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Abstract. A new method is proposed to solve an ellipsoid-constrained integer least squares
(EILS) problem arising in communications. In this method, the LLL reduction, which is cast as a QRZ
factorization of a matrix, is used to transform the original EILS problem to a reduced EILS problem,
and then a search algorithm is proposed to solve the reduced EILS problem. Simulation results
indicate the new method can be much more computationally efficient than the existing method. The
method is extended to solve a more general EILS problem.
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1. Introduction. Let the set of all real m × n matrices be denoted by R
m×n

and the set of all real n-vectors by R
n. Similarly Z

m×n and Z
n denote the set of all

integer m × n matrices and the set of all integer n-vectors, respectively.
Given a vector y ∈ R

m and a matrix A ∈ R
m×n with full column rank, the

minimization problem

(1.1) min
x∈Zn

‖y − Ax‖2
2

is referred to as the integer least squares (ILS) problem. In the lattice theory, A is
called the generator matrix of the lattice L(A) = {Ax : x ∈ Z

n}, y is called the
input vector, and (1.1) is referred to as a closest point problem or a closest vector
problem; and in channel coding, (1.1) is referred to as a decoding problem; see, e.g.,
[1]. The ILS problem may arise from several applications, such as communications,
cryptograph, lattice design, Monte Carlo second-moment estimation, radar imaging,
and global navigation satellite systems, etc.; see, e.g., [1], [12], [18] and references
therein. It was shown in [19] that it is NP-hard. This means all known algorithms for
solving (1.1) have exponential complexity.

A common approach to solving the ILS problem (1.1) and other constrained ILS
problems (see later), which can be referred to as the enumeration approach, usually
has two stages: reduction (or preprocessing) and search. The typical reduction strategy
for solving (1.1) is the well-known Lenstra–Lenstra–Lovász (LLL) reduction [14]. An
excellent survey on the search algorthms for solving (1.1) can be found in [1], which
provides an efficient implementation of the Schnorr–Euchner search strategy [17].

In some communications applications, the integer vector x is constrained to a box
and one wants to solve (see, e.g., [3] and [8])

(1.2) min
x∈B

‖y − Ax‖2
2, B = {x ∈ Z

n : l ≤ x ≤ u, l ∈ Z
n, u ∈ Z

n}.
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1072 XIAO-WEN CHANG AND GENE H. GOLUB

We refer to this problem as a box-constrained integer least squares (BILS) problem.
In [3], the implementation of the Schnorr–Euchner search strategy given in [1] was
directly extended to solve the BILS problem (1.2). In [8], two search algorithms based
on the Phost search strategy (see [16], [20], and [21]) and the Schnorr–Euchner search
strategy, respectively, were also proposed for solving (1.2). In addition, [8] introduced
some reduction (or preprocessing) strategies. As in [1] for solving the ILS problem
(1.1), it was found in [8] that the Schnorr–Euchner strategy is usually more efficient
than the Phost strategy for solving the BILS problem (1.2).

In some communications applications, the integer vector x is subject to the fol-
lowing constraint (see, e.g., [8]):

(1.3) E = {x ∈ Z
n : ‖Ax‖2

2 ≤ α2},

where α is a given constant. The constraint (1.3) is a hyperellipsoid and will be referred
to as the constraint ellipsoid in this paper. Then the ILS problem becomes

(1.4) min
x∈E

‖y − Ax‖2
2.

We refer to (1.4) as an ellipsoid-constrained integer least squares (EILS) problem. It
appears that [8] is the first paper to show how to solve this problem. It suggests
modifying the methods for solving the BILS problem (1.2) presented in [8] to solve
(1.4). Notice that (1.4) is a special case of the following more general EILS problem:

(1.5) min
x∈Eg

‖y − Ax‖2
2, Eg = {x ∈ Z

n : ‖w − Bx‖2
2 ≤ α2},

where B ∈ R
p×n is a given matrix with full column rank and w ∈ R

p is a given
vector.

The main goal of this paper is to present a faster method to solve the EILS prob-
lem (1.4). Specifically, we will propose to use the LLL reduction for preprocessing,
which can be much more effective than the reduction strategies given in [8], and pro-
pose a search algorithm to deal with the ellipsoidal constraint (1.3). The combination
of the reduction algorithm and the search algorithm offers a significant decrease in
computational cost compared to the method given in [8]. The method will then be
extended to solve the more general EILS problem (1.5).

ILS problems can be regarded as special cases of quadratic integer programming
or nonlinear integer programming, and thus relevant methods for some integer pro-
gramming problems can be applied to solve ILS problems. For example, we can use
the well-known TOMLAB/CPLEX package or TOMLAB/MINLP package to solve
the EILS problem (1.4). However, our preliminary numerical experiments indicated
that our new method implemented in MATLAB is faster than TOMLAB/CPLEX
and much faster than TOMLAB/MINLP. It would be interesting to give compre-
hensive comparisons of the enumeration approach for ILS problems and the existing
approaches for integer programming problems which can be applied to ILS problems.
But this is beyond the scope of this paper, and we leave this for a future investigation.

The rest of the paper is organized as follows. In section 2, we introduce the LLL
reduction, our implementation of the LLL reduction, the so-called V-BLAST reduction
strategy (see [8] and [10]), and the Schnorr–Euchner strategy based search algorithm
given in [8] for solving the BILS problem (1.2). In section 3, we review the method
described in [8] for solving the EILS problem (1.4). In section 4, for solving (1.4), we
first propose to use the LLL reduction strategy to do the reduction and then present
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a new search algorithm. Then this method is extended to solve the more general EILS
problem (1.5) in section 5. Section 6 gives simulation results to show the advantages
of our new method. Finally, a summary is given in section 7.

