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Abstract
The gastric mill network of the stomatogastric ganglion of the crab Cancer borealis is comprised of
a set of neurons that require modulatory input from outside the stomatogastric ganglion and input
from the pyloric network of the animal in order to oscillate. Here we study how the frequency of the
gastric mill network is determined when it receives rhythmic input from two different sources but
where the timing of these inputs may differ. We find that over a certain range of the time difference
one of the two rhythmic inputs plays no role what so ever in determining the network frequency,
while in another range, both inputs work together to determine the frequency. The existence and
stability of periodic solutions to model sets of equations are obtained analytically using geometric
singular perturbation theory. The results are validated through numerical simulations. Comparisons
to experiments are also presented.

Keywords
synapse; stomatogastric ganglion; periodic orbit; Poincare map

1 Introduction
Many rhythmically active biological systems require input from extrinsic sources to produce
their activity. Such extrinsic inputs may arrive as a trigger signal thereby switching on the
oscillation, or be continuously present as forcing or feedback for the duration of the oscillation
[17,18,27]. The extrinsic input itself is often rhythmic and its frequency may or may not match
that of the target oscillator. Often, the oscillating network receives multiple inputs
simultaneously, for example a central command input and a sensory feedback input. Such
inputs are readily identified in central pattern generators (CPGs), neural networks within the
central nervous system (CNS) that are responsible for generating rhythmic motor behaviors
such as locomotion, swimming or breathing [13,15,17]. However, even in cases where the
extrinsic inputs to a biological oscillator are known, the significance of the rhythmicity of such
inputs or the consequences of having multiple inputs is largely unknown: often a non-rhythmic
(tonic) input or only one of multiple inputs is sufficient to produce the biological oscillation.
For instance, the CPG responsible for swimming in lower species of fish consists of chains of
oscillators in the spinal cord [14]. This CPG receives rhythmic command input from the brain
as well as multiple rhythmic and tonic sensory feedback inputs from the body. Without these
inputs the CPG is inactive and the animal does not swim. However, the isolated spinal cord,
in the presence of a chemical stimulant (tonic input) produces “fictive swimming”, rhythmic
patterns which appear identical to those responsible for swimming in the intact animal [12].
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In this paper, we use mathematical analysis to investigate the significance of the timing of
multiple inputs to a biological oscillator. We focus on the rhythmically active crustacean gastric
mill CPG located within the stomatogastric ganglion (STG). The STG is one of several ganglia
in the crustacean CNS that control feeding and digestion behaviors [24]. As in many
invertebrate systems, the small number of neurons in the STG makes it amenable to both
experimental and modeling studies of neuronal networks responsible for generating behaviors.

The gastric mill rhythm is generated by a subset of neurons in the STG. At the heart of this
rhythm are two neurons, lateral gastric (LG) and interneuron 1 (Int1), which make reciprocally
inhibitory synaptic connections and (when the gastric mill rhythm is activated) oscillate in
antiphase with a frequency of 0.1 Hz (see Fig. 1). The gastric mill CPG, however, is a
conditional oscillator: its activity depends on (modulatory) input from central command
neurons located in other CNS ganglia [18,24]. One such neuron, the modulatory commissural
neuron 1 (MCN1), when excited, elicits a sustained gastric mill rhythm [8]. Previous studies
have shown that input from the much faster pyloric CPG (frequency 1 Hz; also located in the
STG) is crucial in setting the frequency of the MCN1-elicited gastric mill rhythm [3,21]. This
input comes in the form of an inhibitory synapse to Int1 from the pyloric pacemaker neuron
anterior burster (AB). Although tonic excitation of MCN1 is sufficient for eliciting a gastric
mill rhythm [3], it is known that, in the intact CNS, MCN1 is itself rhythmically active [30].
The rhythmicity of MCN1 is also due to a synaptic input it receives from AB. Thus, there are
two pathways by which the pyloric pacemaker neuron AB influences the gastric mill network:
the direct synaptic connection from AB to Int1 and the indirect synaptic influence exerted by
inhibiting MCN1 which, in turn, excites the gastric mill neurons. Recent experimental findings
show that the presence of either or both of the two pathways of AB influence results in a gastric
mill rhythm of similar frequency [30]. However, when both pathways are removed (and thus
the MCN1 activity is tonic) the gastric mill rhythm slows down significantly. Although the
mechanism through which the direct pyloric input influences the gastric mill frequency is
understood, it is not known how the rhythmic activity of MCN1 provides an apparently
redundant mechanism for maintaining the gastric mill frequency.

We expand on the techniques of Manor et al. [16] and build a simplified, biophysically-based
model of the gastric mill network incorporating the effects of both MCN1 and AB. Using this
model, we show that the time difference between the two distinct AB influences on the gastric
mill is critical in determining the gastric mill frequency. When m, the time delay between the
AB inhibition of Int1 and MCN1, is small, the gastric mill frequency is determined solely by
direct modulatory effects of MCN1 on the gastric mill neurons. However, when m is large, the
gastric mill rhythm operates at a higher frequency and is determined by both the MCN1 and
AB inputs. Throughout this work, we use geometric singular perturbation theory to examine
the behavior of our model on low-dimensional manifolds. We also use phase plane analysis as
a means of geometrically understanding the behavior of the network. Using these mathematical
tools, we prove the existence and stability of periodic solutions of the model when the activity
of MCN1 is either tonic or rhythmic. Furthermore, we confirm our findings through numerical
simulations in which we change the delay parameter m and numerically calculate the period.
We then compare our results with the experimental findings of [30]. The results from our model
match the experimental results only when m is either 0 or small. We note that in the work of
Wood et al., the delay between the pyloric and modulatory inputs is never explicitly measured.
Our analysis, therefore, gives a possible explanation for the experimental results. The findings
could be tested in future experiments by artificially introducing different delays between the
timing of the modulatory and pyloric inputs to the gastric mill network and determining the
effect on the gastric mill rhythm frequency.

