Rank-width and Well-quasi-ordering

Sang-il Oum Program in Applied & Computational Math. Princeton Univ.

November 15, 2004

Sang-il Oum

Introduction

- Cut-rank function
- Rank-decomposition and Rank-width
- Clique-width
- Well-quasi-ordering

Cut-Rank Function

- G: graph.
- (A, B): partition of V(G).

Let $M_A^B(G) = (m_{ij})_{i \in A, j \in B}$ be a $A \times B$ matrix over GF(2) such that

$$m_{ij} = \begin{cases} 1 & \text{if } i \text{ is adjacent to } j \\ 0 & \text{otherwise.} \end{cases}$$

Def: Cut-rank $\operatorname{cutrk}_G(A) = \operatorname{rank}(M_A^B(G))$. *Prop.* cutrk_G is symmetric submodular, i.e.

 $\operatorname{cutrk}_{G}(X) + \operatorname{cutrk}_{G}(Y) \ge \operatorname{cutrk}_{G}(X \cap Y) + \operatorname{cutrk}_{G}(X \cup Y)$ $\operatorname{cutrk}_{G}(X) = \operatorname{cutrk}_{G}(V(G) \setminus X)$

Rank-decomposition and Rank-width

Rank-width and Clique-width

- Clique-width: defined by [Courcelle and Olariu, 2000]
- (Rank-width and Clique-width are compatible)[Oum and Seymour, 2004]

```
rank-width \leq clique-width \leq 2^{\operatorname{rank-width}+1} - 1
```

• Many NP-hard problems are solvable in polynomial time, if an input is restricted to graphs of bounded clique-width.

Let C be a set of graphs. We ask; " \exists an alogrithm that, for every ??? formula φ , answers whether there exists $G \in C$ such that $\varphi(G)$ is true".

- (Seese's conjecture [Seese, 1991]) every MSOL formula on graphs is decidable on C. (open) \Rightarrow Bounded clique-width
- ([Courcelle and Oum, 2004]) every MSOL formula with Even(X) predicate on graphs is decidable on $C. \Rightarrow$ Bounded clique-width

Well-quasi-ordering

- \leq is a quasi-ordering if reflexive $(a \leq a)$ and transitive $(a \leq b, b \leq c \Rightarrow a \leq c)$.
- A quasi-ordering ≤ on X is a well-quasi-ordering if for every infinite sequence x₁, x₂,... in X,

 $\exists i < j \text{ such that } x_i \leq x_j.$

In other words, X is well-quasi-ordered by \leq . Equivalently, every infinite sequence in X contains an infinite nondecreasing subsequence.

- Examples:(well-quasi-ordered) A set of positive integers with ≤. Any finite set. Finite trees with graph minor (Kruskal's theorem)
- Examples: (not well-quasi-ordered) A set of integers with \leq .

Graphs of Bounded Rank-width are well-quasi-ordered

WANTED: an appropriate quasi-ordering on graphs

Induced Subgraph Relation is not enough

- Say $G_1 \leq G_2$ if G_1 is isomorphic to an induced subgraph of G_2 .
- C_n : a cycle of length n.
- Consider $X = \{C_3, C_4, C_5, \ldots\}.$
- X has bounded rank-width (at most 4).
- no C_i is an induced subgraph of C_j $(i \neq j)$.

Note that if H is an induced subgraph of G, then clique-width of $H \leq$ clique-width of G, rank-width of $H \leq$ rank-width of G.

It would be nice if a set of graphs of bounded rank-width is **closed** under \leq . (So the graph minor is not appropriate!)

Local Complementation & Vertex-Minor

G * v

- G * v and G have the same cut-rank function.
- G is locally equivalent to H if $H = G * v_1 * v_2 * \cdots v_k.$
- Call *H* is a **vertex-minor** of *G*, if *H* can be obtained by a sequence of local complementations and vertex deletions.
- G * v and G have the same rank-width.
- Therefore, if H is a vertex-minor of G, then

rank-width of $H \leq$ rank-width of G.