Before ending this section, we introduce some notation to be used in this paper.
Bold uppercase letters and bold lowercase letters are used to denote matrices and
vectors, respectively. The kth column of the identity matrix I is denoted by ek.
MATLAB notation is used to denote a submatrix. For a real vector a = (ai) ∈ R

n,
�a� denotes the vector whose ith entry is the nearest integer to ai (if there is a tie, we
choose the one with smaller magnitude) for i = 1 : n. Similarly, �a� and �a� denote
the vectors whose ith entries are �ai� and �ai�, respecively, for i = 1 : n. Operation
sign(z) returns −1 if z ≤ 0 and 1 if z > 0. For a random vector v which is normally
distributed with mean u and covariance Σ, we denote it by v ∼ N(u,Σ).

2. Preliminary. In this section we present the ideas for solving the ILS prob-
lem (1.1) and the BILS problem (1.2). These ideas will be used for developing algo-
rithms to solve the EILS problem (1.4). In section 2.1, we introduce the well-known
LLL reduction presented in [14] and a reduction strategy proposed in [8]. In section
2.2, we introduce the Schnorr–Euchner strategy based search algorithms presented
in [8] for solving the BILS problem.

2.1. Reduction. A reduction process transforms a given ILS problem into a
new ILS problem, and its essential part is to transform the matrix A into an upper
triangular matrix, which has good properties to make the later search process efficient.
For solving the ordinary ILS problem (1.1), we can describe the transformations on
A as the following matrix factorization:

(2.1) QT AZ =
[
R
0

]
or A = QT

1 RZ−1,

where Q = [Q1
n

, Q2
m−n

] ∈ R
m×m is orthogonal, R ∈ R

n×n is nonsingular upper trian-

gular, and Z ∈ Z
n×n is unimodular (i.e., Z is an integer matrix with | det(Z)| = 1, so

Z−1 is an integer matrix). We refer to (2.1) as a QRZ factorization. Without loss of
generality, we assume that the diagonal entries of R are positive in this paper. Then,
with (2.1), we have

(2.2) ‖y − Ax‖2
2 = ‖QT

1 y − RZ−1x‖2
2 + ‖QT

2 y‖2
2.

Defining

(2.3) ȳ � QT
1 y, z � Z−1x,

we see that the ILS problem (1.1) is reduced to

(2.4) min
z∈Zn

‖ȳ − Rz‖2
2.

If ẑ is the solution to the above reduced ILS problem, then x̂ = Zẑ is the solution to
the original ILS problem (1.1).

The typical reduction for solving the ILS problem (1.1) is the LLL reduction
(see [14] and [13]). In the LLL reduction, the upper triangular matrix R satisfies the
following criteria:

(2.5) |rk−1,j | ≤ 1
2
rk−1,k−1, rk−1,k−1 ≤ δ

√
r2
k−1,k + r2

kk, j = k : n, k = 2 : n,
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where δ is a parameter satisfying 1 ≤ δ < 2. In this paper, we take δ = 1 in (2.5). Then
from (2.5) we can easily obtain the following relation among the diagonal entries of R :

rk−1,k−1 ≤ 2√
3
rkk, k = 2 : n.

These properties of R can make a typical search process more efficient; see [1] and
[15]. The original LLL reduction was not described in terms of matrices. Casting the
LLL reduction as a matrix factorization (2.1) explicitly will help in designing a good
algorithm to compute it.

In the original LLL reduction algorithm presented in [14], the Gram-Schmidt or-
thogonalization was used. But, for numerical stability, we will use Householder trans-
formations and Givens rotations (see, e.g., [2, section 2.4] and [11, Chapter 5]). In our
implementation, two types of unimodular matrices are used. One is of integer Gauss
matrices, which are used to pursue the first criterion in (2.5); and the other is of
permutation matrices, which are used to pursue the second criterion in (2.5). In the
following, we introduce these two types of unimodular matrices and the corresponding
operations when they are applied to the R factor of the QR factorization of A.

Integer Gauss transformations (IGTs). An integer matrix is called an IGT if it
has the following form:

Zij = I − ζijeie
T
j , i �= j, ζij is an integer.

It is easy to show that Zij is unimodular and Z−1
ij = I + ζijeie

T
j . If we apply Zij

(i < j) to R from the right, we have

R̄ � RZij = R − ζijReie
T
j .

Thus R̄ is the same as R, except that r̄kj = rkj −ζijrki for k = 1 : i. To meet the first
criterion in (2.5), we take ζij = �rij/rii�, ensuring |r̄ij | ≤ 1

2 |r̄ii|. Note that if we did
not have the requirement that ζij is an integer number, we could take ζij = rij/rii to
make r̄ij = 0—this is what Gaussian elimination does (see, e.g., [11, section 3.2]).

Permutations. In order to pursue the second criterion in (2.5), permutations are
needed in the reduction process. Suppose in the upper triangular R,

(2.6) rk−1,k−1 >
√

r2
k−1,k + r2

kk;

then we interchange columns k − 1 and k of R. The upper triangular structure is no
longer maintained, but we can apply a Givens rotation to R from the left to bring
R back to an upper triangular form again. After the Givens rotation, the second
inequality in (2.5) with δ = 1 holds.

