recall that |r̂x| > R (here and thereafter C denotes a generic constant,
not necessarily the same at each occurrence). From this, we conclude the uniform
and absolute convergence of the series (7.3) on compact subsets of D. Analogous
procedures allow us to prove the uniform convergence of the corresponding series for
the first and the second derivatives. Since each term in each series is continuous, we
conclude that û ∈ C2(D).

The second step consists in proving that û ∈ C(D?). Since g ∈ Hs(SR) with
s > 1/2, for x in any compact subset of D?, we have for N large enough


 ∑

|n|≥N

∣∣∣∣∣
gn

H(1)
n (kR)

H(1)
n (kr̂x) einθx

∣∣∣∣∣




2

≤
∑

|n|≥N

∣∣∣∣∣
1
ns

H(1)
n (kr̂x)

H(1)
n (kR)

∣∣∣∣∣

2 ∑

|n|≥N

n2s |gn|2

≤ C
∑

|n|≥N

∣∣∣∣
1
ns

∣∣∣∣
2 ∑

|n|≥N

n2s |gn|2 ≤ C ‖g‖2Hs(SR)

∑

|n|≥N

1
n2s

,

the latter because of the decay behavior of the Fourier coefficients of functions in
Hs(SR) (see [30]). This allows us to conclude that û ∈ C(D?).

The same arguments as above applied to the term by term derivatives of the
series allow us to show that, for g ∈ Hs(SR) with s > 3/2, ∂û/∂r and ∂û/∂θ belong
to C(D?), too.

From the previous steps, clearly û ∈ H1
loc(D

?). Hence, since the weights in the
norm of V are positive bounded functions in compact subsets of D?, in order to prove
that û ∈ V we only need to prove that there exists δ > 0 such that

(7.4)
∫ R?

R?−δ

∫ π

−π

(∣∣∣∣
γ̂(r)r
γ(r)

∣∣∣∣
∣∣∣∣
∂û

∂r

∣∣∣∣
2

+
∣∣∣∣

γ(r)
γ̂(r)r

∣∣∣∣
∣∣∣∣
∂û

∂θ

∣∣∣∣
2

+ |γ̂(r)γ(r)r| |û|2
)

dθ dr < +∞.

Since Im(r̂x) → +∞, as rx → R?, using standard estimates for H(1)
0 and [H(1)

0 ]′, and
uniform in n estimates for H(1)

n and [H(1)
n ]′ (see [16]), it is straightforward to prove
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that the following limits hold uniformly in θx ∈ (−π, π] and n ∈ N:

lim
rx→R?

√
γ̂xγx

H(1)
n (kr̂x)

H(1)
n (kR)

= 0,

lim
rx→R?

1
n

√
γ̂x

γx

∂

∂rx

(
H(1)

n (kr̂x)

H(1)
n (kR)

)
= 0,

lim
rx→R?

1
n

√
γx

γ̂x

H(1)
n (kr̂x)

H(1)
n (kR)

= 0.

Hence, for δ small enough, we have

∫ R?

R?−δ

∫ π

−π

|γ̂(r)γ(r)r| |û|2 dθ dr ≤ Cδ

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
gneinθ

∣∣∣∣∣

2

dθ = Cδ ‖g‖2L2(SR) ,

∫ R?

R?−δ

∫ π

−π

∣∣∣∣
γ̂(r)r
γ(r)

∣∣∣∣
∣∣∣∣
∂û

∂r

∣∣∣∣
2

dθ dr ≤ Cδ

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
ngneinθ

∣∣∣∣∣

2

dθ ≤ Cδ ‖g‖2H1(SR) ,

∫ R?

R?−δ

∫ π

−π

∣∣∣∣
γ(r)
γ̂(r)r

∣∣∣∣
∣∣∣∣
∂û

∂θ

∣∣∣∣
2

dθ dr ≤ Cδ

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
ngneinθ

∣∣∣∣∣

2

dθ ≤ Cδ ‖g‖2H1(SR) ,

which allow us to conclude that the integral (7.4) is finite. Therefore, from the three
previous steps we deduce that û ∈ W.

