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Introduction

• Cut-rank function
• Rank-decomposition and Rank-width
• Clique-width
• Well-quasi-ordering
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Cut-Rank Function

• G: graph.
• (A,B): partition of V (G).

Let MB
A (G) = (mij)i∈A,j∈B be a A×B matrix over GF(2) such that

mij =

{
1 if i is adjacent to j

0 otherwise.

Def: Cut-rank cutrkG(A) = rank(MB
A (G)).

Prop. cutrkG is symmetric submodular, i.e.

cutrkG(X) + cutrkG(Y )≥ cutrkG(X ∩ Y ) + cutrkG(X ∪ Y )

cutrkG(X) = cutrkG(V (G) \X)
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Rank-decomposition and Rank-width

Def. • Rank-decomposition of G: (T,L). Cubic tree T , bijection
L : V → {x : x is a leaf of T}.

• Width of (T,L):
max
e∈T

cutrkG(Ae)

where (Ae, Be) is a partition of V (G) induced by e ∈ T .
g

Be

Ae

e

Rank-decomposition of GG

Ae

Be

rank


1 0 0 0
0 0 0 0
1 1 1 1
0 0 0 1


• Rank-width of G, denoted by rwd(G): minimum width over all

possible rank-decompositions of G [Oum and Seymour, 2004]
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Rank-width and Clique-width

• Clique-width: defined by [Courcelle and Olariu, 2000]

• (Rank-width and Clique-width are compatible)[Oum and Seymour, 2004]

rank-width ≤ clique-width ≤ 2rank-width+1 − 1

• Many NP-hard problems are solvable in polynomial time, if an input is
restricted to graphs of bounded clique-width.

Let C be a set of graphs. We ask; “∃ an alogrithm that, for every ???
formula ϕ, answers whether there exists G ∈ C such that ϕ(G) is true”.

• (Seese’s conjecture [Seese, 1991]) every MSOL formula on graphs is
decidable on C. (open) ⇒ Bounded clique-width

• ([Courcelle and Oum, 2004]) every MSOL formula with Even(X) predicate
on graphs is decidable on C. ⇒ Bounded clique-width
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Well-quasi-ordering

• ≤ is a quasi-ordering if reflexive (a ≤ a) and transitive (a ≤ b, b ≤ c ⇒
a ≤ c).

• A quasi-ordering ≤ on X is a well-quasi-ordering if for every infinite
sequence x1, x2, . . . in X,

∃i < j such that xi ≤ xj.

In other words, X is well-quasi-ordered by ≤.
Equivalently, every infinite sequence in X contains an infinite
nondecreasing subsequence.

• Examples:(well-quasi-ordered) A set of positive integers with ≤. Any
finite set. Finite trees with graph minor (Kruskal’s theorem)

• Examples: (not well-quasi-ordered) A set of integers with ≤.
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Graphs of
Bounded Rank-width
are well-quasi-ordered

WANTED: an appropriate quasi-ordering on graphs
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Induced Subgraph Relation is not enough

• Say G1 ≤ G2 if G1 is isomorphic to an induced subgraph of G2.
• Cn: a cycle of length n.
• Consider X = {C3, C4, C5, . . .}.
• X has bounded rank-width (at most 4).
• no Ci is an induced subgraph of Cj (i 6= j).

Note that if H is an induced subgraph of G, then
clique-width of H ≤ clique-width of G,
rank-width of H ≤ rank-width of G.

It would be nice if a set of graphs of bounded rank-width is closed
under ≤. (So the graph minor is not appropriate!)
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Local Complementation & Vertex-Minor

flipv

G ∗ v

• G ∗ v and G have the same
cut-rank function.

• G is locally equivalent to H if
H = G ∗ v1 ∗ v2 ∗ · · · vk.

• Call H is a vertex-minor of G, if
H can be obtained by a sequence
of local complementations and
vertex deletions.

• G ∗ v and G have the same rank-width.
• Therefore, if H is a vertex-minor of G, then

rank-width of H ≤ rank-width of G.
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Statement of our thm

Thm. If {G1, G2, . . .} is an infinite sequence of graphs of rank-width ≤ k,
then there exists i < j such that
Gi is isomorphic to a vertex-minor of Gj.