Statement of our thm

Thm. If $\{G_1, G_2, \ldots\}$ is an infinite sequence of graphs of rank-width $\leq k$, then there exists i < j such that G_i is **isomorphic** to a **vertex-minor** of G_j .

In fact, we prove a *stronger* theorem. Thm. If $\{G_1, G_2, \ldots\}$ is an infinite sequence of graphs of rank-width $\leq k$, then there exists i < j such that G_i is isomorphic to a **pivot-minor** of G_j .

For an edge uv of G, the **pivoting** uv is an operation $G \wedge uv = G * u * v * u$.

H is a **pivot-minor** of G if H is obtained from G by applying a sequence of pivoting and vertex deletions.

Tools

- Isotropic system [Bouchet, 1987] and Scraps
- Extension of Menger's theorem on scraps
- If rank-width of G is n, then there is a linked rank-decompositon of width n. [Geelen et al., 2002] cf. [Thomas, 1990]
 For any e, f in the rank-decomposition T, any vertex partition separating e, f has cut-rank ≥ min cut-rank of an edge in the path from e to f in T.
- Robertson and Seymour's "Lemma on trees" [Robertson and Seymour, 1990]

Binary matroids and wqo

Thm (Geelen, Gerards, Whilttle [Geelen et al., 2002]). If $\{M_1, M_2, \ldots\}$ is a sequence of binary matroids of branch-width $\leq k$, then there exists i < j such that M_i is **isomorphic** to a **minor** of M_j .

Tools

- "Configuration"
- Extension of Menger's theorem on matroids
- If branch-width of *M* is *n*, then there is a **linked** branch-decompositon of width *n*.

For any e, f in the branch-decomposition T, any vertex partition separating e, f has connectivity \geq min connectivity of an edge in the path from e to f in T.

• Robertson and Seymour's "Lemma on trees"

We generalize this theorem and mimic their proof.

Our thm implies GGW for binary matroids

- 1. For each M_i , pick a base B_i and construct a bipartite graph $G_i = Bip(M_i, B_i)$. Branch-width of $M_i = Rank$ -width of $G_i + 1$.
- 2. Fact: If H is a pivot-minor of G_i , then there exists a binary matroid M and its base B such that H = Bip(M, B) and M is a minor of M_i .
- 3. [Seymour, 1988] If two binary matroids M, M' have the same connectivity function, then M = M' or $M = M'^*$. If $Bip(M_i, B_i)$ is a vertex-minor of $Bip(M_j, B_j)$ and M_i is connected, then M_i is a minor of M_j or M_j^* .
- 4. Connected binary matroids of bounded branch-width is wqo. $\exists i < j < k$ such that $Bip(M_i, B_i)$ is isomorphic to a pivot-minor of $Bip(M_j, B_j)$ and $Bip(M_j, B_j)$ is isomorphic to a pivot-minor of $Bip(M_k, B_k)$.

 M_j is a minor of M_k or M_i is a minor of M_j or M_k .

5. Apply Higman's lemma to binary matroids.

Graph and Isotropic system

We introduce the notion of isotropic systems, defined by [Bouchet, 1987]. The minor of isotropic system is related to the vertex-minor of graphs. The $\alpha\beta$ -minor of isotropic system is related to the pivot-minor of graphs.

Isotropic system

- 1. Let $K = \{0, \alpha, \beta, \gamma\}$ be a vector space over GF(2) with $\alpha + \beta + \gamma = 0$.
- 2. Let $\langle x, y \rangle$ be a bilinear form over K. It's uniquely determined; $\langle x, y \rangle = 1$ if $0 \neq x \neq y \neq 0$, $\langle x, y \rangle = 0$ otherwise.
- 3. K^V : set of functions from V to K. Vector space.
- 4. For $x, y \in K^V$, let $\langle x, y \rangle = \sum_{v \in V} \langle x(v), y(v) \rangle \in GF(2)$. This is a bilinear form.
- 5. A subspace L is called **totally isotropic**, if $\langle x, y \rangle = 0$ for all $x, y \in L$.