Next, since û is continuous on SR, evaluating (7.3) for x ∈ SR we have û(x) =∑∞
n=−∞ gneinθ, and (7.2) follows from the convergence of the Fourier series of g.

On the other hand, straightforward computations allow us to show that each term
in the series defining û is a solution of (7.1). Thus, û is a solution too, because we
have already shown the uniform convergence on compact subsets of D of the series
and its term by term first and second derivatives.

Finally, û is the unique solution of (7.1)-(7.2) in W because of Theorem 7.1 and
the uniqueness of the Fourier expansion of g.

8. Coupled fluid/PML problem. Our next goal is to study the coupled
fluid/PML problem and to prove that the solution of the classical scattering problem
is recovered when the PML is used.

Theorem 7.2 allows us to define a “Dirichlet-to-Neumann” PML operator,

Ĝ : H
1
2 (SR) → H−

1
2 (SR).

First it is defined for sufficiently smooth data as follows:

(8.1) Ĝ(g) =
1

γ(R)
∂û

∂r

∣∣∣∣
SR

, g ∈ Hs(SR), with s > 3/2,

where û is the unique solution in W of (7.1)-(7.2). This definition can be extended to
g ∈ H

1
2 (SR) by means of a density argument, because of the following result:

Theorem 8.1. There exists a unique bounded linear operator Ĝ : H
1
2 (SR) →

H−
1
2 (SR) satisfying (8.1), which coincides with G as defined by (2.4).
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Proof. If g ∈ Hs(SR), s > 3/2, and G is defined by (2.4), then Ĝg = Gg. Indeed,

Ĝg =
1

γ(R)
∂û

∂r

∣∣∣∣
SR

=
1

γ(R)

∞∑
n=−∞

gnk

H(1)
n (kR)

dr̂

dr
(R)[H(1)

n ]′(kr̂x)einθ

=
∞∑

n=−∞

gnk

H(1)
n (kR)

[H(1)
n ]′(kR)einθ = Gg.

Consequently, the definition of Ĝ extends uniquely to the whole space H
1
2 (SR) and

Ĝ = G.
Therefore, Ĝ can be equivalently used instead of G in the definition of problem

(2.5)-(2.7). Moreover we have the following result.
Theorem 8.2. For f ∈ H

1
2 (Γ), there exists a unique solution (u, û) ∈ H1(ΩR)×V

of the following problem:

−∆u− k2u = 0 in ΩR,(8.2)
− div(Agrad û)− γγ̂k2û = 0 in D,(8.3)

u = f on Γ,(8.4)
∂u

∂ν
= Agrad û · ν in H−

1
2 (SR),(8.5)

u = û on SR.(8.6)

Moreover, u coincides with the solution of (2.5)-(2.7) and, hence, it coincides with
the solution of the scattering problem (2.1)-(2.3) in ΩR.

Proof. Let u ∈ H1(ΩR) be the solution of (2.5)-(2.7). Then u is the restriction to
ΩR of the solution of (2.1)-(2.3). Hence u|SR

is arbitrarily smooth. Thus, Ĝ(u|SR
) =

(1/γ(R))∂û/∂r, with û ∈ W being the solution of (7.1)-(7.2). Therefore (u, û) ∈
H1(ΩR)×V is a solution of the coupled fluid/PML problem.

To prove the uniqueness, it is enough to show that the solution (uo, ûo) of problem
(8.2)-(8.6) with f = 0 vanishes. By applying local regularity up to the boundary
results for transmission problems (in particular Theorem 4.20 from [33]), we conclude
that ûo ∈ C2(D?). Notice that this regularity comes from the assumed smoothness on
the absorbing function: σ ∈ C2,1(D). Hence ûo ∈ W and

Agrad ûo · ν =
1

γ(R)
∂ûo

∂r
on SR.

Consequently, (8.3) and (8.6) imply that Ĝ(uo|SR) = Agrad ûo · ν and, because of
(8.5) and Theorem 8.1, we have

∂uo

∂ν
= Ĝ(uo|SR

) = G(uo|SR
) on SR.