In fact, we prove a stronger theorem.
Thm. If {G1, G2, . . .} is an infinite sequence of graphs of rank-width ≤ k,
then there exists i < j such that
Gi is isomorphic to a pivot-minor of Gj.

A

B

C

v w For an edge uv of G, the pivoting uv is
an operation G ∧ uv = G ∗ u ∗ v ∗ u.

H is a pivot-minor of G if
H is obtained from G by applying
a sequence of pivoting and vertex
deletions.
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Tools

• Isotropic system [Bouchet, 1987] and Scraps
• Extension of Menger’s theorem on scraps
• If rank-width of G is n, then there is a linked rank-decompositon

of width n. [Geelen et al., 2002] cf. [Thomas, 1990]

For any e, f in the rank-decomposition T , any vertex partition
separating e, f has cut-rank ≥ min cut-rank of an edge in the path
from e to f in T .

• Robertson and Seymour’s “Lemma on trees” [Robertson and Seymour, 1990]
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Binary matroids and wqo

Thm (Geelen, Gerards, Whilttle [Geelen et al., 2002]). If {M1,M2, . . .} is
a sequence of binary matroids of branch-width ≤ k,
then there exists i < j such that Mi is isomorphic to a minor of Mj.

Tools

• “Configuration”
• Extension of Menger’s theorem on matroids
• If branch-width of M is n, then there is a linked branch-decompositon

of width n.
For any e, f in the branch-decomposition T , any vertex partition
separating e, f has connectivity ≥ min connectivity of an edge in the
path from e to f in T .

• Robertson and Seymour’s “Lemma on trees”

We generalize this theorem and mimic their proof.
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Our thm implies GGW for binary matroids

1. For each Mi, pick a base Bi and construct a bipartite graph Gi =
Bip(Mi, Bi). Branch-width of Mi = Rank-width of Gi +1.

2. Fact: If H is a pivot-minor of Gi, then there exists a binary matroid
M and its base B such that H = Bip(M,B) and M is a minor of Mi.

3. [Seymour, 1988] If two binary matroids M , M ′ have the same connectivity
function, then M = M ′ or M = M ′∗.
If Bip(Mi, Bi) is a vertex-minor of Bip(Mj, Bj) and Mi is connected,
then Mi is a minor of Mj or M∗

j .
4. Connected binary matroids of bounded branch-width is wqo.
∃i < j < k such that Bip(Mi, Bi) is isomorphic to a pivot-minor
of Bip(Mj, Bj) and Bip(Mj, Bj) is isomorphic to a pivot-minor of
Bip(Mk, Bk).
Mj is a minor of Mk or Mi is a minor of Mj or Mk.

5. Apply Higman’s lemma to binary matroids.
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Graph and
Isotropic system

We introduce the notion of isotropic systems, defined by [Bouchet, 1987].
The minor of isotropic system is related to the vertex-minor of graphs.
The αβ-minor of isotropic system is related to the pivot-minor of
graphs.
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Isotropic system

1. Let K = {0, α, β, γ} be a vector space over GF(2) with α+β +γ = 0.
2. Let 〈x, y〉 be a bilinear form over K. It’s uniquely determined;

〈x, y〉 = 1 if 0 6= x 6= y 6= 0, 〈x, y〉 = 0 otherwise.
3. KV : set of functions from V to K. Vector space.
4. For x, y ∈ KV , let 〈x, y〉 =

∑
v∈V 〈x(v), y(v)〉 ∈ GF(2). This is a

bilinear form.
5. A subspace L is called totally isotropic, if 〈x, y〉 = 0 for all x, y ∈ L.

Note: dim(L) + dim(L⊥) = dim(KV ) = 2|V |. If L is totally isotropic,
L ⊆ L⊥.
Def ([Bouchet, 1987]). A pair S = (V,L) is called isotropic system if

• V is a finite set and
• L is a totally isotropic subspace of KV such that dim(L) = |V |.
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Graph ⇒ Isotropic system

For x ∈ KV and P ⊆ V , x[P ] ∈ KV such that

x[P ](v) =

{
x(v) if v ∈ P

0 otherwise.