Our implementation of the LLL reduction first computes the QR factorization of
A by Householder transformations and then works on the upper triangular R from left
to right. For the kth column of R, the algorithm first uses IGTs to make |ri,k| ≤ ri,i/2
for i = k−1 : −1 : 1 (cf. the first inequality in (2.5)) and then checks if it is necessary
to permute columns k − 1 and k according to the criterion (2.6). If (2.6) is satisfied,
it performs the permutation, applies the corresponding Givens rotation, and moves
back to column k − 1; otherwise it moves to column k + 1. The description of our
implementation of the LLL reduction is as follows.
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Algorithm LLL
Input: The full column rank matrix A ∈ R

m×n and the vector y ∈ R
m.

Output: The reduced upper triangular matrix R ∈ R
n×n, the unimodular matrix

Z ∈ Z
n×n, and the vector ȳ ∈ R

n.

Compute [Q1, Q2]T A =
[
R
0

]
by the Householder transformations and

simultaneously compute [Q1, Q2]T y and set ȳ := QT
1 y

Set Z := In, k = 2
while k ≤ n

for i = k − 1 : −1 : 1
apply the IGT Zik to R from the right such that |rik| ≤ rii/2,
update Z, i.e., Z := ZZik

end

if rk−1,k−1 >
√

r2
k−1,k + r2

k,k, then

interchange columns k − 1 and k of R and transform R to
an upper triangular matrix by a Givens rotation,

interchange columns of k − 1 and k of Z,
apply the same Givens rotation to ȳ
if k > 2, then

k = k − 1
end

else
k = k + 1

end
end

For the BILS problem (1.2), using the LLL reduction would bring difficulties
in handling the box constraint (notice that z in (2.3) would be subject to a non-
box constraint). But if the unimodular matrix Z in the QRZ factorization (2.1) is a
permutation matrix, i.e., the QRZ factorization is actually a QR factorization with
column pivoting (or column reordering), then there is not any difficulty in applying
the factorization. Define

(2.7) l̄ � ZT l, ū � ZT u.

Then, using (2.1) (where Z is now a permutation matrix, so Z−1 = ZT ), we see that
with (2.3) and (2.7) the original BILS problem (1.2) is equivalent to the reduced one:

(2.8) min
z∈B̄

‖ȳ − Rz‖2
2, B̄ = {z ∈ Z

n : l̄ ≤ z ≤ ū, l̄ ∈ Z
n, ū ∈ Z

n}.

In [8], the so-called vertical Bell Labs layered space-time (V-BLAST) optical
detection ordering given in [10] was proposed for column reordering, and it is more
effective than other column reordering strategies given in [8]. This strategy (to be
called V-BLAST) determines the columns of the permuted A from the last to the
first. Let Jk denote the set of column indexes for the not-yet-chosen columns when
the kth column of the permuted A is to be determined (k = n :−1 :1). This strategy
chooses the p(k)th column of the original matrix A as the kth column of the permuted
matrix A we seek:

p(k) = arg max
j∈Jk

aT
j [I − Ak,j(AT

k,jAk,j)−1AT
k,j ]aj ,
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where aj is the jth column of A, and Ak,j is the m × (k − 1) matrix formed by the
columns ai with i ∈ Jk − {j}. It is easy to see that aT

j [I −Ak,j(AT
k,jAk,j)−1AT

k,j ]aj

is the squared Euclidean distance from aj to the space spanned by the columns of
Ak,j . For an efficient algorithm to compute the QR factorization with this pivoting
strategy, see [6].

2.2. Search. We first introduce the ideas of the Schnorr–Euchner enumerating
strategy based search algorithm for the ILS problem (1.1), which leads to the search
algorithm given in [8] for the BILS problem by some modifications.

Suppose the solution of (2.4) satisfies the bound

(2.9) ‖ȳ − Rz‖2
2 < β2

or equivalently

(2.10)
n∑

k=1

(
ȳk −

n∑
j=k+1

rkjzj − rkkzk

)2

< β2

for some β. This is also a hyperellipsoid. The search process is to seek the integer
point within this hyperellipsoid which makes the left-hand side of (2.9) smallest. We
refer to this hyperellipsoid as the search ellipsoid to distinguish it from the constraint
ellipsoid.

Define

bn � 0, bk �
n∑

j=k+1

rkjzj , k = n − 1 : −1 : 1,(2.11)

ck � (ȳk − bk)/rkk, k = n : −1 : 1,(2.12)

tn � 0, tk−1 �
n∑

i=k

r2
ii(zi − ci)2 = tk + r2

kk(zk − ck)2, k = n : −1 : 2.

Note that bk and ck depend on zk+1, zk+2, . . . , zn. Then (2.10) can be rewritten as

(2.13)
n∑

k=1

r2
kk(zk − ck)2 < β2,

which is equivalent to a set of inequalities:

level n : r2
nn(zn − cn)2 < β2 = β2 − tn,(2.14)

...

level k : r2
k,k(zk − ck)2 < β2 − tk,(2.15)

...

level 1 : r2
11(z1 − c1)2 < β2 − t1.(2.16)

Based on the above inequalities, a search process using the Schnorr–Euchner enu-
meration strategy can start. First, at level n, choose zn = �cn�. If it does not satisfy
the inequality (2.14), no other integer will satisfy the inequality, so the optimal solu-
tion of (1.1) is outside the search ellipsoid and we have to increase the value of β. If
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it satisfies the inequality, we proceed to level n − 1. At this level, we compute cn−1

by (2.12) and choose zn−1 = �cn−1�. If zn−1 does not satisfy the inequality (2.15)
with k = n− 1, then we move back to level n and choose zn to be the second nearest
integer to cn and so on; otherwise we proceed to level n− 2. Continue this procedure
until we reach level 1 and obtain a valid integer for z1. At this moment, we obtain the
first integer point denoted by ẑ = [ẑ1, . . . , ẑn]T within the search ellipsoid. Then we
update the search ellipsoid by taking β2 = ‖ȳ −Rẑ‖2