Therefore, uo is the unique solution of (2.5)-(2.7) with f = 0 and hence uo = 0.
Finally, as a consequence of Theorem 7.2, ûo = 0, too.

Finally we write a variational formulation of the coupled fluid/PML problem
(8.2)-(8.6), which will be used in the following section to introduce a convenient finite
element discretization. For this purpose, we introduce the functional space

H :=
{
(v, v̂) ∈ H1(ΩR)×V : v = v̂ on SR

}
.
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Let (u, û) ∈ H be the solution of problem (8.2)-(8.6) and (v, v̂) ∈ H. Integrating
by parts (8.2) in ΩR and (8.3) in D̃ = {x ∈ R2 : R < |x| < R̃} with R̃ ∈ (R,R?),
since u and û are smooth, we obtain

∫

ΩR

gradu · grad v − k2

∫

ΩR

uv −
∫

SR

∂u

∂r
v dS

+
∫

D̃

Agrad û · grad v̂ − k2

∫

D̃

γγ̂ûv̂ +
∫

SR

1
γ

∂û

∂r
v̂ dS −

∫

SR̃

γ̂

γ

∂û

∂r
v̂ dS = 0.

Since (v, v̂) ∈ H, the boundary terms on SR cancel out because of (8.5). Moreover, as
R̃ goes to R?, using Lemma 5.2 we have

∫

ΩR

gradu · grad v +
∫

D

Agrad û · grad v̂ − k2

(∫

ΩR

uv +
∫

D

γγ̂ûv̂

)
= 0.

Thus we are lead to the following variational formulation of problem (8.2)-(8.6):
For f ∈ H

1
2 (Γ), find (u, û) ∈ H such that u = f on Γ and

(8.7)
∫

ΩR

gradu · grad v +
∫

D

Agrad û · grad v̂

− k2

(∫

ΩR

uv +
∫

D

γγ̂ûv̂

)
= 0 ∀ (v, v̂) ∈ H0.

The space H0 above is given by H0 := {(v, v̂) ∈ H : v = 0 on Γ}.
Corollary 8.3. The solution of the coupled fluid/PML problem (8.2)-(8.6) is

the unique solution of the variational problem (8.7).
Proof. We have already shown that the solution of problem (8.2)-(8.6) satisfies

(8.7). The converse follows from standard arguments.

9. Discretization and numerical results. In this section, we introduce a
finite element discretization of problem (8.7). For this purpose, we use meshes Th of
curved elements which correspond to standard quadrilaterals in polar coordinates. As
usual, h denotes the mesh-size. Each element must be completely contained either in
Ω̄R or in D̄. Moreover, we take advantage of the fact that D is an annular domain
by using curved rectangles in D (see Fig. 9.1). We use bilinear elements in polar
coordinates; namely, for K ∈ Th, let

Q1(K) := {vh ∈ C(K) : vh(y) = aryθy + bry + cθy + d, y ∈ K, a, b, c, d ∈ C} .

Thus, the finite-element space is

Hh := {(vh, v̂h) ∈ C(ΩR)× C(D) : v̂h = 0 on SR? ,

vh = v̂h on SR, vh|K , v̂h|K ∈ Q1(K) ∀K ∈ Th} .

From Lemma 5.1, the boundary condition v̂h = 0 on SR? in the definition of Hh turns
out necessary for Hh ⊂ H. For a non integrable absorbing function σ in (3.2) as that
in (9.1) below, this boundary condition is also sufficient (see [11] for other feasible
choices of σ for which Hh ⊂ H).

Let fh be a convenient approximation of f in the space of the traces on Γ of func-
tions in Hh. The discrete variational problem associated with the coupled fluid/PML
problem is the following:
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Find (uh, ûh) ∈ Hh such that uh = fh on Γ and

∫

ΩR

graduh · grad vh +
∫

D

Agrad ûh · grad v̂h

− k2

(∫

ΩR

uhvh +
∫

D

γγ̂ûhv̂h

)
= 0 ∀ (vh, v̂h) ∈ Hh ∩H0.

