Rank-width and Well-quasi-ordering

Sang-il Oum Program in Applied & Computational Math. Princeton Univ.

November 15, 2004

Sang-il Oum

Introduction

- Cut-rank function
- Rank-decomposition and Rank-width
- Clique-width
- Well-quasi-ordering

Cut-Rank Function

- \bullet *G*: graph.
- (A, B) : partition of $V(G)$.

Let $M_A^B(G)=(m_{ij})_{i\in A,j\in B}$ be a $A\times B$ matrix over $\mathrm{GF}(2)$ such that

$$
m_{ij} = \begin{cases} 1 & \text{if } i \text{ is adjacent to } j \\ 0 & \text{otherwise.} \end{cases}
$$

Def: Cut-rank $\mathrm{cutrk}_G(A) = \mathrm{rank}(M_A^B(G)).$ *Prop.* cutrk_G is symmetric submodular, i.e.

> $\operatorname{cutrk}_G(X) + \operatorname{cutrk}_G(Y) \ge \operatorname{cutrk}_G(X \cap Y) + \operatorname{cutrk}_G(X \cup Y)$ $\mathrm{cutrk}_G(X) = \mathrm{cutrk}_G(V(G) \setminus X)$

Rank-decomposition and Rank-width

Rank-width and Clique-width

- Clique-width: defined by [\[Courcelle and Olariu, 2000\]](#page-28-1)
- (Rank-width and Clique-width are compatible)[\[Oum and Seymour, 2004\]](#page-28-0)

```
rank-width \leq clique-width \leq 2^{\mathsf{rank\text{-}width}+1}-1
```
• Many NP-hard problems are solvable in polynomial time, if an input is restricted to graphs of bounded clique-width.

Let C be a set of graphs. We ask; " \exists an alogrithm that, for every ??? formula φ , answers whether there exists $G \in C$ such that $\varphi(G)$ is true".

- (Seese's conjecture [\[Seese, 1991\]](#page-28-2)) every MSOL formula on graphs is decidable on C. (open) \Rightarrow Bounded clique-width
- (Courcelle and Oum, 2004) every MSOL formula with $Even(X)$ predicate on graphs is decidable on $C \Rightarrow$ Bounded clique-width

Well-quasi-ordering

- \leq is a quasi-ordering if reflexive $(a \leq a)$ and transitive $(a \leq b, b \leq c \Rightarrow b$ $a \leq c$).
- A quasi-ordering \leq on X is a well-quasi-ordering if for every infinite sequence x_1, x_2, \ldots in X ,

 $\exists i < j$ such that $x_i \leq x_j$.

In other words, X is **well-quasi-ordered** by \leq . Equivalently, every infinite sequence in X contains an infinite nondecreasing subsequence.

- Examples:(well-quasi-ordered) A set of positive integers with \leq . Any finite set. Finite trees with graph minor (Kruskal's theorem)
- Examples: (not well-quasi-ordered) A set of integers with \leq .

Graphs of Bounded Rank-width are well-quasi-ordered

WANTED: an appropriate quasi-ordering on graphs

Induced Subgraph Relation is not enough

- Say $G_1 \leq G_2$ if G_1 is isomorphic to an induced subgraph of G_2 .
- C_n : a cycle of length n.
- Consider $X = \{C_3, C_4, C_5, ...\}$.
- X has bounded rank-width (at most 4).
- no C_i is an induced subgraph of C_j $(i \neq j)$.

Note that if H is an induced subgraph of G , then clique-width of $H \leq$ clique-width of G , rank-width of $H \leq$ rank-width of G .

It would be nice if a set of graphs of bounded rank-width is **closed** under \leq . (So the graph minor is not appropriate!)

Local Complementation & Vertex-Minor

 $G * v$

- $G*v$ and G have the same cut-rank function.
- \bullet *G* is **locally equivalent** to H if $H = G * v_1 * v_2 * \cdots v_k.$
- Call H is a vertex-minor of G , if H can be obtained by a sequence of local complementations and vertex deletions.
- $G * v$ and G have the same rank-width.
- Therefore, if H is a vertex-minor of G , then

rank-width of $H \leq$ rank-width of G .