2 and search for a better integer
point within the new search ellipsoid. The idea is to try to update ẑ. At level 1, we
cannot find any interger z1 to satisfy the inequality in (2.16) (note that β has been
updated). So we move up to level 2 to update the value of z2 by choosing z2 to be
the next nearest integer to c2 (note that the most up-to-date nearest integer to c2

is ẑ2). If it satisfies the inequality at level 2, we move down to level 1 to update the
value of z1 (note that z2 has just been updated and z3, . . . , zn are the same as those
corresponding entries of ẑ); otherwise we move up to level 3 to update the value of
z3 and so on. Finally, when we fail to find a new value for zn to satisfy the inequality
(2.14), the search process stops and the latest found integer point is the optimal so-
lution we seek. Notice that during the search process the search ellipsoid shrinks each
time when a new integer point is found. This is crucial to the efficiency of the search
process. For the initial bound β, a common strategy is to set it to be infinity.

To solve the BILS problem (1.2), the box constraint in (2.8) has to be considered
during the search process. The following search algorithm presented in Damen, El
Gamal, and Caire (DEC) [8] (with minor changes) shows how the modification can
be done to take the box constraint into account.

Algorithm DEC-BILS

Input: The nonsingular upper triangular matrix R ∈ R
n×n with positive diagonal

entries, the vector ȳ ∈ R
n, the lower bound vector l̄ ∈ Z

n, the upper bound vector
ū ∈ Z

n, and the initial search ellipsoid bound β.
Output: The solution ẑ ∈ Z

n to the BILS problem (2.8).
1. (Initialization) Set k := n, bk := 0, and tk := 0
2. Compute bk :=

∑n
j=k+1 rkjzj if k < n, ck := (ȳk − bk)/rkk, zk := �ck�,

Δk := sign(ck − zk)
3. if tk + r2

kk(zk − ck)2 ≥ β2, then
go to step 4 // we are not inside the search ellipsoid

else if zk �∈ [l̄k, ūk], then
go to step 6 // we are inside the search ellipsoid

but outside the box constraint
else if k > 1, then

compute tk−1 := tk + r2
kk(zk − ck)2, set k := k − 1, go to step 2

else go to step 5 // k = 1
end

4. if k = n, then terminate, else set k := k + 1, go to step 6, end
5. (A valid point is found) Compute β2 := t1 + r2

11(z1 − c1)2, set ẑ := z and
k := k + 1.

6. (Enumeration at level k) Compute zk := zk +Δk, Δk := −Δk − sign(Δk), go
to step 3.

The above algorithm has a shortcoming. Suppose that in step 3 the inequality
tk + r2

kk(zk − ck)2 < β2 holds; then zk ∈ [
⌈
ck −

√
β2 − tk/rkk

⌉
,

⌊
ck +

√
β2 − tk/rkk

⌋
].

If this interval is large (e.g., when β is large) but there is a small overlap or no overlap
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between it and the interval [l̄k, ūk], then a lot of invalid integers are enumerated in
step 6.

3. Overview of the method of Damen, El Gamal, and Caire for solving
(1.4). In this section we mainly introduce the method of Damen, El Gamal, and Caire
outlined in [8] for solving the EILS problem (1.4). For convenience, their method is
referred to as the DEC method.

The idea of the DEC method is to extend the method for solving the BILS problem
(1.2) given in [8] to the EILS problem (1.4). It first restricts x to a box:

(3.1) X = {x ∈ R
n : μ ≤ x ≤ ν},

which is the smallest hyperrectangle including the constrained ellipsoid region and
whose edges are parallel to the axes of the coordinate system. Then the following
BILS problem can be formed:

(3.2) min
x∈B

‖y − Ax‖2
2,

where

(3.3) B = {x ∈ Z
n : l ≤ x ≤ u}, l = �μ�, u = �ν�.

This BILS problem can be solved using the method presented in [8] (see the previous
section). However, (3.2) is different from the EILS problem (1.4), since there might
be some x ∈ B but ‖Ax‖2

2 > α2. Damen, El Gamal, and Caire [8] suggested that
Algorithm DEC-BILS be modified to handle this problem (after the reduction pro-
cess). The main idea is that when an integer point x̂ is found, the algorithm tests if
‖Ax̂‖2

2 ≤ α2. If yes, it stores x̂, updates the ellipsoid bound β2, and then searches for
the next integer point. Otherwise it tries to find a new integer point without updating
β2. Later, we will give the details of the modification, which were not given in [8].

The paper [8] did not say how to find B in (3.3). Here we present an efficient
method to find B̄, which is transformed from B after the reduction process. From
B̄ we could obtain B, but this is not necessary. The DEC method for solving the
EILS problem (1.4) implies that the reduction process should be realized by the QRZ
factorization (2.1), where Z is a permutation matrix, such as that obtained by the
V-BLAST pivoting strategy (see section 2.1). Thus, with (2.1), (2.2), and (2.3), the
original EILS problem (1.4) is transformed to

(3.4) min
Ē

‖ȳ − Rz‖2
2, Ē = {z ∈ Z

n : ‖Rz‖2
2 ≤ α2},

and the box constraint (3.3) is transformed to (cf. (2.7) and (2.8))

(3.5) B̄ = {z ∈ Z
n : l̄ ≤ z ≤ ū},

where with μ̄ � ZT μ and ν̄ � ZT ν,

(3.6) l̄ � ZT l = ZT �μ� = �ZT μ� = �μ̄�, ū � ZT u = ZT �ν� = �ZT ν� = �ν̄�.