The remainder of the paper is organized as follows. In section 2, we derive a model set of
equations and show how it can be reduced into sets of fast and slow equations. The effect of
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various synaptic inputs on relevant nullclines are illustrated with the goal of showing how fixed
points of the fast set of equations depend on these inputs. In section 3, we prove the existence,
uniqueness and stability of periodic solutions for four different cases of the gastric mill rhythm.
These cases are considered so that we may parallel the study of Wood et. al. [30]. In section
4, we derive an analytic formula for the period of the solutions for the four different cases. We
then check our analytic results against simulations. In section 5, we discuss the impact of
making a certain synapse (that from MCN1 to LG) voltage dependent. Section 6 contains a
Discussion to conclude the paper.

2 Model
Our model consists of the gastric mill network composed of Int1 and LG, the pacemaker neuron
AB of the pyloric network and the modulatory commissural neuron MCN1; see Fig. 1. LG and
Int1 are modeled as passive neurons (LG having a subthreshold resting potential and Int1
having a suprathreshold resting potential). In the absence of AB input, MCN1 is tonically active.
Therefore, we also model MCN1 as a passive neuron with a suprathreshold resting potential.
LG and Int1 have reciprocally inhibitory synapses between them. Int1 and MCN1 receive
inhibitory input from the pacemaker neuron AB. AB and MCN1 both fire in pyloric time with
a period denoted PAB. AB sends an inhibitory synapse to Int1. MCN1 sends a slow excitatory
synapse to LG. In addition, LG presynaptically inhibits MCN1 each time it fires, thus removing
the excitation from MCN1 to LG. Through this circuitry, the voltage of LG is able to increase
above threshold (due to the excitation it receives from MCN1) causing Int1 to become
suppressed and then decay back below threshold (due to the presynaptic inhibition), thereby
producing the antiphase oscillations of the gastric mill rhythm [9][16].

2.1 Equations
We do not explicitly model the pacemaker neuron AB, but instead incorporate its effect on
MCN1 and Int1 through the synaptic variables sAB→I(t) and sAB→M(t). sAB→I(t) is a square
wave with amplitude 1 and period, PAB, which has experimentally been found to be
approximately 1 sec. Let Dc denote the duty cycle of AB (the ratio of its active time to its
period). During one period of AB, the variable sAB→I is equal to 1 for a time Dc PAB and equal
to 0 for a time PAB [1 − Dc]. sAB→M(t) is similar in form to sAB→I(t) in that sAB→M oscillates
between 0 and 1. The jump in sAB→M from 0 to 1 is instantaneous. However, sAB→M decreases
from 1 to 0 with time constant τAB (see Fig. 2).

The dynamics of the system evolve along two distinct time scales. One is a slow time scale
corresponding to the effect of pre-synaptic inhibition from LG to the slow excitatory component
of the MCN1 synapse. The other is a fast time scale along which all other synapses and intrinsic
properties evolve. We use a small parameter, ε, to demarcate these two time scales.

The equations to describe the activity of LG, Int1, and MCN1 are:

(1)

(2)
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(3)

where VL is the voltage of LG, VI is the voltage of Int1, and VM is the voltage of MCN1.
gleak,L, gleak,I, and gleak,M are the conductances of the leak currents in LG, Int1, and MCN1.
Eleak,L, Eleak,I, and Eleak,M are the reversal potentials of the leak currents in LG, Int1, and
MCN1. Denote the right hand sides of equations (1) and (2) by f(VL,VI,s) and g(VI, VL,
sAB→I, respectively.

The parameters of the reciprocally inhibitory synapses between Int1 and LG are ḡI→L and
ḡL→I (the maximal conductances) and EI→L and EL→I (the reversal potentials). n∞(VI) and
n∞(VL) are sigmoidally shaped gating functions lying between 0 and 1:

(4)

where υx is the half-activation voltage and kx is inversely related to the slope at this point.

The fast, periodic inhibitory input from AB to MCN1 is described by ḡAB→MsAB→M(t)
[VM−EAB→M] where ḡAB→M is the conductance of the synapse and EAB→M is the reversal
potential which is chosen to be less than Eleak,M so that the input from AB to MCN1 is inhibitory.
The equation to describe the activity of sAB→M(t) with respect to AB is

(5)

where VAB is a square wave with period PAB and duty-cycle=Dc. Thus, when sAB→M = 0, VM
lies at a maximum voltage of Eleak,M. When sAB→M = 1, VM lies at a minimum voltage of 
where

(6)

The periodic, inhibitory input from AB to Int1 is given by ḡAB→IsAB→I(t) (VI−EAB→I).
ḡAB→I is the conductance and EAB→I is the reversal potential. An important aspect of this work
is to highlight the fact that different timing relationships of AB input to MCN1 and Int1 lead
to dramatically different frequencies of the gastric mill rhythm. To this end, we will use the
parameter, m, to delay the AB input to Int1 relative to MCN1. In other words, if the AB input
to MCN1 turns on at t = 0, the input from AB to Int1 does not turn on until t = m. The parameter
m is a constant which can range between 0 and PAB (the period of AB).