Statement of our thm

Thm. If $\{G_1, G_2, \ldots\}$ is an infinite sequence of graphs of rank-width $\leq k$, then there exists $i < j$ such that G_i is isomorphic to a vertex-minor of $G_j.$

In fact, we prove a *stronger* theorem. Thm. If $\{G_1, G_2, \ldots\}$ is an infinite sequence of graphs of rank-width $\leq k$, then there exists $i < j$ such that G_i is isomorphic to a **pivot-minor** of G_j .

For an edge uv of G , the **pivoting** uv is an operation $G \wedge uv = G * u * v * u$.

H is a **pivot-minor** of G if H is obtained from G by applying a sequence of pivoting and vertex deletions.

Tools

- **Isotropic system** [\[Bouchet, 1987\]](#page-28-4) and Scraps
- Extension of Menger's theorem on scraps
- If rank-width of G is n , then there is a linked rank-decompositon of width n . [\[Geelen et al., 2002\]](#page-28-5) cf. [\[Thomas, 1990\]](#page-28-6) For any e , f in the rank-decomposition T , any vertex partition separating e, f has cut-rank \geq min cut-rank of an edge in the path from e to f in T .
- Robertson and Seymour's "Lemma on trees" [\[Robertson and Seymour, 1990\]](#page-28-7)

Binary matroids and wqo

Thm (Geelen, Gerards, Whilttle [\[Geelen et al., 2002\]](#page-28-5)). If $\{M_1, M_2, ...\}$ is a sequence of binary matroids of branch-width $\leq k$, then there exists $i < j$ such that M_i is ${\bf isomorphic}$ to a ${\bf minor}$ of $M_j.$

Tools

- "Configuration"
- Extension of Menger's theorem on matroids
- If branch-width of M is n , then there is a **linked** branch-decompositon of width n .

For any e , f in the branch-decomposition T , any vertex partition separating e, f has connectivity \geq min connectivity of an edge in the path from e to f in T .

• Robertson and Seymour's "Lemma on trees"

We generalize this theorem and mimic their proof.

Our thm implies GGW for binary matroids

- 1. For each M_i , pick a base B_i and construct a bipartite graph $G_i =$ $Bip(M_i,B_i)$. Branch-width of $M_i=$ Rank-width of G_i +1.
- 2. Fact: If H is a pivot-minor of G_i , then there exists a binary matroid M and its base B such that $H=Bip(M,B)$ and M is a minor of $M_i.$
- 3. [\[Seymour, 1988\]](#page-28-8) If two binary matroids M , M' have the same connectivity function, then $M = M'$ or $M = M'^*$. If $Bip(M_i, B_i)$ is a vertex-minor of $Bip(M_j, B_j)$ and M_i is connected, then M_i is a minor of M_j or $M_j^\ast.$
- 4. Connected binary matroids of bounded branch-width is wqo. $\exists i < j < k$ such that $Bip(M_i,B_i)$ is isomorphic to a pivot-minor of $Bip(M_i, B_j)$ and $Bip(M_i, B_j)$ is isomorphic to a pivot-minor of $Bip(M_k, B_k)$.

 M_j is a minor of M_k or M_i is a minor of M_j or $M_k.$

5. Apply Higman's lemma to binary matroids.

Graph and Isotropic system

We introduce the notion of isotropic systems, defined by [\[Bouchet, 1987\]](#page-28-4). The minor of isotropic system is related to the vertex-minor of graphs. The $\alpha\beta$ -minor of isotropic system is related to the pivot-minor of graphs.

Isotropic system

- 1. Let $K = \{0, \alpha, \beta, \gamma\}$ be a vector space over $GF(2)$ with $\alpha + \beta + \gamma = 0$.
- 2. Let $\langle x, y \rangle$ be a bilinear form over K. It's uniquely determined; $\langle x, y \rangle = 1$ if $0 \neq x \neq y \neq 0$, $\langle x, y \rangle = 0$ otherwise.
- 3. K^V : set of functions from V to K . Vector space.
- 4. For $x,y\in K^V$, let $\langle x,y\rangle=\sum_{\bm{v}\in \bm{V}}\langle x(\bm{v}),y(\bm{v})\rangle\in\mathrm{GF}(2)$. This is a bilinear form.
- 5. A subspace L is called **totally isotropic**, if $\langle x, y \rangle = 0$ for all $x, y \in L$.