Note: $\dim(L) + \dim(L^{\perp}) = \dim(K^V) = 2|V|$. If L is totally isotropic, $L \subseteq L^{\perp}$.

Def ([Bouchet, 1987]). A pair S = (V, L) is called **isotropic system** if

- V is a finite set and
- L is a totally isotropic subspace of K^V such that $\dim(L) = |V|$.

$\mathbf{Graph} \Rightarrow \mathbf{Isotropic} \ \mathbf{system}$

For $x \in K^V$ and $P \subseteq V$, $x[P] \in K^V$ such that

$$x[P](v) = \begin{cases} x(v) & \text{if } v \in P \\ 0 & \text{otherwise.} \end{cases}$$

Let G be a graph and n(v) be the set of neighbors of v.

Let $a, b \in K^V$ such that $a(v), b(v) \neq 0$ for all v and $a(v) \neq b(v)$.

L is a vector space spanned by $\{a[n(v)] + b[\{v\}] : v \in V\}$. Then, S = (V, L) is an isotropic system.

We call (G, a, b) the graphic presentation of S.

Isotropic System \Rightarrow **Graph**

 $a \in K^V$ is called **Eulerian vector** of S = (V, L), if $a(v) \neq 0$ for all $v \in V$ and $a[P] \notin L$ for all $\emptyset \neq P \subseteq V$.

[Bouchet, 1988] showed

- 1. There exists an Eulerian vector for any isotropic system.
- Let a be an Eulerian vector of S = (V, L). For each v, there exists a unique vector b_v ∈ L such that b_v(v) ≠ 0 for all v ∈ V and b_v(w) = 0 or a(w) for all w ≠ v. {b_v : v ∈ V} is called the fundamental basis of S.

The **fundamental graph** of S is a graph (V, E) where

v, w are adjacent iff $b_v(w) \neq 0$.

By $\langle b_v(w), b_w(v) \rangle = 0$, $b_v(w) \neq 0$ iff $b_w(v) \neq 0$.

Sang-il Oum

Local Complementation and Isotropic system

Let G be a graph. Let $c_v = a[n_G(v)] + b[\{v\}]$.

Consider G' = G * x. Let $a' = a + b[\{x\}]$ and $b' = a[n_G(x)] + b$.

$$c_v'=a'[n_{G'}(v)]+b'[\{v\}]=egin{cases} c_v+c_x & ext{if }v\sim x,\ c_v & ext{otherwise.} \end{cases}$$

Let L' be a vector space spanned by $\{c'_v\}$. Then, L' = L.

Local complementation of graphs doesnot change the associated isotropic system.

Minor

- 1. For $X \subseteq V$, $p_X : K^V \to K^X$ is a canonical projection such that $(p_X(x))(v) = x(v)$ for $v \in X$.
- 2. For a subspace L of K^V and $v \in V$, $a \in K \{0\}$,

$$L|_{a}^{v} = \{p_{V-\{v\}}(x) : x \in L, \mathbf{x}(\mathbf{v})=\mathbf{0} \text{ or } \mathbf{a}\} \subseteq K^{V-\{v\}}.$$

For $a \in K - \{0\}$, $S|_a^v = (V - \{v\}, L|_a^v)$ is called an **elementary minor** of S.

S' is a minor of S if $S' = S|_{a_1}^{v_1}|_{a_2}^{v_2} \cdots |_{a_k}^{v_k}$ for some v_i , a_i . S' is an $\alpha\beta$ -minor of S if $S' = S|_{a_1}^{v_1}|_{a_2}^{v_2} \cdots |_{a_k}^{v_k}$ for some v_i , $a_i \in \{\alpha, \beta\}$.

Minor and Vertex-Minor

Thm ([Bouchet, 1988]). Let G be the fundamental graph of S.

Let H be the fundamental graph of $S|_x^v$.

Then, H is localley equivalent to one of $G \setminus v$, $G * v \setminus v$, or $G \wedge vw \setminus v$.

Cor. If S' is a minor of S, then the fundamental graph of S' is a vertex-minor of the fundamental graph of S.