The effect of the excitation that LG receives from MCN1 is given in (1) by gs(VL)s(t)[VL −
Eexc] where gs(VL) = ḡss∞(VL) is the voltage dependent conductance of the synapse, Eexc is the
reversal potential and s(t) models the amount of excitation LG receives. The function s∞ is a
sigmoidal gating function similar in form to n∞; its exact form will be discussed later in Section
5. We express s(t) = s1(t)s2(t) as the product of two different effects. s1(t) models the effect of
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the presynaptic inhibition of the slow excitatory component of the MCN1 to LG synapse.
s2(t) models the effect of the AB inhibition of MCN1 on the fast excitatory component of the
from MCN1 to LG synapse. The relevant equations are:

(7)

(8)

The time constants τM1 τM2, τr1, τf1, τr2, and τf2 in (5), (7), and (8) are O(1) with respect to ε.
When VL goes above threshold, the presynaptic inhibition turns on which causes s1(t) to
decrease on the slow timescale. When VL goes below threshold, the presynaptic inhibition turns
off which causes s1(t) to increase on the slow timescale (see Fig. 1). When MCN1 is inhibited
by AB, s2 decreases on the fast timescale. Once the inhibition from AB is removed, s2 increases
on the fast timescale. The parameters VTh(M) and VT denote the activation thresholds for these
two synapses.

To understand which parameters are important in controlling the gastric mill frequency, we
use phase-plane analysis along with geometric singular perturbation theory to reduce the full
flow to a study of flow on lower dimensional slow manifolds. From equations (1)–(3) and (7)–
(8), we see that VL, VI, VM, and s2 evolve on a faster time scale than s1. Setting ε = 0 in the
equations yields the slow equations:

(9)

(10)

(11)

(12)

(13)

(14)
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(15)

The set of points satisfying f(VL, VI, s) = 0 and g(VI, VL, sAB→I) = 0 are called the VL and VI
nullclines, respectively. In slow time, equations (9) and (10) imply that any trajectory is forced
to lie on the VL and VI nullclines while s1 slowly evolves and s2 instantaneously jumps between
S2min and 1 whenever VM crosses the threshold VTH(M). In slow time, sAB→M jumps to 1
whenever VAB increases above VTh(AB) and decays exponentially to 0 whenever VAB decreases
below VTh(AB) Note that this slow decay of sAB→M implies from (11) that the voltage VM slowly
increases from  towards Eleak,M. We choose VTH(M) to lie between these two values such
that the time for VM to increase from  to VTH(M) equals a predetermined time called TC.

Note that when ḡAB→M = 0, then VM is always greater than VTh(M), and we refer to MCN1 as
being tonically active. In this case, s2 = 1. Alternatively, when ḡAB→M is sufficiently large,
then VM goes above and below VTh(M) in pyloric time and we say that MCN1 is rhythmically
active. In this case, s2 jumps between s2min and 1 each time VM crosses VTh(M). By choosing
τr1 and τf1 small relative to PAB, we note that VM may cross VTh(M) several times before VL
crosses VT.

To define fast equations, let ζ = t/ε in equations (1)–(3), (5), and (7)–(8), then set ε = 0 to obtain:

(16)

(17)

(18)

(19)

(20)

(21)
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Therefore, in fast time VL and VI evolve according to the dynamics of f(VL, VI, s) and g(VI,
VL, sAB→I) and s2 increases and decreases between 1 and s2min while s1 remains constant. These
equations govern transitions between the different branches of the VI and VL nullclines. These
transitions occur instanteously with respect to the slow flow.

2.2 Geometry of nullclines
In the previous subsection, we derived reduced fast and slow equations which govern the flow
of trajectories in relevant phase spaces. For the slow equations (9)–(15), the slow variable s1
evolves according to equation (14), while the activity of the fast variables VL, VI, VM, and s2
is constrained through the algebraic equations (9), (10), (11), and (15). Note that sAB→M is a
fast variable whenever VAB ≥ VTh(AB) according to equation (13) and is a slow variable
whenever VAB < VTh(AB) according to equation (12). For the fast equations (16)–(21), the slow
variables act as parameters. Fixed points of the fast equations correspond to situations where
the VI and VL nullclines intersect. We will be interested in situations where the existence and
stability of fixed points of the fast subsystem changes. Generally speaking, this may occur
because the slow variable s1 causes the fast system to undergo a saddle-node bifurcation, or if
sAB changes causing the position of the nullclines to change on the fast time scale in phase
space. Below, we show geometrically how these situations may arise.

We shall first consider the case when the synapse from MCN1 to LG is not voltage dependent
We do this by letting s∞(VL) ≡ 1. The effect of the voltage dependency of this synapse is
considered in Section 5. We find the explicit equations for the nullclines by solving (9) for
VL and (10) for VI to find that

(22)

and

(23)

A simultaneous solution to (9) and (10) can be found graphically by plotting F(VI, s) versus G
(VL, sAB→I). An intersection of these two nullclines corresponds to a fixed point of the fast
equations. However, the position of the nullclines in VI – VL phase space changes as a function
of s and SAB; see Fig. 3. In general, increases (decreases) in s move the VL nullcline to the right
(left), either in slow time due to changes in s1 or in fast time due to changes in s2. The VI
nullcline has two possible positions in phase space depending on whether sAB→I = 0 or 1. The
nullcline corresponding to sAB→I = 1 is lower in phase space than the one for sAB→I = 0. We
note that the left branch of the VI nullcline shifts down much more than the right branch since
on the right branch VI is already close to EAB→I independent of sAB→I(t). The number and
stability of fixed points also changes as a function of s and sAB→I. We identify four important
values of (s, sAB→I) as( , 0), ( , 1), ( , 0), and ( , 1); see Fig. 4. The superscripts off
and on refer to the AB input to Int1 which can either be absent (off) or present (on). These points
correspond to values when the two nullclines intersect tangentially resulting in the loss (or
gain) of two fixed points through a saddle-node bifurcation. Because s1 is increasing on the
left branches and decreasing on the right, the ordering of these bifurcation points is

. These values can be calculated analytically; see the Appendix. For our
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numerical simulations, we chose the parameters such that , and
.