In what follows we report some numerical results obtained with a computer code
implementing the perfectly matched layer method with a non integrable absorbing
function σ. In all the numerical tests we have used

(9.1) σ(s) =
c

R? − s
;

let us recall that c is the velocity of propagation in ΩR.
To illustrate the performance of the PML method with an non integrable σ, we

consider a simple problem for which we have a closed form solution. It is well known
that the function

u(y) =
i

4
H(1)

0 (k |y|)

satisfies the scattering problem (2.1)-(2.3). Therefore, if we take f := u|Γ, then u is
the component in the fluid domain ΩR of the unique solution of (8.2)-(8.6).

In this numerical experiment we have taken k = ω/c with c = 343m/s and
frequency ω = 750 rad/s. We have used the computational domain shown in Fig. 9.1
where R? = 1 m, R = 2.25 m and R? = 3.5 m.

To evaluate the integrals involved in the finite element method, we have used a
Simpson adaptive rule, to reduce the numerical errors arising from the quadrature
rules as much as possible. However, it is shown in [11] that standard quadrature rules
lead to numerical results essentially of the same accuracy.

ΩR

R
R?

Ω

D
R?

Fig. 9.1. Domains and mesh (N = 2) in the scattering problem.

We have used uniform refinements of the mesh shown in Fig. 9.1; the number N
of elements through the thickness of the PML is used to label each mesh. Specifically,
meshes corresponding to N = 2, 4 and 8 have 264, 1008 and 3936 degrees of freedom,
respectively.
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Fig. 9.2. Solution of the fluid/PML coupled problem. Mesh N = 8, ω = 750 rad/s.

We show in Fig. 9.2 the real and imaginary parts of the solution computed for the
fluid/PML coupled problem with the mesh corresponding to N = 8 and ω = 750 rad/s.
The solution is plotted in the fluid domain and in the PML.

To measure the accuracy we have estimated the relative error in the L2-norm in
ΩR as follows:

(9.2) Error =
‖uh −Πhu‖L2(ΩR)

‖Πhu‖L2(ΩR)

,

where uh is the numerical solution in ΩR and Πhu is the Lagrange interpolant of the
exact solution u.

To assess the order of convergence of the proposed numerical method, we show
in Fig. 9.3 the error curve (log-log plot of error versus mesh-size) computed in the
fluid domain ΩR. It can be seen from this figure that an order of convergence O(h2)
is achieved. Let us recall that this is the optimal order for the used finite elements in
L2-norm.

Further numerical examples on more complex geometries and with different data
have been reported in [11], where we have implemented a Cartesian PML using non
integrable absorbing functions.

To end this section, we compare the numerical performance of this PML technique
with that of the classical one based on a quadratic function (see for instance [8] or
[12]):

(9.3) σQ(s) = cσ?(s−R)2.

As shown in [13], for a given problem and a given mesh there is an optimal value
of σ? leading to minimal errors. Such optimal value depends strongly on the problem
data as well as on the particular mesh. Thus, in practice, it is necessary to tune it.
No theoretical procedure for such a tuning is known to date.

In Table 9.1, we compare the errors of the PML methods with the unbounded
absorbing function (9.1) and with the quadratic absorbing function (9.3), for ω =
750 rad/s. For the latter, we have used the optimally tuned value of σ?, which is also
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Fig. 9.3. Error curve for the fluid/PML coupled problem (ω = 750 rad/s).

reported in the table (and which can be seen that changes significantly from one mesh
to the others).

Table 9.1
Comparison of PML methods with non integrable and quadratic absorbing functions.

Non integrable σ (9.1) Quadratic σQ (9.3)

Mesh Error(%) Error(%) σ?

N = 2 0.342 11.346 415.54
N = 4 0.079 3.247 565.07
N = 8 0.019 0.970 702.32

Table 9.1 shows that the errors of the PML method with the non integrable
absorbing function are noticeable smaller than those of the classical PML technique.
On the other hand, another benefit of our proposed PML method is that there is no
need of fitting any non-physical parameter.

Appendix A. Technical results. In this appendix we collect some technical
results that have been used along the proof of Theorems 4.4 and 5.3.