Obviously X̄ � {z ∈ R
n : μ̄ ≤ z ≤ ν̄}, which is transformed from X in (3.1) by

the permutation matrix ZT , is the smallest hyperrectangle including the constraint
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ellipsoid ‖Rz‖2 ≤ α, with edges parallel to the axes of the z-coordinate system (note
that Z is a permutation matrix). Therefore, for k = 1 : n,

μ̄k = min
z∈Rn

eT
k z subject to ‖Rz‖2 ≤ α,(3.7)

ν̄k = max
z∈Rn

eT
k z subject to ‖Rz‖2 ≤ α.(3.8)

We first consider solving (3.8). Let p � Rz. Then (3.8) becomes

(3.9) ν̄k = max
p

eT
k R−1p subject to ‖p‖2 ≤ α.

By the Cauchy–Schwarz inequality (see, e.g., [11, p. 53]), we have

(3.10) eT
k R−1p ≤ ‖R−T ek‖2‖p‖2 ≤ ‖R−T ek‖2α.

Here the first inequality becomes an equality if and only if p = cR−T ek for a nonneg-
ative scalar c, while the second inequality becomes an equality if and only if ‖p‖2 = α.
Thus the optimal p for (3.9) satisfies p = αR−T ek/‖R−T ek‖2, and from (3.9)

ν̄k = α‖R−T ek‖2,

where q � R−T ek can easily be obtained by solving RT q = ek. After finding ν̄k, we
immediately obtain μ̄k for k = 1 : n, since it is easy to observe that

μ̄k = −ν̄k = −α‖R−T ek‖2.

Then immediately we obtain l̄ and ū in (3.5) by (3.6).
Now we give details of the modification of Algorithm DEC-BILS, resulting in

Algorithm DEC-EILS.

Algorithm DEC-EILS

Input: The nonsingular upper triangular matrix R ∈ R
n×n, the vector ȳ ∈ R

n, the
lower bound vector l̄ ∈ Z

n, the upper bound vector ū ∈ Z
n, the initial search ellipsoid

bound β, and the constraint ellipsoid bound α.
Output: The solution ẑ ∈ Z

n to the EILS problem (3.4).
In Algorithm DEC-BILS, replace step 3 with
if tk + r2

kk(zk − ck)2 ≥ β2, then
go to step 4 // we are not inside the search ellipsoid

else if zk �∈ [lk, uk], then
go to step 6 // we are inside the search ellipsoid

but outside the box constraint
else if k > 1, then

compute tk−1 := tk + r2
kk(zk − ck)2, set k := k − 1, go to step 2

else if ‖Rz‖2
2 > α2, then

go to step 6 // k = 1, we are inside the constraint box
but outside the constraint ellipsoid

else go to step 5 // k = 1
end

Note that when an integer point ẑ is found, Algorithm DEC-EILS checks whether
it is valid by testing ‖Rẑ‖2

2 ≤ α2. If so, it stores the current ẑ, updates the bound β2

by taking β2 = ‖ȳ − Rẑ‖2
2, and moves up to level 2 to continue the search process;

otherwise it continues the search at level 1. Besides the shortcoming which is inherited
from Algorithm DEC-BILS, Algorithm DEC-EILS may waste time in enumerating
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integer points which are inside the constraint box B̄ but outside the constraint ellipsoid
Ē , especially when the initial value of β is large. If the initial value of β is small and
the solution is inside the initial search ellipsoid, then this shortcoming will be less
serious since the set of the above integer points (notice that they are inside the search
ellipsoid) will be small.

Unlike Algorithm DEC-BILS for solving the BILS problem, a finite initial value for
β is necessary to make Algorithm DEC-EILS work. Note that only the first branch in
step 3 (i.e., we are not inside the search ellipsoid) leads to step 4 in which the search
process moves up to level k + 1. If β is infinity, the inequality tk + r2

kk(zk − ck)2 ≥ β2

will never be satisfied. However, it is possible that, after zn, . . . , z2 have been determined,
the constraint ‖Rz‖2

2 ≤ α2 may never be satisfied for any integer value of z1; then we
cannot obtain a valid integer point. In this situation, we should move to level 2 and try
the next value for z2. But we cannot move up since the only move-up branch will never
be satisfied until we get a finite value for β. Hence, the initial β has to be finite. If it
is set to be too small, the search algorithm has to be restarted again and again until a
valid integer point is found. For solving the BILS problem (1.2), one choice for the initial
β suggested by Damen, Chkeif, and Belfiore in [9] (see also [4]) is to use Roger’s upper
bound on the covering radius of the lattice generated by A (or by R) (see [7, Chapter 2])

(3.11) β = (n log n + n log log n + 5n)1/n × | det(R)|1/n

V
1/n
n

,

where Vn is the volume of a sphere of radius 1 in the real space R
n. If the algorithm

did not find a valid integer point with the current β, it increases β to
√

β2 + 1 and
restarts the search process. This is a shortcoming with such an initial choice of β.

4. A new method for solving the EILS problem (1.4). In this section we
propose a new method to solve the EILS problem (1.4). In the reduction process we
use the QRZ factorization obtained by the LLL reduction, and in the search process
the enumerated integer points always satisfy the ellipsoidal constraint in (1.3) or the
equivalent one in (3.4).

Note that in the reduction process if we use the QRZ factorization (2.1) where Z is
a general unimodular matrix, the original EILS problem (1.4) can still be transformed
to (3.4). So unlike the DEC method which tries to solve the BILS problem (3.2), where
the Z matrix in the QRZ factorization of A is a permutation matrix, we can apply the
LLL reduction in computing the QRZ factorization in solving (1.4). This can make
the search process more efficient.