On the slow time scale, the solution trajectory must lie at the intersection of the VI and VL
nullclines, i.e. at a fixed point of the fast subsystem. Thus to understand the evolution of
trajectories in the VI – VL phase space, we need to understand how the position of fixed points
changes as a function of s and sAB.

Let us first consider the case when sAB→M(t) ≡ 0. Then MCN1 is tonically active and sits at a
value of Eleak,M. Eleak,M is chosen to be larger than VTh(M) which we see from (15) allows s2
= 1. As a result, we have s(t) = s1(t) * 1 which means that s(t) increases toward 1 with time
constant τr1 when VL < VT and decreases toward 0 with time constant τf1 when VL > VT (see
Fig. 5A).

From (22), as s slowly increases, the VL nullcline slowly shifts to the right, thus causing the
position of the stable fixed point to shift to the right. This continues until the VL nullcline shifts
far enough to the right so that the stable fixed point on the left branches of the nullclines is lost
through a saddle node bifurcation when ; see Fig. 6. Once the fixed point is lost, the
trajectory is forced to jump on the fast time scale (equations (16)–(17)) to the only remaining
stable fixed point which is on the right branches of the nullclines. This jump pushes VL above
VT causing s(t) to begin to decrease. When s decreases, the VL nullcline slowly shifts to the left
until the stable fixed point on the right branches of the VL and VI nullclines similarly undergoes
a saddle-node bifurcation at . The trajectory then makes a jump back to the left branches
of the nullclines which forces VL below VT. Similar dynamics occur when sAB→I(t) ≡ 1 except
now the trajectory would pass through the bifurcation points  and  during its transition
between left and right branches.

When MCN1 excitation to LG is rhythmic instead of tonic, s2 changes on the fast timescale
between 1 and s2min as VM crosses over VTh(M) while s1 increases toward 1 when VL ≤ VT and
decreases toward 0 when VL > VT on the slow timescale. This causes s(t) to generally have a
shape as shown in Fig. 5B. Notice that the envelope of s(t) activity is the same as in the tonic
excitability case seen in Fig. 5A, but now there are rapid changes in s(t) due to the rapid changes
in s2(t). The jump of s2 between s2min and 1 causes the VL nullcline to instantaneously jump
to the right when s2 jumps to 1 and instantaneously jump to the left when s2 jumps to s2min.
The distance of these jumps in the VL nullcline, calculated from (22), is F(VI, s1 * 1) – F(VI,
s1 * s2min). Note that in the MCN1 rhythmic case, fixed points can be lost in two different ways.
They may be lost as before through a saddle-node bifurcation as s is slowly changing due to
changes in s1; see Fig. 7A. Or they may be lost when s2 changes on the fast time scale. For
example, on the left branches, it may be that , but . In this case, the fixed
point would be lost if s2min changed to 1 due to a change in MCN1 activity; see Fig. 7B. On
the right branches, it may be that , but . In this case, the fixed point
would be lost when s2 changes from 1 to s2min.

In the case where sAB→I(t) is a square wave, the trajectory will always lie on a nullcline with
either sAB→I = 0 or sAB→I = 1. Now fixed points can be lost in three different ways. Consider
the left branches. As before, a fixed point can be lost as s increases slowly through a bifurcation
point or instantaneously as s2 changes from s2min to 1. The third way it can be lost is if

 and sAB→I switches from 0 to 1; see Fig. 7C (see Fig. 7D for the analogous loss of
a fixed point on the right branches.)
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3 Different cases for the gastric mill frequency
To understand how the two different inputs of AB and MCN1 modulate the gastric mill
frequency, we parallel the study of Wood et. al. [30] by considering four different cases (see
Fig. 8):

Case 1. Tonic MCN1 excitation with the AB input to Int1 absent

Case 2. Tonic MCN1 excitation with the AB input to Int1 present

Case 3. Rhythmic MCN1 excitation with the AB input to Int1 absent

Case 4. Rhythmic MCN1 excitation with the AB input to Int1 present

In each case, we shall prove the existence, local uniqueness and stability of a periodic solution
and then calculate the period of this solution. The proofs of existence, local uniqueness and
stability of periodic solutions exploit the different time scales. In Cases 2 through 4, this will
reduce to finding fixed points of appropriate one-dimensional maps. The proofs construct
singular periodic solutions which are valid at ε = 0, whose existence, local uniqueness and
stability can be extended to the ε sufficiently small case [20].

In the biological circuit it is known that the synapse from MCN1 to LG is dependent on the
voltage of LG. For mathematical clarity, we shall postpone discussing the voltage dependent
case until section 5. Instead, we shall first concentrate on the voltage independent case where
we set s∞(VL) ≡ 1.

Case 1: Tonic MCN1 excitation with the AB input to Int1 absent
When considering Case 1, we set ḡAB→I = 0 and ḡAB→M = 0 in equations (2) and (3) so that
all input from AB is absent. When ḡAB→M = 0, VM > VTh(M) for all t and MCN1 is tonically
active. This allows us to set s2 ≡ 1 so that s = s1 * s2 will only follow the dynamics of s1.