$\alpha\beta\text{-Minor}$ and Pivot-Minor

Thm. Let (G, a, b) be the graphic presentation of S such that $a(v), b(v) \in \{\alpha, \beta\}$ for all $v \in V(G)$.

Let (H, a', b') be the graphic presentation of S' such that $a'(v), b'(v) \in \{\alpha, \beta\}$ for all $v \in V(H)$.

If S' is an $\alpha\beta$ -minor of S, then H is a **pivot**-minor of G.

"Actual" Main Theorem

We state the theorem written in the language of isotropic system. The proof heavily relies on

- combinatorial lemmas on vector space over GF(2) with form \langle , \rangle ,
- isotropic system (or "scraps"),

Isotropic system and wqo

- Connectivity $\lambda_S(X) = |X| \dim(L|_{\subseteq X}) = \mathsf{CUT}\text{-}\mathsf{RANK}_G(X).$
- Branch-decomposition and branch-width of isotropic systems.
- $S_1 = (V_1, L_1)$ is simply isomorphic to S = (V, L) if there is a bijection $\mu: V_1 \to V$ such that for any $x \in K^V$,

 $x \in L$ if and only if $x \cdot \mu \in L_1$.

We prove the following.

Thm. If $\{S_1, S_2, \ldots\}$ is an infinite sequence of isotropic systems of **bounded branch-width**, then there exists i < j such that S_i is simply isomorphic to an $\alpha\beta$ -minor of S_j .

This implies our theorem about graphs and pivot-minor.

Scrap

P = (V, L, B) is a scrap if V is a finite set and

- L is a totally isotropic subspace of K^V ,
- B is an ordered set (sequence) and a basis of L^{\perp}/L .

 $|B| = \dim(L^{\perp}/L) = (2|V| - \dim(L)) - \dim(L) = 2(|V| - \dim(L)).$ If $B = \emptyset$, then (V, L) is an isotropic system.

 $P_1 = (X, L', B')$ is a **minor** of P if $X = V \setminus \{v_1, v_2, \dots, v_k\}$, $L' = L|_{x_1}^{v_1}|_{x_2}^{v_2} \cdots |_{x_k}^{v_k}$, and |B'| = |B| and B' is obtained naturally from B by \cdots .

 $P_1 = (X, L', B')$ is a $\alpha\beta$ -minor of P if $X = V \setminus \{v_1, v_2, \dots, v_k\}$, $L' = L|_{x_1}^{v_1}|_{x_2}^{v_2} \cdots |_{x_k}^{v_k}$ with $x_i \in \{\alpha, \beta\}$, and |B'| = |B| and B' is obtained naturally from B by \cdots .

Sang-il Oum

Very Rough Sketch of Proof

Suppose $\{S_1, S_2, \ldots\}$ is not well-quasi-ordered by $\alpha\beta$ -minor relation.

Let F be an infinite forest such that each component is the **linked** branch-decomposition of S_i . We attach the root vertex to each component. For an edge e, let l(e), r(e) be the left/right child edge incident to e. We assign a scrap to each edge of F and define a relation \leq on the set of edges of F. We make a scrap of e is a sum of scraps of l(e) and r(e).

By applying lemma on trees, we get a sequence e_0 , e_1 , ... of edges such that $\{e_0, e_1, \ldots\}$ is an antichain and $l(e_0) \leq l(e_1) \leq l(e_2) \leq \cdots$ and $r(e_0) \leq r(e_1) \leq r(e_2) \leq \cdots$.

The number of ways to sum 2 scraps is finite $\Rightarrow \exists i < j, e_i \leq e_j$. Contradiction.