First, we recall some basic results about the relation between polar coordinates
centered at different points. For a fixed point x ∈ D, we introduce (ρy, φy) as the
coordinates of point y in polar coordinates centered at x:

y = x + ρy(cos φy, sin φy).

We denote by {eρ,eφ} the canonical basis of the second system of coordinates. For
each point y ∈ D, we have

er = cos(φy − θy)eρ − sin(φy − θy)eφ,(A.1)
eθ = sin(φy − θy)eρ + cos(φy − θy)eφ.(A.2)

On the other hand, explicit computations lead to

(A.3)
∂ry

∂ρy
= cos(φy − θy),

∂θy

∂ρy
=

1
ry

sin(φy − θy).
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The following lemma collects several limits that will be used in the proof of Lemma
A.3. The corresponding proofs are straightforward.

Lemma A.1. For fixed x ∈ D and φy ∈ (−π, π],

lim
ρy→0

∂r̂y

∂ρy
= γx cos(φy − θx),

lim
ρy→0

∂ d(x,y)
∂ρy

=
√

γ2
x cos2(φy − θx) + γ̂2

x sin2(φy − θx),

lim
ρy→0

r̂y − r̂x cos(θy − θx)
ry − rx cos(θy − θx)

= γx.

The following integral will be also used below.
Lemma A.2. For a ∈ C with Re(a) 6= 0, there holds

(A.4)
1
2π

∫ π

−π

1
a cos2 θ + a−1 sin2 θ

dθ = sign(Re(a)).

Proof. First, using the change of variable s = tan θ, it is easy to see that
∫ π

−π

1
a cos2 θ + a−1 sin2 θ

dθ =
2
a

∫ ∞

−∞

1
a−2 + s2

ds.

To evaluate the improper integral, we apply the residue theorem. The residues of
the integrand are ± a

2i . We have to distinguish two cases depending on the sign of
Im(ia−1). For instance, if Im(ia−1) > 0, then the standard procedure leads to

2
a

∫ ∞

−∞

1
a−2 + s2

ds =
2
a

( a

2i
2πi

)
= sign(Im(ia−1))2π,

and analogously for Im(ia−1) < 0. We conclude the result since sign(Im(ia−1)) =
sign(Re(a)).

Now, we are in a position to prove the next lemma which has been used in
Theorems 4.4 and 5.3.

Lemma A.3. For x ∈ D fixed, if Φ± are the fundamental solutions given by (4.3)
and (4.4), and ϕ ∈ C1(D), then

lim
ε→0

(∫

S(x,ε)

Ay grady Φ±(x, y) · n ϕ(y) dSy(A.5)

−
∫

S(x,ε)

Ay grady ϕ(y) · n Φ±(x, y) dSy

)
= ϕ(x),

where S(x, ε) = {y ∈ R2 : |x− y| = ε} and n is its inward unit normal vector.
Proof. We prove the lemma for Φ+. An analogous proof is valid for Φ−.
First, we check that the limit of the second integral in (A.5) is zero. Since ϕ ∈

C1(D) and the coefficients of Ay are bounded for y such that |x− y| ≤ ε, we only
have to prove that

lim
ε→0

∫

S(x,ε)

Φ+(x, y) dSy = 0.
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The above limit is easy to check by using Lemma 4.2 and the following estimate:
∣∣∣∣Φ+(x,y)− i

4

(
2i

π
log

k d(x, y)
2

+
2Cei

π
+ 1

)∣∣∣∣ ≤ C |d(x,y)|2 |log d(x, y)| ,

for |x− y| small enough, which in its turn follows from the asymptotic behavior of
Hankel functions (see [39]). In the above expression, Ce is the Euler’s constant.