In Case 1, the only way a fast transition between branches can occur is by s1 passing through
the bifurcation points  or . To construct a periodic solution, let  such that the
trajectory at t = 0− is at the bifurcation point on the right branches at the intersection of the
VI and VL nullclines; see Fig. 9. At t = 0+, the trajectory jumps back to the left branches at the
intersection of the nullclines; see Fig. 9A. On these branches, VL < VT and thus s1 will increase
until it reaches the bifurcation point  at t = T1; see Fig. 9B–C. The trajectory will jump back
to the right branch and since VL > VT, s1 will now decrease until it comes back to  at t =
T2; see Fig. 9D. Thus the value of s1 will have returned to its original value at time T2. Since
all the fast variables are slaved through equations (9) and (10) to the behavior of s1, we do not
explicitly need to check their evolution during the time interval [0, T2]. In this sense, proving
the existence of this periodic solution has been reduced to proving that the single variable s1
is periodic. Thus it is seen that there exists a singular periodic solution whose period is T2. In
section 4, we will both analytically and numerically calculate T2.

The solution is unique and stable since if  and the trajectory was on the right branches
of the nullclines, for example, then the solution can be flowed forward a time t̂ such that

. From here the solution trajectory would follow the dynamics described above and
return to  at time t = T2 + t̂. Thus, by flowing backward in time, it is seen that s1(T2) =
s2(0).
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Case 2: Tonic MCN1 excitation with the AB input to Int1 present
In Case 2, ḡAB→M = 0 so that s2 ≡ 1 and thus the MCN1 to LG excitation is tonic. Now the
AB to Int1 inhibition is present (ḡAB→I > 0). Without loss of generality, let m = 0 in (2). Hence,
s causes the VL nullcline to slowly shift to the right and left as in Case 1 and sAB→I(t) causes
the VI nullcline to instantaneously jump down when sAB→I(t) goes to 1 and to jump back up
when sAB→I(t) returns to 0.

To understand the control of frequency in Case 2, we again consider the nullclines in the phase-
plane. When VL > VT, the VL nullcline moves to the left slowly because τf1 is large. The AB
input to Int1, on the other hand, is fast and periodic so that the VI nullcline shifts up and down
repeatedly and instantaneously compared with the shift of the VL nullcline. Thus, on the right
branches of the nullclines, three cases arise for the loss of the fixed point. The first possibility
is that while , sAB→I(t) switches from 1 to 0, forcing the VI nullcline to jump up
causing the stable fixed point to be immediately lost. This forces the trajectory to jump directly
to the stable fixed point on the left branches of the VI and VL nullclines; see Fig. 7D.

The second possibility is that when sAB→I(t) = 1, s decreases until the fixed point is lost through
the saddle-node bifurcation at . The third possible way for the fixed point on the right
branches to be lost is as in Case 1. That is, while sAB→I = 0, s decreases to ; see Fig. 9D.
Which of these cases occurs depends upon the amount of time that sAB→I(t) spends in its active
and inactive phases and the timing of the AB input to Int1. In other words, the timing of the
periodic jumps in sAB→I affects the timing of the shifts in the VI nullcline which in turn
determines which case occurs. The fixed point on the left branch can be lost similarly to the
ways discussed above. Let us say that a periodic solution obeys Property A if the associated
trajectory jumps from the right to left branches when sAB→I(t) switches from 1 to 0 and from
left to right branches through the bifurcation point ; see Fig. 10.

Recall that the pyloric period is much smaller than the gastric mill period. Thus, while LG is
inactive (VL < VT), sAB can oscillate several times, say j times, between 0 and 1. The exact
number of times depends on the time constant τr1. Similarly when LG is active (VL > VT), the
number of oscillations, k, of sAB depends on the time constant τf1. This implies that the periodic
solution in case 2 depends on the relationship between τr1, τf1 and the pyloric input frequency
of AB. In the following theorem we will derive a relationship which τr1 and τf1 need to satisfy
in order to find a periodic solution with Property A. This involves fixing the integers j and k
first. To that end define

(24)

Theorem—Let k and j be integers which satisfy j < h(k). There exists values τr1(j), τf1(k) and
ḡAB→I large enough such that equations (1)–(3) and (7)–(8) possess a locally unique,
asymptotically stable periodic solution obeying Property A with period P = (j + k + 1)PAB
where j is the number of times sAB oscillates between 0 and 1 while VL < VT and k is the
number of time sAB oscillates between 0 and 1 when VL > VT.

Proof—We shall construct a Poincare map  of a certain interval  into itself. Existence and
stability of the periodic solution is determined by showing that  is a contraction on , thereby
also yielding local uniqueness of the periodic solution. To construct the periodic solution in
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question we will show that the associated trajectory will jump from the left to the right branches
from the bifurcation point . It will jump from the right to the left branches from a point s*
∈  at one of the times when sAB→I switches from one to zero.

To construct , consider the points  and  corresponding to the bifurcation points along
the right branches of the VI-VL nullclines when sAB→I = 0 (AB off) and sAB→I = 1 (AB on),
respectively. By choosing ḡAB→I and τf1 sufficiently large, we can guarantee that the time
distance from  to  under the dynamics s′ = −s/τf1 is larger than DcPAB. Indeed the time
Δt between these two points on the right branches is , where  is a decreasing
function of ḡAB→I. Moreover, there exists ŝ such that . Thus the time
distance from  to ŝ on the right branches is exactly DcPAB. We let ; see Fig. 11.
Note that at this point, we are only stating that we need τf1 sufficiently large. Below, we will
be more specific.

We next show that  maps into itself under the flow if τr1 and τf1 are chosen appropriately. We
flow the endpoints of the interval ,  and ŝ, through one cycle of the VI and VL oscillation
and show that these endpoints are mapped into . Thus by continuous dependence on initial
conditions, all points in  will map into .