Now we consider designing a search algorithm. Suppose that the solution of (3.4)
satisfies the bound ‖ȳ − Rz‖2

2 < β2 for some β. Recall from section 2.2 that when
we search an integer point z, after the last n− k entries zn, zn−1, . . . , zk+1 have been
fixed, we want to determine zk at level k. Note that zk has to satisfy the inequality
(2.15). In the following we derive the other constraint on zk imposed by the ellipsoidal
constraint (1.3).

Rewrite the ellipsoidal constraint ‖Rz‖2
2 ≤ α2 into the following form:

(4.1)
n∑

k=1

(
rkkzk +

n∑
j=k+1

rkjzj

)2

≤ α2.

With bk defined in (2.11), we define

sn � α2, sk−1 � α2−
n∑

i=k

⎛
⎝riizi +

n∑
j=i+1

rijzj

⎞
⎠

2

=sk−(rkkzk+bk)2, k = n : −1 : 2.
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It is easy to see that (4.1) is equivalent to

(rkkzk + bk)2 ≤ sk, k = n : −1 : 1.

Thus zk is restricted to the following interval:

(4.2) l̄k ≤ zk ≤ ūk, l̄k �
⌈−√

sk − bk

rkk

⌉
, ūk �

⌊√
sk − bk

rkk

⌋
, k = n : −1 : 1.

These are the constraints at all levels imposed by the ellipsoidal constraint in (3.4).
Note that, unlike the interval constraints in the BILS problem, here l̄k and ūk are not
constants, since sk and bk depend on the values of zn, zn−1, . . . , zk+1. Hence, we have
to compute l̄k and ūk while moving from level k + 1 down to level k. If l̄k > ūk, then
we cannot find a satisfactory integer zk at level k, and we have to move up to level
k + 1. Based on the above discussion, we propose the following search algorithm.

Algorithm SEARCH-EILS

Input: The upper triangular matrix R ∈ R
n×n with positive diagonal entries, the vec-

tor ȳ ∈ R
n, the initial search ellipsoid bound β, and the constraint ellipsoid bound α.

Output: The solution z ∈ Z
n to the EILS problem (3.4).

1. (Initialization) Set k := n, bk = 0, sk := α2, and tk := 0.
2. Set lboundk := 0 and uboundk := 0

Compute l̄k :=
⌈−√

sk−bk

rkk

⌉
, ūk :=

⌊√
sk−bk

rkk

⌋
If ūk < l̄k, then go to step 4, end
If ūk = l̄k, then set lboundk := 1 and uboundk := 1, end
Compute ck := (ȳk − bk)/rkk, zk := �ck�
if zk ≤ l̄k, then

zk := l̄k, set lboundk := 1 and Δk := 1
else if zk ≥ ūk, then

zk := ūk, set uboundk := 1 and Δk := −1
else // no bound of the constraint is reached

set Δk := sign(ck − zk)
end

3. if tk + r2
kk(zk − ck)2 ≥ β2, then

go to step 4 // we are not inside the search ellipsoid
else if k > 1, then

compute bk−1 :=
∑n

j=k rk−1,jzj, tk−1 := tk + r2
kk(zk − ck)2,

sk−1 := sk − (rkkzk + bk)2, set k := k − 1, go to step 2
else // k = 1 and a valid point is found

compute β2 := t1 + r2
11(z1 − c1)2, set ẑ := z and k := k + 1, go to step 5

end
4. if k = n, then terminate, else set k := k + 1, end
5. (Enumeration at level k)

if uboundk = 1 and lboundk = 1, then
go to step 4 // no integer is available at this level

end
Set zk := zk + Δk

if zk = l̄k, then
set lboundk := 1, compute Δk := −Δk − sign(Δk)

else if zk = ūk, then



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1082 XIAO-WEN CHANG AND GENE H. GOLUB

set uboundk := 1, compute Δk := −Δk − sign(Δk)
else if lboundk = 1, then set Δk := 1
else if uboundk = 1, then set Δk := −1
else compute Δk := −Δk − sign(Δk)
end
Go to step 3

In this new search algorithm, all enumerated integer points satisfy the ellipsoid
constraint (3.4). So it avoids the main problem with Algorithm DEC-EILS we men-
tioned in the paragraph following the description of Algorithm DEC-EILS in section 3.
Furthermore, it does not have the shortcoming that Algorithm DEC-EILS inherited
from Algorithm DEC-BILS (see the last paragraph of section 2.2).

Unlike Algorithm DEC-EILS in which the initial search ellipsoid bound β has
to be a finite number, in the new algorithm β can be set to be infinity, which is
usually a good choice. This avoids the possible problem with Algorithm DEC-EILS
we mentioned in the second to the last paragraph in section 3.

5. Solving the general EILS problem (1.5). In this section we extend the
method given in the previous section to solve the general EILS problem (1.5). We
have not seen any method in the literature specifically for solving (1.5).

In the reduction process we compute the following matrix factorization of A and
B given in (1.5), to be referred to as the generalized QRZ factorization:

(5.1) QT AZ =
[
R
0

]
, Q̂

T
BZ =

[
R̂
0

]
,

where Q = [Q1
n

, Q2
m−n

] ∈ R
m×m and Q̂ = [Q̂1

p
, Q̂2
p−n

] ∈ R
p×p are orthogonal, R ∈ R

n×n

and R̂ ∈ R
n×n are nonsingular upper triangular with positive diagonal entries, and

Z ∈ Z
n×n is unimodular. Specifically, to make the later search process efficient, we

first compute the LLL reduction of A to obtain the QRZ factorization of A and
compute the QR factorization of BZ to obtain the QRZ factorization of B. Define

ȳ � QT
1 y, ŵ � Q̂

T

1 w, z � Z−1x, α̂2 � α2 − ‖Q̂T

2 w‖2,

where we assume α2 − ‖Q̂T

2 w‖2 > 0 (otherwise the solution does not exist). Then,
with (5.1), the general EILS problem (1.5) is reduced to

(5.2) min
Êg

‖ȳ − Rz‖2
2, Êg = {z ∈ Z

n : ‖ŵ − R̂z‖2
2 ≤ α̂2}.