Note: $\dim(L) + \dim(L^{\perp}) = \dim(K^V) = 2|V|$. If L is totally isotropic, $L\subseteq L^{\perp}.$

Def ([\[Bouchet, 1987\]](#page-28-4)). A pair $S = (V, L)$ is called **isotropic system** if

- V is a finite set and
- \bullet L is a totally isotropic subspace of K^V such that $\operatorname{\mathbf{dim}}({\bm L})=|{\bm V}|.$

$Graph \Rightarrow Isotropic system$

For $x \in K^V$ and $P \subseteq V$, $x[P] \in K^V$ such that

$$
x[P](v) = \begin{cases} x(v) & \text{if } v \in P \\ 0 & \text{otherwise.} \end{cases}
$$

Let G be a graph and $n(v)$ be the set of neighbors of v.

Let $a, b \in K^V$ such that $a(v), b(v) \neq 0$ for all v and $a(v) \neq b(v)$.

L is a vector space spanned by $\{a[n(v)] + b[\{v\}] : v \in V\}$. Then, $S = (V, L)$ is an isotropic system.

We call (G, a, b) the graphic presentation of S.

Isotropic System \Rightarrow Graph

 $a \in K^V$ is called Eulerian vector of $S=(V,L)$, if $a(v) \neq 0$ for all $v \in V$ and $a[P] \notin L$ for all $\emptyset \neq P \subseteq V$.

[\[Bouchet, 1988\]](#page-28-9) showed

- 1. There exists an Eulerian vector for any isotropic system.
- 2. Let a be an Eulerian vector of $S = (V, L)$. For each v, there exists a unique vector $b_v \in L$ such that $b_v(v) \neq 0$ for all $v \in V$ and $b_v(w) = 0$ or $a(w)$ for all $w \neq v$.

 $\{b_v : v \in V\}$ is called the **fundamental basis** of S.

The **fundamental graph** of S is a graph (V, E) where

v, w are adjacent iff $b_v(w) \neq 0$.

By $\langle b_v(w), b_w(v)\rangle = 0$, $b_v(w) \neq 0$ iff $b_w(v) \neq 0$.

Sang-il Oum 16[/27](#page-18-0)

Local Complementation and Isotropic system

Let G be a graph. Let $c_v = a[n_G(v)] + b[\lbrace v \rbrace]$.

Consider $G' = G * x$. Let $a' = a + b[\lbrace x \rbrace]$ and $b' = a[n_G(x)] + b$.

$$
c'_v = a' [n_{G'}(v)] + b'[\{v\}] = \begin{cases} c_v + c_x & \text{if $v \sim x$,} \\ c_v & \text{otherwise.} \end{cases}
$$

Let L' be a vector space spanned by $\{c'_v\}$. Then, $L'=L$.

Local complementation of graphs doesnot change the associated isotropic system.

Minor

- 1. For $X \subseteq V$, $p_X : K^V \to K^X$ is a canonical projection such that $(p_X(x))(v) = x(v)$ for $v \in X$.
- 2. For a subspace L of K^V and $v\in V$, $a\in K-\{0\}$,

$$
L|_a^v = \{p_{V-\{v\}}(x) : x \in L, \mathbf{x(v)=0} \text{ or } \mathbf{a}\} \subseteq K^{V-\{v\}}.
$$

For $a \in K - \{0\}$, $S|_a^v = (V - \{v\}, L|_a^v)$ $_{a}^{\mathit{v}})$ is called an elementary minor of S.

S' is a **minor** of S if $S' = S\vert_{a_1}^{v_1}$ $\frac{v_1}{a_1} \Big| \frac{v_2}{a_2}$ $\frac{v_2}{a_2} \cdots \big|_{a_k}^{v_k}$ for some v_i , a_i . S' is an $\alpha\beta$ -minor of S if $S' = S\vert_{a_1}^{v_1}$ $\frac{v_1}{a_1}$ $\big| \frac{v_2}{a_2}$ $\frac{v_2}{a_2} \cdots \big|_{a_k}^{v_k}$ for some v_i , $a_i \in \{\alpha, \beta\}.$

Minor and Vertex-Minor

Thm ([\[Bouchet, 1988\]](#page-28-9)). Let G be the fundamental graph of S.

Let H be the fundamental graph of $S\vert_{x}^{v}$ $\frac{v}{x}$.

Then, H is localley equivalent to one of $G\setminus v$, $G*v\setminus v$, or $G\wedge vw\setminus v$.

Cor. If S' is a minor of S , then the fundamental graph of S' is a vertex-minor of the fundamental graph of S .