First consider a trajectory sa(t) where  and the trajectory is on the right branch. Next
let sAB→I(0−) = 1 and sAB→I(0+) = 0, so that the trajectory jumps back to the left branch at t =
0+. The dynamics of sa on the left branches obey s′ = (1 − s)/τr1. By choosing

(25)

we can guarantee that . This means that the trajectory which starts at
 will leave the left branches of the nullclines through the bifurcation point  along the

sAB→I = 1 nullcline at time t = (j + 1 − Dc)PAB.

Next consider a trajectory sb(t) with the initial condition given by sb(0) = ŝ. Recall that the time
distance from  to ŝ on the right branches is given by . On the left branches, the
time between these points is governed by τr1 and is equal to . Thus if

(26)

then the time between these points on the left branches will be less than that on the right
branches, and, in particular, will be less than DcPAB. This type of time compression between
cells across a jump is analogous to fast threshold modulation [26]. Thus the trajectory starting
with initial condition at ŝ at t = 0 will reach  when sAB→I = 1 at a time T1 bounded between
(j + 1 − Dc)PAB and (j + 1)PAB. Therefore, any trajectory with s(0) ∈  will do the same. We
also note that once trajectories with initial conditions sa(0) and sb(0) jump from the right
branches of the nullclines to the left branches, the interval  becomes inverted so that the
trajectory with initial condition sa(0) becomes the leading cell.
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Note that the time between any two trajectories remains invariant while they both evolve on
the left branches and even across the jump back to the right branches. That the trajectories
remain the same time distance apart on the left branches follows from the fact that they both
obey the same differential equation (s′ = (1 − s)/τr1). Moreover, since they leave the left
branches through the same point , the time distance between them when the leading cell
reaches the bifurcation point is the same as the time distance apart when the trailing cell reaches
this point. When both trajectories are on the right branches, the time distance, again remains
invariant since both trajectories evolve under s′ = −s/τf1. In particular, the time distance between
sa(T1) and sb(T1) is less than DcPAB.

Consider again the trajectory sa(t) which had  and . We want
this trajectory to spend k oscillations of sAB on the right branches. We also want the trajectory
to be in a position to jump back to the left branches when sAB→I switches from one to zero.
Finally, since we want  to map into itself, we choose

(27)

such that sa([j + k + 1]PAB) = ŝ. Note that by substituting  into (27), and
solving for τf1, we obtain

(28)

In other words, with the choices of τr1 and τf1 that we have made, the trajectory with initial
condition  is mapped back to ŝ at a time .

Next consider the trajectory sb(t) where sb(0) = ŝ and . To construct the Poincare
map, we need . Thus we need . That  follows by continuity
since . The value  since the time distance from  to  is
DcPAB, whereas the time distance from  to  is less than DcPAB.

We have just shown that the trajectories whose s values are associated with the end points of
the interval  have s values mapped back to  after a time . Thus by continuity with respect
to initial conditions, any trajectory with s(0) ∈  will end up with  at a time when
sAB→I will switch from one to zero. Therefore we can define a one-dimensional Poincare map

:  →  where .

To show that  is a contraction mapping on  let sa(0) > sb(0) ∈  be arbitrary. Let Δt denote
the time on the right branch between them. At t = 0+, the trajectories jump back to the left
branch. Because of our choice of time constants τr1(j) and τf1(k), the new time between these
points is less than Δt. As before the time distance between these trajectories remains invariant
as they evolve along the left branches, across the jump to the right branches and then back to

. Since this new time is less than the original time, , where
α < 1 is dependent on τr1 and τf1. Therefore  is a contraction. As a result, there exists a unique
value  such that . This value is asymptotically stable, and corresponds
to a locally unique singular periodic solution of equations (9)–(21). For ε small, results in
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[20] show that an actual solution to equations (1)–(3) and (7)–(8) exists within an O(ε)
neighborhood of the singular one.

Equation (26) provides a condition on the time constants τf1 and τr1 for which the theorem
holds. This condition can be translated into a relationship between the integers j and k. Namely,
by substituting  into the fraction on the right hand side of (26), we see
that the numerator of that expression reduces to DcPAB/τf1, while the denominator reduces to

(29)

Now substituting (28) into (29) and then substituting the resulting expression into (26), we
obtain

(30)

Canceling τf1 from the right-hand side, substituting τr1 from (25) and solving for j, we obtain

(31)

The right-hand side of (31) is what we called h(k) in the statement of the theorem.

Remark—Note that if (31) is not satisfied, then we cannot find time constants τr1 and τf1 for
which a periodic solution satisfying Property A exists. However, by choosing τr1 and τf1
differently, we could instead have easily constructed a periodic solution whose s1 value passed
through the bifurcation point  on the transition from right to left branches and which jumped
back to the right branches with  when sAB→I switched from one to zero.

Case 3: Rhythmic MCN1 excitation with AB input to Int1 absent
In Case 3, the input from AB to MCN1 is present (ḡAB→M > 0) so that the MCN1 elicited
excitation to LG is rhythmic. Once again, we set ḡAB→I = 0 so that the VI nullcline remains at
a fixed position. In this case, s2 jumps instantaneously between s2min and 1 while s1 increases
with rate 1/τr1 and decreases with rate 1/τf1, thus, causing the activity of s to be rhythmic.