For the reduced problem (5.2), we can extend Algorithm SEARCH-EILS to solve
it. The ellipsoidal constraint ‖ŵ − R̂z‖2

2 ≤ α̂2 can be rewritten as

(5.3)
n∑

k=1

(
r̂kkzk +

n∑
j=k+1

r̂kjzj − ŵk

)2

≤ α̂2.

Define

b̂k �
n∑

j=k+1

r̂kjzj − ŵk,

ŝn � α̂2, ŝk−1 � α̂2 −
n∑

i=k

(r̂iizi + b̂i)2 = ŝk − (r̂kkzk + b̂k)2, k = n : −1 : 2.
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Then (5.3) is equivalent to

(r̂kkzk + b̂k)2 ≤ ŝk, k = n : −1 : 1.

Thus zk is restricted to the following interval:

(5.4) l̂k ≤ zk ≤ ûk, l̂k �
⌈
−√

ŝk − b̂k

r̂kk

⌉
, ûk �

⌊√
ŝk − b̂k

r̂kk

⌋
, k = n : −1 : 1.

With the above preparation, we can modify Algorithm SEARCH-EILS as follows.
In step 1, set b̂k = 0 and replace sk := α2 by ŝk := α̂2. In step 2, replace l̄k :=
�−√

sk−bk

rkk
� by l̂k := �−√

ŝk−b̂k

r̂kk
� and ūk := �

√
sk−bk

rkk
� by ûk := �

√
ŝk−b̂k

r̂kk
�. In step 3, if

k > 1, compute b̂k−1 :=
∑n

j=k r̂k−1,jzj − ŵk−1 and replace sk−1 := sk − (rkkzk + bk)2

by ŝk−1 := ŝk − (r̂kkzk + b̂k)2.

6. Simulation results. In this section we give simulation results to compare the
efficiency of the DAE method and the efficiency of our new method for solving the
EILS problem (1.4). In the DAE method, the V-BLAST column reordering strategy
(see section 2.1) is used in reduction, Algorithm DEC-EILS is used for search, and the
initial bound β is set to be Roger’s upper bound (see (3.11)), which will be increased
to

√
β2 + 1 if no valid integer point is found in the search process, while, in our new

method, Algorithm LLL is used for reduction, Algorithm SEARCH-EILS is used for
search, and the initial bound β is set to be infinity. Our simulation results will show
how these individual strategies affect the performance of the whole methods. We will
also compare the overall performance of the two methods.

All our computations were performed in MATLAB 7.0 on a Pentium 4 3.20GHz
machine with 1GB memory running Windows XP.

6.1. Setup. In our simulations, the generator matrices A were n × n matrices
whose elements were drawn from independently and identically distributed zero-mean,
unit variance Gaussian distributions (this is often the case in communications). The
input vectors y were constructed based on the following linear model:

y = Ax + v, v ∼ N(0, σ2I),

which is a typical model used in communications. To generate the vector x, we first
compute the smallest hyperrectangle X in (3.1) and then randomly pick one integer
point inside X and check if it satisfies ‖Ax‖2

2 ≤ α2. If it is inside the constraint
ellipsoid, we choose it as x; otherwise we continue to pick another one. In all the
figures to be given later, n = 20 : 40, and the cost for each n is the average CPU time
(in seconds) over 1000 runs.

6.2. Comparison of the reduction strategies. To show the effectiveness of
the LLL reduction strategy, we compare it with the V-BLAST strategy. In our sim-
ulations, after either of the reduction strategies was used, Algorithm SEARCH-EILS
was applied in the search process and the initial bound β was set to be infinity. The
average search time and the average total time (including both the reduction time
and the search time) for α = 0.5n and σ = 0.1, 0.5 are given in Figures 6.1 and 6.2.

From Figures 6.1 and 6.2, we observe that the LLL strategy is much more effective
than the V-BLAST strategy for the search process. The advantage of the LLL strategy
becomes more significant as the dimension n increases, especially when the noise is
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Fig. 6.1. Average time versus dimension, α = 0.5n, σ = 0.1.

20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

10
2

Dimension n

A
ve

ra
ge

 ti
m

e 
[s

]

V−BLAST (total time)
V−BLAST (search time)
LLL (total time)
LLL (search time)

Fig. 6.2. Average time versus dimension, α = 0.5n, σ = 0.5.

small. When the V-BLAST strategy is used, the search time dominates the cost of the
whole algorithm for both σ = 0.1 and σ = 0.5. When the LLL strategy is used, the
search time dominates the cost of the whole algorithm for σ = 0.5, but the reduction
time dominates the cost of the whole algorithm for σ = 0.1.
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Fig. 6.3. Average search time versus dimension, α = 0.5n.

6.3. Comparison of the initial choices of β. Recall that two different initial
choices for the search ellipsoid bound β were mentioned in sections 3 and 4, respec-
tively. One sets β to be Roger’s upper bound (3.11), and if no valid integer point
is found in the search process, update it by β :=

√
β2 + 1; while the other chooses

β = ∞. To compare the effects of these two choices on the search phase, we use them
with Algorithm SEARCH-EILS (recall that β = ∞ cannot be used with Algorithm
DEC-EILS). In the simulations, Algorithm LLL was used for reduction. The results of
the average search time are given in Figure 6.3 for α = n/2 and σ = 0.1, 1. Since the
computation was too time consuming for σ = 1, we just give the results for n = 20 : 30.