Let G be a graph and n(v) be the set of neighbors of v.

Let a, b ∈ KV such that a(v), b(v) 6= 0 for all v and a(v) 6= b(v).

L is a vector space spanned by {a[n(v)] + b[{v}] : v ∈ V }.
Then, S = (V,L) is an isotropic system.

We call (G, a, b) the graphic presentation of S.
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Isotropic System ⇒ Graph

a ∈ KV is called Eulerian vector of S = (V,L), if a(v) 6= 0 for all
v ∈ V and a[P ] /∈ L for all ∅ 6= P ⊆ V .

[Bouchet, 1988] showed

1. There exists an Eulerian vector for any isotropic system.
2. Let a be an Eulerian vector of S = (V,L). For each v, there exists a

unique vector bv ∈ L such that bv(v) 6= 0 for all v ∈ V and bv(w) = 0
or a(w) for all w 6= v.
{bv : v ∈ V } is called the fundamental basis of S.

The fundamental graph of S is a graph (V,E) where

v, w are adjacent iff bv(w) 6= 0.

By 〈bv(w), bw(v)〉 = 0, bv(w) 6= 0 iff bw(v) 6= 0.
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Local Complementation and Isotropic system

Let G be a graph. Let cv = a[nG(v)] + b[{v}].

Consider G′ = G ∗ x. Let a′ = a + b[{x}] and b′ = a[nG(x)] + b.

c′
v = a′[nG′(v)] + b′[{v}] =

{
cv + cx if v ∼ x,

cv otherwise.

Let L′ be a vector space spanned by {c′v}. Then, L′ = L.

Local complementation of graphs doesnot change the associated
isotropic system.

Sang-il Oum 17/27



Rank-Width and Well-quasi-ordering

Minor

1. For X ⊆ V , pX : KV → KX is a canonical projection such that
(pX(x))(v) = x(v) for v ∈ X.

2. For a subspace L of KV and v ∈ V , a ∈ K − {0},

L|va = {pV−{v}(x) : x ∈ L, x(v)=0 or a} ⊆ KV−{v}.

For a ∈ K−{0}, S|va = (V −{v}, L|va) is called an elementary minor
of S.

S′ is a minor of S if S′ = S|v1
a1
|v2
a2
· · · |vk

ak for some vi, ai.

S′ is an αβ-minor of S if S′ = S|v1
a1
|v2
a2
· · · |vk

ak for some vi, ai ∈ {α, β}.
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Minor and Vertex-Minor

Thm ([Bouchet, 1988]). Let G be the fundamental graph of S.

Let H be the fundamental graph of S|vx.

Then, H is localley equivalent to one of G \ v, G ∗ v \ v, or G∧ vw \ v.

Cor. If S′ is a minor of S, then the fundamental graph of S′ is a
vertex-minor of the fundamental graph of S.
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αβ-Minor and Pivot-Minor

Thm. Let (G, a, b) be the graphic presentation of S such that a(v), b(v) ∈
{α, β} for all v ∈ V (G).

Let (H, a′, b′) be the graphic presentation of S′ such that a′(v), b′(v) ∈
{α, β} for all v ∈ V (H).

If S′ is an αβ-minor of S, then H is a pivot-minor of G.
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“Actual” Main Theorem

We state the theorem written in the language of isotropic system. The
proof heavily relies on

• combinatorial lemmas on vector space over GF(2) with form 〈 , 〉,

• isotropic system (or “scraps”),
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Isotropic system and wqo

• Connectivity λS(X) = |X| − dim(L|⊆X) = CUT-RANKG(X).
• Branch-decomposition and branch-width of isotropic systems.
• S1 = (V1, L1) is simply isomorphic to S = (V,L) if there is a bijectioin

µ : V1 → V such that for any x ∈ KV ,

x ∈ L if and only if x · µ ∈ L1.

We prove the following.
Thm. If {S1, S2, . . .} is an infinite sequence of isotropic systems of
bounded branch-width, then there exists i < j such that Si is simply
isomorphic to an αβ-minor of Sj.