Again, consider the nullclines. Suppose, the trajectory is at the stable fixed point on the right
branches of the nullclines. Thus, s1 is decreasing and slowly pushing the VL nullcline to the
left. Recall that s2 jumps between 1 and s2min as VM changes. The jumps in s2 cause the VL
nullcline to shift to the right and left on the fast timescale. The size of the shift in the VL nullcline
depends on the value of s2min. The trajectory eventually jumps to the fixed point on the left
branches of the nullclines when (a.) s2 = 1 and s1 moves the fixed point to the position where
the nullclines are tangent i.e.  or (b.) when s2 = s2min and s1 decreases to  moving
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the fixed point to the position where the nullclines are tangent or (c.) when s2 jumps to s2min
resulting in an instantaneous shift of the VL nullcline past the point of bifurcation of the fixed
points. Which case occurs depends on the speed at which s1 decreases (τf1), the amount of time
the VL nullcline spends being shifted to the left by s2 (the amount of time that sAB→M(t) spends
in its active or inactive phases), and the timing of the instantaneous shifting of the VL nullcline
(timing of the AB input to MCN1).

Once the trajectory has jumped to the left branches of the nullclines, the VL nullcline slowly
shifts to the right due to s1 and then instantaneously jumps to the left when VM < VTh(M). Again,
the trajectory eventually jumps to the fixed point on the right branches of the nullclines when
(a′.) s2 = 1 and s1 moves the fixed point to the position where the nullclines are tangent (i.e,

); see Fig. 7A or when (b′.) s2 = s2min and s1 moves the fixed point to the position where
the nullclines are tangent or when (c′.) s2 jumps to 1 resulting in an instantaneous shift of the
VL nullcline past the point of bifurcation of the fixed points; see Fig. 7B.

To have a 1-dimensional map, we need one of the jumps of the trajectory from the left to right
branches or from the right to left branches of the nullclines to occur through a saddle-node
bifurcation (where the value of s1 is known) and the other to occur instantaneously when s2
jumps between 1 and s2min (where the value of s1 will be defined as a fixed point of the map).
Therefore, we shall establish the existence of the periodic solution which follows the subcases
(c) and (a′) above. Namely, the trajectory will jump from the left to the right branches through
the bifurcation point , i.e, s1 and s2 known, and from the right to the left branches when s2
jumps down from 1 to s2min, i.e s2 known and s1 to be determined by the map; see Fig. 12.

Recall that s(t) = s1(t) * s2(t) where we consider s2(t) = 1 when VM ≥ VTh(M) and s2(t) = s2min
when VM < VTh(M). When sAB→M(t) jumps to 1, VM instantaneously jumps below VTh(M). Thus,
s2(t) instantaneously jumps to s2min. However, sAB→M(t) does not instantaneously jump from
1 to 0, but slowly decays with time constant 1/τM2. Thus, VM requires a a small amount of time,
TC, to go above VTh(M). In our model, we chose VTh(M) such that TC is approximately PAB/20.
Hence, for one cycle of AB activity, s2(t) = s2min for time DCPAB + TC and s2(t) = 1 for time
(1 − Dc)PAB − TC.

As in Case 2, we can construct a Poincare map  of an interval of s values on the right branch,
 = [s̃, sR], into itself. Here  where . We let

 so that the time distance between sR and s̃ is [1 − Dc]
PAB − TC. Let ; see Fig. 13.

We consider a trajectory sa(t) where  and the trajectory is on the right branch
of the nullclines. Let sAB→M(0−) = 0 and sAB→M(0+) = 1 so that s2(0−) = 1 and s2(0+) = s2min.
Thus the trajectory jumps back to the left branch at t = 0+ when s2 jumps from 1 to s2min. We
then choose  which guarantees that

 so that the trajectory which starts at sR at t = 0− will leave the left
branches of the nullclines through the bifurcation point . Using the same argument as in
Case 2 with an equivalent condition on τr1 as in (25), the trajectory sb(t) with initial condition
sb(0) = s̃1 * s2(0) will be forced to reach  at a time T1 bounded between (j + Dc)PAB + TC

and (j + 1)PAB. Therefore, any trajectory with s(0) ∈  will also reach  during these times.

Next, we choose τf1(k) so that sa(t) gets mapped back to , particularly to s̃ at the instant before
sAB→M(t) jumps from 0 to 1. Therefore, we let . Thus,
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at  where T2 = (k + j + 1)PAB, sa(t) lies in . In a similar argument to that of Case 2, the
trajectory sb(t) with sb(0) = s̃ * s2(0) and  will also lie in  at  with

.

We define a one-dimensional Poincare map :  →  where (s) = s(T2). The argument
showing that  is a contraction mapping on  is the same as in Case 2. Consequently, there
exists a locally unique, asymptotically stable value  such that .

Remark—The period of the constructed solutions in Cases 2 and 3 are both (j + k + 1)PAB.
Note that this occurs since the values of τr1 (j) and τf1 (k) are chosen to be different in both
cases. In general, if a priori, τr1 is chosen to have the same value for both Cases 2 and 3, and
similarly for τf1, then the periods of Cases 2 and 3 need not be the same.

Case 4: Rhythmic MCN1 excitation with AB input to Int1 present
In Case 4, the MCN1 to LG excitation is rhythmic (ḡAB→M > 0) and AB inhibits Int1 (ḡAB→I
> 0). Consequently, the VL nullcline shifts to the right and left with slow changes in s1 and with
quick jumps of s2 between 1 to s2min. The VI nullcline jumps up and down instantaneously due
to the sAB→I oscillations between 0 and 1.

Suppose the trajectory lies at the stable fixed point on the left branches of the VL and VI
nullclines. Here, VL < VT which allows s1 to increase. When sAB→M(t) → 1, the VL nullcline
jumps to the left. Similarly, when sAB→I (t) → 1, the VI nullcline jumps down. Recall that the
time difference between when the VL and VI nullclines shift is controlled by the parameter m.
For example, if m = 0, the VL nullcline jumps to the left at the same time that the VI nullcline
jumps down. However if m = DcPAB then when the VL nullcline jumps to the left, the VI nullcline
jumps up. This creates several possibilities for the length of the period.