$\alpha\beta$ -Minor and Pivot-Minor

Thm. Let (G, a, b) be the graphic presentation of S such that $a(v)$, $b(v) \in$ $\{\alpha,\beta\}$ for all $v \in V(G)$.

Let (H, a', b') be the graphic presentation of S' such that $a'(v), b'(v) \in$ $\{\alpha,\beta\}$ for all $v \in V(H)$.

If S' is an $\alpha\beta$ -minor of S, then H is a pivot-minor of G.

"Actual" Main Theorem

We state the theorem written in the language of isotropic system. The proof heavily relies on

- combinatorial lemmas on vector space over $GF(2)$ with form \langle , \rangle ,
- isotropic system (or "scraps"),

Isotropic system and wqo

- Connectivity $\lambda_S(X) = |X| \dim(L|_{\subset X}) = \text{CUT-RANK}_G(X)$.
- Branch-decomposition and branch-width of isotropic systems.
- $S_1 = (V_1, L_1)$ is **simply isomorphic** to $S = (V, L)$ if there is a bijectioin $\mu:V_1\to V$ such that for any $x\in K^V,$

 $x \in L$ if and only if $x \cdot \mu \in L_1$.

We prove the following.

Thm. If $\{S_1, S_2, \ldots\}$ is an infinite sequence of isotropic systems of **bounded branch-width**, then there exists $i < j$ such that S_i is simply isomorphic to an $\alpha\beta$ -minor of S_i .

This implies our theorem about graphs and pivot-minor.

Scrap

 $P = (V, L, B)$ is a **scrap** if V is a finite set and

- L is a totally isotropic subspace of K^V ,
- B is an ordered set (sequence) and a basis of L^{\perp}/L .

 $|B| = \dim(L^{\perp}/L) = (2|V| - \dim(L)) - \dim(L) = 2(|V| - \dim(L)).$ If $B = \emptyset$, then (V, L) is an isotropic system.

 $P_1 = (X, L', B')$ is a minor of P if $X = V \setminus \{v_1, v_2, \ldots, v_k\}, L' =$ $L\vert_{x_1}^{v_1}$ $\frac{v_1}{x_1} \big|_{x_2}^{v_2}$ $\bar{v}_2 \cdots |\bar{v}_k \choose x_k$, and $|B'| = |B|$ and B' is obtained naturally from \widetilde{B} by \cdots .

 $P_1 = (X, L', B')$ is a $\alpha\beta$ -minor of P if $X = V \setminus \{v_1, v_2, \ldots, v_k\},$ $L' = L_{x_1}^{\{v_1\}}$ $\begin{bmatrix} v_1 \\ x_1 \end{bmatrix} \begin{bmatrix} v_2 \\ x_2 \end{bmatrix}$ $\{x_2\cdots x_k^{v_k} \text{ with } x_i \in \{\alpha, \beta\}$, and $|B'| = |B|$ and B' is obtained naturally from B by \cdots .

Sang-il Oum 23[/27](#page-18-0)

Very Rough Sketch of Proof

Suppose $\{S_1, S_2, \ldots\}$ is not well-quasi-ordered by $\alpha\beta$ -minor relation.

Let F be an infinite forest such that each component is the **linked** branch-decomposition of S_i . We attach the root vertex to each component. For an edge e, let $l(e)$, $r(e)$ be the left/right child edge incident to e . We assign a scrap to each edge of F and define a relation \leq on the set of edges of F. We make a scrap of e is a sum of scraps of $l(e)$ and $r(e)$.

By applying lemma on trees, we get a sequence e_0, e_1, \ldots of edges such that $\{e_0, e_1, ...\}$ is an antichain and $l(e_0) \le l(e_1) \le l(e_2) \le \cdots$ and $r(e_0) \leq r(e_1) \leq r(e_2) \leq \cdots$

The number of ways to sum 2 scraps is finite $\Rightarrow \exists i \langle j, e_i \leq e_j$. Contradiction.