From the results, we observe that when the noise is small, there is almost no
difference between the first and the second choices. But when the noise is large,
Algorithm SEARCH-EILS might be restarted many times during the search process
because no solution was found within the initial search ellipsoid determined by Roger’s
upper bound. In this situation, the infinity is a better choice for the initial value of
β. From Figure 6.3, we also observe that when the noise is large, the search time can
be significantly long.

6.4. Comparison of the search algorithms. To compare the efficiency of Al-
gorithms DEC-EILS and SEARCH-EILS, we give the average search time of the two
algorithms for α = 0.5n and σ = 0.1, 0.5 in Figure 6.4. In the simulations, for both the
search algorithms, Algorithm LLL was applied for reduction and the initial β was set
to be Roger’s upper bound and updated by β :=

√
β2 + 1 if no valid point was found

(note that in Algorithm DEC-EILS the initial β has to be finite). Figure 6.4 indicates
for σ = 0.1 that Algorithm DEC-EILS took more CPU time than Algorithm SEARCH-
EILS, while, for σ = 0.5, the two algorithms cost more or less the same CPU time.

We found that when the noise is large, the cost of Algorithm DEC-EILS is more
sensitive to the initial value of β than that of Algorithm SEARCH-EILS. When the
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Fig. 6.4. Average search time versus dimension, α = 0.5n, β = Roger’s upper bound.
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Fig. 6.5. Average search cost versus dimension, α = 0.5n, β = 3 ∗ Roger’s upper bound.

initial value of β becomes larger, Algorithm DEC-EILS can become much less efficient,
while the cost of Algorithm SEARCH-EILS changes little. To illustrate this, we display
the search time of the two algorithms in Figure 6.5 where the initial β is three times
as large as Roger’s upper bound. Since the computation was time consuming for
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Algorithm DEC-EILS when σ = 0.5, we show only its result for n = 20:35. Comparing
Figures 6.5 and 6.4, we observe that when σ = 0.1, both algorithms are as efficient
as before; when σ = 0.5, Algorithm SEARCH-EILS is still as efficient as before,
but Algorithm DEC-EILS becomes much less efficient and also the average search
time varies dramatically for different dimensions. Here we give some explanations.
We observed that when σ = 0.5, the integer points found by Algorithm DEC-EILS
during the search process were often invalid; i.e., they were outside of the constraint
ellipsoid in (3.4). Thus the search process became (much) less efficient. This is the main
drawback with Algorithm DEC-EILS which we pointed out in section 3. For different
instances with the same dimension, sometimes the number of invalid points was large
and sometimes the number of invalid points was small. Thus the search time may vary
dramatically for different instances with the same dimension, leading to the zig-zag
behavior of the average search time over 1000 samples (see the top curve in Figure 6.5).
The reason that the above phenomenon occurred with a large initial β and a large
noise can be explained in geometry. In this situation, it is likely that the constraint
box B̄ in (3.3) (notice that it includes those invalid integer points) lies inside the initial
search ellipsoid (2.9). Since the noise is large, the search ellipsoid may not shrink much
in the search process. Thus the above invalid integer point problem may last until the
optimal integer point is found. This phenomenon is less likely to happen when the
initial value of β is small or when the noise is small, since the intersection set of the
constraint box B̄ and the search ellipsoid during the search process becomes small;
i.e., the number of invalid integer points found in the search process becomes small.

6.5. Comparison of the two methods. Lastly, we compare the overall perfor-
mance of our new method with the DEC method. In our simulations, α = 0.5n, n and
σ = 0.1, 0.5. The results for the average total time (including both the reduction time
and the search time) are given in Figure 6.6 for σ = 0.1 and in Figure 6.7 for σ = 0.5.
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Fig. 6.6. Average search cost versus dimension, σ = 0.1.
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From the results we observe that our new method is (much) faster than the
DEC method. Usually the improvement becomes more significant as the dimension n
increases, in particular, when the noise is small. For the case σ = 0.1, when α changes
from 0.5n to n, the cost of the DEC method changes only slightly, while the cost of
the new method changes little (note that the two bottom curves in Figure 6.6 are
almost identical). For the case σ = 0.5, when α changes from 0.5n to n, the cost of
each method decreases.

7. Summary and future work. We have proposed a new method to solve the
EILS problem (1.4). Simulations indicated that the new method can be significantly
faster than the DEC method proposed in [8]. The new method first transformed (1.4)
into a new problem (3.4) through what we refer to as the QRZ factorization of the lattice
generator matrix, where the QRZ factorization was computed by the LLL reduction
algorithm. This reduction strategy is much more effective for a search process than the
V-BLAST reduction used in the DEC method. Then a search algorithm based on the
Schnorr–Euchner enumerating strategy was proposed for the reduced EILS problem.
The enumerated integer points by the new search algorithmalways satisfy the ellipsoidal
constraint (4.1). This avoids the main shortcomingwith the search algorithm used in the
DEC method. We also discussed the choice of β of the initial search ellipsoid (2.9).

For solving a box-constrained ILS problem, a new reduction strategy has been
recently proposed in [5], which uses all available information of the problem to make
the search process more efficient. Note that the LLL reduction uses only the informa-
tion of the generator matrix A. In the future, we would like to extend the ideas of [5]
to develop a more effective reduction strategy for the EILS problem (1.4).
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