This implies our theorem about graphs and pivot-minor.
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Scrap

P = (V,L,B) is a scrap if V is a finite set and

• L is a totally isotropic subspace of KV ,
• B is an ordered set (sequence) and a basis of L⊥/L.

|B| = dim(L⊥/L) = (2|V | − dim(L)) − dim(L) = 2(|V | − dim(L)). If
B = ∅, then (V,L) is an isotropic system.

P1 = (X, L′, B′) is a minor of P if X = V \ {v1, v2, . . . , vk}, L′ =
L|v1

x1
|v2
x2
· · · |vk

xk, and |B′| = |B| and B′ is obtained naturally from B by · · · .

P1 = (X, L′, B′) is a αβ-minor of P if X = V \ {v1, v2, . . . , vk},
L′ = L|v1

x1
|v2
x2
· · · |vk

xk with xi ∈ {α, β}, and |B′| = |B| and B′ is obtained
naturally from B by · · · .
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Very Rough Sketch of Proof

Suppose {S1, S2, . . .} is not well-quasi-ordered by αβ-minor relation.

Let F be an infinite forest such that each component is the linked
branch-decomposition of Si. We attach the root vertex to each
component. For an edge e, let l(e), r(e) be the left/right child edge
incident to e. We assign a scrap to each edge of F and define a relation
≤ on the set of edges of F . We make a scrap of e is a sum of scraps of
l(e) and r(e).

By applying lemma on trees, we get a sequence e0, e1, . . . of edges
such that {e0, e1, . . .} is an antichain and l(e0) ≤ l(e1) ≤ l(e2) ≤ · · · and
r(e0) ≤ r(e1) ≤ r(e2) ≤ · · · .

The number of ways to sum 2 scraps is finite ⇒ ∃i < j, ei ≤ ej.
Contradiction.
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Many (strange-looking?) lemmas

• (L|vx)⊥ = L⊥|vx.
• If X ⊆ V , then (L|⊆X)⊥ = L⊥|X.

• dim(L|vx) =

{
dim(L) if δv

x ∈ L⊥ \ L

dim(L)− 1 otherwise.

• (Extension of Menger’s theorem) Let P = (V,L,B) be a scrap and
X ⊆ V . If λ(P ) = λ(L|⊆X) = minX⊆Z⊆V λ(L|⊆Z), then there is
an ordered set B′ such that Q = (X, L|⊆X, B′) is a scrap and an
αβ-minor of P .
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Sum and Connection type

• “sum” of scraps
P = (V,L,B) is a sum of P1 = (V1, L1, B1) and P2 = (V2, L2, B2) if
V1 ∩ V2 = ∅ and V = V1 ∪ V2.
The number of distinct sums of P1 and P2 are finite up to simple
isomorphisms (by “connection type” lemma).

• A connection type C(P, P1, P2) determines P if P1 and P2 are given.
Roughly speaking, it specifies how B and L are made from B1 and B2.

• The number of connection type is finite if λ(P ) = |V | − dim(L) is
bounded.

• If Pi is an (αβ-)minor of Qi for i = 1, 2 and
P is the sum of P1 and P2 and
Q is the sum of Q1 and Q2.
If C(P, P1, P2) = C(Q,Q1, Q2), then P is an (αβ-)minor of Q.
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Excluded vertex-minors for rank-width≤ k

G is an excluded vertex-minor for a class of graphs of rank-width≤ k if

• Rank-width of G > k
• Every proper vertex-minor of G has rank-width≤ k.
Cor. For fixed k, there are only finitely many excluded vertex-minors
for a class of graphs of rank-width ≤ k.

Proof. An excluded vertex-minor has rank-width k + 1. Let E be the set of excluded

vertex-minors. E is well-quasi-ordered by the vertex-minor relation. But, no excluded

vertex-minor contains another. So, E is finite.

Note: The above corollary has an elementary proof.[Oum, 2004]

Cor. For fixed k, “Is rank-width≤ k?” is NP∩ coNP.

In fact, this is in P . [Courcelle and Oum, 2004]
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