Sang-il Oum 24[/27](#page-18-0)

Many (strange-looking?) lemmas

- \bullet $(L|_x^v)$ $\binom{v}{x}^{\perp} = L^{\perp} \binom{v}{x}$ $\frac{v}{x}$. • If $X \subseteq V$, then $(L|_{\subseteq X})^{\perp} = L^{\perp}|_{X}$.
- \bullet dim $(L|_x^v)$ $\begin{cases} \lim(L) & \text{if } \delta_x^v \in L^{\perp} \setminus L, \\ \dim(L) & \text{if } \delta_x^v \in L^{\perp} \setminus L. \end{cases}$ $\dim(L)-1$ otherwise.
- (Extension of Menger's theorem) Let $P = (V, L, B)$ be a scrap and $X \subseteq V$. If $\lambda(P) = \lambda(L|_{\subset X}) = \min_{X \subset Z \subset V} \lambda(L|_{\subset Z})$, then there is an ordered set B' such that $Q=(X, L|_{\subseteq X}, B')$ is a scrap and an $\alpha\beta$ -minor of P.

Sum and Connection type

• "sum" of scraps

 $P = (V, L, B)$ is a sum of $P_1 = (V_1, L_1, B_1)$ and $P_2 = (V_2, L_2, B_2)$ if $V_1 \cap V_2 = \emptyset$ and $V = V_1 \cup V_2$.

The number of distinct sums of P_1 and P_2 are finite up to simple isomorphisms (by "connection type" lemma).

- A connection type $C(P, P_1, P_2)$ determines P if P_1 and P_2 are given. Roughly speaking, it specifies how B and L are made from B_1 and B_2 .
- The number of connection type is finite if $\lambda(P) = |V| \dim(L)$ is bounded.
- $\bullet\,$ If P_i is an $(\alpha\beta\text{-})$ minor of Q_i for $i=1,2$ and P is the sum of P_1 and P_2 and Q is the sum of Q_1 and Q_2 . If $C(P, P_1, P_2) = C(Q, Q_1, Q_2)$, then P is an $(\alpha\beta)$ -)minor of Q.

Excluded vertex-minors for rank-width $\leq k$

G is an excluded vertex-minor for a class of graphs of rank-width $\leq k$ if

- Rank-width of $G > k$
- Every proper vertex-minor of G has rank-width $\leq k$.

Cor. For fixed k , there are only finitely many excluded vertex-minors for a class of graphs of rank-width $\leq k$.

Proof. An excluded vertex-minor has rank-width $k + 1$. Let E be the set of excluded vertex-minors. E is well-quasi-ordered by the vertex-minor relation. But, no excluded vertex-minor contains another. So, E is finite.

Note: The above corollary has an elementary proof.[\[Oum, 2004\]](#page-28-10) *Cor.* For fixed k, "Is rank-width $\leq k$?" is NP \cap coNP.

In fact, this is in P [\[Courcelle and Oum, 2004\]](#page-28-3)

References

- [Bouchet, 1987] Bouchet, A. (1987). Isotropic systems. European J. Combin., 8(3):231–244.
- [Bouchet, 1988] Bouchet, A. (1988). Graphic presentations of isotropic systems. J. Combin. Theory Ser. B, 45(1):58–76.
- [Courcelle and Olariu, 2000] Courcelle, B. and Olariu, S. (2000). Upper bounds to the clique width of graphs. *Discrete Appl.* Math., 101(1-3):77–114.
- [Courcelle and Oum, 2004] Courcelle, B. and Oum, S. (2004). Vertex-minors, monadic second-order logic, and a conjecture by Sesse. submitted.
- [Geelen et al., 2002] Geelen, J. F., Gerards, A. M. H., and Whittle, G. (2002). Branch-width and well-quasi-ordering in matroids and graphs. J. Combin. Theory Ser. B, 84(2):270–290.
- [Oum, 2004] Oum, S. (2004). Rank-width and vertex-minor. manuscript.
- [Oum and Seymour, 2004] Oum, S. and Seymour, P. (2004). Approximating clique-width and branch-width. submitted.
- [Robertson and Seymour, 1990] Robertson, N. and Seymour, P. (1990). Graph minors. IV. Tree-width and well-quasi-ordering. J. Combin. Theory Ser. B, 48(2):227–254.
- [Seese, 1991] Seese, D. (1991). The structure of the models of decidable monadic theories of graphs. Ann. Pure Appl. Logic, 53(2):169–195.
- [Seymour, 1988] Seymour, P. (1988). On the connectivity function of a matroid. J. Combin. Theory Ser. B, 45(1):25–30.
- [Thomas, 1990] Thomas, R. (1990). A Menger-like property of tree-width: the finite case. J. Combin. Theory Ser. B, 48(1):67–76.