Regarding the first integral in (A.5), since n = −eρ on S(x, ε), from (4.3), (A.1)
and (A.2), we have

Ay grady Φ+(x, y) · n =
(

γ̂y

γy

∂Φ+(x, y)
∂ry

er +
γy

r̂y

∂Φ+(x,y)
∂θy

eθ

)
· (−eρ)

(A.6)

= −k
i

4
[H(1)

0 ]′(k d(x, y))
[
γ̂y

γy

∂ d(x,y)
∂ry

cos(φy − θy) +
γy

r̂y

∂ d(x, y)
∂θy

sin(φy − θy)
]

=: −k
i

4
[H(1)

0 ]′(k d(x,y))M(x, y),

where we denote by M(x, y) the expression between brackets above. By using the
following elementary identities (see Fig. A.1):

|x− y| cos(φy − θy) = ry − rx cos(θy − θx),
|x− y| sin(φy − θy) = rx sin(θy − θx),

we obtain

(A.7) M(x, y) =
(

γ̂y
r̂y − r̂x cos(θy − θx)
ry − rx cos(θy − θx)

cos2(φy − θy)

+
γy r̂x

rx
sin2(φy − θy)

) |x− y|
d(x,y)

,

which, in particular, together with Lemma 4.2 and the third limit in Lemma A.1,
show that M(x, y) is bounded for |x− y| small enough.

θy − θx

x

O

y

θy
φy

|x− y|

θy − φy

Fig. A.1. Polar coordinates systems centered at the origin O and at point x

On the other hand, by using a classical estimate of [H(1)
0 ]′(z) (see [39]) and Lemma

4.2, we have

(A.8)
∣∣∣∣[H

(1)
0 ]′(k d(x,y))− 2i

π

1
k d(x,y)

∣∣∣∣ ≤ C |x− y| |log(k d(x, y))| ,
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for |x− y| small enough. Because of this, we proceed from (A.6) as follows:

∫

S(x,ε)

Ay gradyΦ+(x,y) · n ϕ(y)dSy = −
∫ π

−π

εk
i

4
M(x, y)

2i

π

1
k d(x,y)

ϕ(y) dφy

(A.9)

−
∫ π

−π

εk
i

4
M(x,y)

(
[H(1)

0 ]′(k d(x, y))− 2i

π

1
k d(x, y)

)
ϕ(y) dφy.

Manipulating the second integral from (A.8), we obtain

(A.10)
∣∣∣∣
∫ π

−π

εk
i

4
M(x, y)

(
[H(1)

0 ]′(k d(x,y))− 2i

π

1
k d(x,y)

)
ϕ(y) dφy

∣∣∣∣

≤ C

∫ π

−π

k

4
|M(x, y)| ε2 |log(k d(x, y))| |ϕ(y)| dφy −→ 0 as ε → 0,

since, M(x, y) is bounded for |x− y| ≤ ε and |d(x, y)| = O(ε) uniformly in all
directions (see Lemma 4.2).

Thus, we only have to calculate the limit of the remaining integral in (A.9).
For this purpose, we calculate the following limit as ρy = |x− y| → 0 for fixed
φy ∈ (−π, π]:

lim
ρy→0

ρyM(x, y)
d(x, y)

=


γ̂x cos(φy − θx) lim

ρy→0

∂r̂y

∂ρy
+ r̂x sin(θy − θx)

∂θy

∂ρy

∂ d(x, y)
∂ρy

+γxr̂x sin(φy − θx) lim
ρy→0

cos(θy − θx)
∂θy

∂ρy

∂ d(x,y)
∂ρy


 lim

ρy→0

(
∂ d(x,y)

∂ρy

)−1

=γxγ̂x lim
ρy→0

(
∂ d(x,y)

∂ρy

)−2

=
γxγ̂x

γ2
x cos2(φy − θx) + γ̂2

x sin2(φy − θx)
,

where we have used L’Hôpital’s rule, Lemma A.1 and (A.3).
Therefore, since ρy = ε on S(x, ε), by using the above limit, the boundedness of

M(x,y) and Lemma 4.2, we have from (A.9) and (A.10)

lim
ε→0

∫

S(x,ε)

Ay grady Φ+(x, y) · n ϕ(y)dSy

=ϕ(x)
1
2π

∫ π

−π

γxγ̂x

γ2
x cos2(φy − θx) + γ̂2

x sin2(φy − θx)
dφy

=sign
(

Re
(

γx

γ̂x

))
ϕ(x)

=ϕ(x),

because of Lemma A.2 with a = γx/γ̂x, which can be shown that has a positive real
part.
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