Sang-il Oum

Many (strange-looking?) lemmas

- $(L|_x^v)^\perp = L^\perp|_x^v.$
- If $X \subseteq V$, then $(L|_{\subseteq X})^{\perp} = L^{\perp}|_X$.
- $\dim(L|_x^v) = \begin{cases} \dim(L) & \text{if } \delta_x^v \in L^{\perp} \setminus L \\ \dim(L) 1 & \text{otherwise.} \end{cases}$
- (Extension of Menger's theorem) Let P = (V, L, B) be a scrap and $X \subseteq V$. If $\lambda(P) = \lambda(L|_{\subseteq X}) = \min_{X \subseteq Z \subseteq V} \lambda(L|_{\subseteq Z})$, then there is an ordered set B' such that $Q = (X, L|_{\subseteq X}, B')$ is a scrap and an $\alpha\beta$ -minor of P.

Sum and Connection type

• "sum" of scraps

P = (V, L, B) is a sum of $P_1 = (V_1, L_1, B_1)$ and $P_2 = (V_2, L_2, B_2)$ if $V_1 \cap V_2 = \emptyset$ and $V = V_1 \cup V_2$.

The number of distinct sums of P_1 and P_2 are finite up to simple isomorphisms (by "connection type" lemma).

- A connection type $C(P, P_1, P_2)$ determines P if P_1 and P_2 are given. Roughly speaking, it specifies how B and L are made from B_1 and B_2 .
- The number of connection type is finite if $\lambda(P) = |V| \dim(L)$ is bounded.
- If P_i is an (αβ-)minor of Q_i for i = 1, 2 and P is the sum of P₁ and P₂ and Q is the sum of Q₁ and Q₂.
 If C(P, P₁, P₂) = C(Q, Q₁, Q₂), then P is an (αβ-)minor of Q.

Excluded vertex-minors for rank-width $\leq k$

G is an **excluded vertex-minor** for a class of graphs of rank-width $\leq k$ if

- Rank-width of G > k
- Every proper vertex-minor of G has rank-width $\leq k$.

Cor. For fixed k, there are **only finitely many excluded vertex-minors** for a class of graphs of rank-width $\leq k$.

Proof. An excluded vertex-minor has rank-width k + 1. Let E be the set of excluded vertex-minors. E is well-quasi-ordered by the vertex-minor relation. But, no excluded vertex-minor contains another. So, E is finite.

Note: The above corollary has an elementary proof.[Oum, 2004] *Cor.* For fixed k, "Is rank-width $\leq k$?" is NP \cap coNP.

In fact, this is in P. [Courcelle and Oum, 2004]

References

- [Bouchet, 1987] Bouchet, A. (1987). Isotropic systems. European J. Combin., 8(3):231-244.
- [Bouchet, 1988] Bouchet, A. (1988). Graphic presentations of isotropic systems. J. Combin. Theory Ser. B, 45(1):58-76.
- [Courcelle and Olariu, 2000] Courcelle, B. and Olariu, S. (2000). Upper bounds to the clique width of graphs. *Discrete Appl. Math.*, 101(1-3):77–114.
- [Courcelle and Oum, 2004] Courcelle, B. and Oum, S. (2004). Vertex-minors, monadic second-order logic, and a conjecture by Sesse. submitted.
- [Geelen et al., 2002] Geelen, J. F., Gerards, A. M. H., and Whittle, G. (2002). Branch-width and well-quasi-ordering in matroids and graphs. *J. Combin. Theory Ser. B*, 84(2):270–290.
- [Oum, 2004] Oum, S. (2004). Rank-width and vertex-minor. manuscript.
- [Oum and Seymour, 2004] Oum, S. and Seymour, P. (2004). Approximating clique-width and branch-width. submitted.
- [Robertson and Seymour, 1990] Robertson, N. and Seymour, P. (1990). Graph minors. IV. Tree-width and well-quasi-ordering. *J. Combin. Theory Ser. B*, 48(2):227–254.
- [Seese, 1991] Seese, D. (1991). The structure of the models of decidable monadic theories of graphs. *Ann. Pure Appl. Logic*, 53(2):169–195.
- [Seymour, 1988] Seymour, P. (1988). On the connectivity function of a matroid. J. Combin. Theory Ser. B, 45(1):25–30.
- [Thomas, 1990] Thomas, R. (1990). A Menger-like property of tree-width: the finite case. J. Combin. Theory Ser. B, 48(1):67–76.