To provide more insight into the role of m, suppose again that m = 0. In Case 2, the jumping
down of the VI nullcline allowed the fixed point to bifurcate at smaller values of s1 relative to
Case 1. However, in Case 4 for m = 0, whenever the VI nullcline jumps down, the VL nullcline
jumps back to the left. If this jump to the left is large enough (1 − s2min is large) and the jump
down in the VI nullcline is not extremely large, there will still exist a stable fixed point on the
left branches. In this case, the trajectory will have to wait until s2 = 1 and s1 has grown large
enough so that the fixed point occurs where the nullclines intersect tangentially for sAB→I (t)
= 0 (Fig. 7A) or when s2 jumps to 1 (sAB→M (t) jumps to 0) and the fixed point is instantaneously
lost (Fig 7B). This is equivalent to (a.′) and (c.′) in Case 3. If the jump to the left of the VL
nullcline is not large and/or the jump down in the VI nullcline is extremely large, the fixed
point will be lost and the trajectory will immediately jump to the stable fixed point on the right
branches of the nullclines. This is equivalent to Case 2. The above result also extends to the
situation in which m ∈ (0, TC] (where TC is the time it takes for VM to increase under (11) and
(13) from  to VTH(M)) because for 0 < m ≤ TC, each time the VI nullcline is in the downward
position, the VL nullcline is shifted to the left. Therefore, the fixed point can not be lost until
s1 grows large enough for the bifurcation to occur while s2 = 1.

Next suppose that m = DcPAB. For m = DcPAB, each time the VI nullcline is shifted in the
downward position, the VL nullcline remains to the right. Therefore, as opposed to the situation
in which m = 0, the fixed point on the left branches of the nullclines can be lost due to the jump
down of the VI nullcline as in Case 2; see Fig. 7C. This same idea extends to values of m lying
in a neighborhood, [R1, R2], of DcPAB where R1 > TC, R1 < PAB. For m ∈ [R1, R2], there is
always some amount of time for which the VL nullcline is to the right while the VI nullcline is
shifted downward, thus allowing the fixed point to be lost at an earlier time than in Case 3.
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We now consider the existence of a periodic solution for Case 4 with τr1 (j) and τf1 (k) defined
as in Case 3. For m ∈ (0, TC], the periodic orbit will be defined in exactly the same way as
Case 3. Consider the interval  on the right branches as defined in Case 3 with sAB→M(0−) =
0 and sAB→M(0+) = 1. Let sa(t) be a trajectory with . At t = 0+, sAB→M jumps
to 1 and sAB→ I remains equal to 0 because of the small delay m. Thus, s2 instantaneously
jumping to s2min forces the trajectory to the left branches in the same way as Case 3 because
the VI nullcline remains in the upward position at t = 0+.

On the left branches with m ∈ (0, TC], each time sAB→I = 1, pushing the VI nullcline down,
s2 = s2min and the VL nullcline is forced to the left. Thus, the trajectory with initial conditions
as stated above can not jump from  as in Case 2 because each time the VI nullcline is in its
downward position, the VL nullcline is shifted too far to the left for s to reach . Therefore,
the only time at which the fixed point of the left branches can be lost is when s2 = 1. At t = (j
+ DC)PAB, sAB→M(t) will jump to 0. However, s2 will not jump to 1, returning the VL nullcline
to the right, until t = (j + DC)PAB + TC. Hence, at t = (j + DC)PAB + TC, sAB→ I will already be
equal to 0 since m ≤ TC and the trajectory will reach  tangentially as in Case 3. By choosing
τf1(k) as in Case 3, sa(t) gets mapped to s̃ at .

With the same argument as in Case 3, the trajectory sb(t) with sb(0) = s̃1*s2(0) and
 (where T1 ∈ ((j + Dc)PAB + TC, (j + 1)PAB + TC)) will also be mapped back to  at

 with . Therefore, the one-dimensional Poincare map : → 
where (s) = s(T2) is established exactly as in Case 3. Thus for m ∈ (0, TC], the same arguments
apply to show that there exists a unique, asymptotically stable periodic orbit in Case 4 and the
periodic orbits of Cases 3 and 4 have the same period.

For m ∈ [R1, R2], the period of the solution trajectories in Case 4 is locked to the period of
AB oscillations and is, therefore, much shorter than the period of solution trajectories in Case
3. For m ∈ [R1, R2], as stated above, on the left branches of the nullclines, the inhibition from
AB to MCN1 and to Int1 is timed such that while the VI nullcline is shifted downward, s2 = 1
which places the VL nullcline to the right. Thus, s1 does not need to grow very large for the
LG interburst to end. Once on the right branches, the burst of LG is ended during the first time
s2 jumps to s2min because s1 is sufficiently small (due to the fact that the LG interburst was
ended for a small value of s1) to push the VL nullcline far enough to the left to cause a loss in
the fixed point. Similarly, once the solution trajectory is back to the left branches, s1 is large
enough (because s1 did not decay a long time on the right branches) so that the first jump in
s2 back to 1 causes a loss in the fixed point and an end to the LG interburst. In the regions
TC < m < R1 and R2 < m ≤ PAB, the solution trajectories remain periodic but are slightly more
complicated to describe than those outside of these regions. For example, with the parameters
fixed as above, when m ∈ (0, TC] or m ∈ [R1, R2] consecutive LG bursts have exactly the same
length as do consecutive Int1 burst. However, when m is not in these regions, consecutive
LG bursts and consecutive Int1 bursts need not have the same length. Instead, several cycles
of LG and Int1 oscillations may be required before the LG (and Int1) burst duplicates its length.
We further explain this in the next section.

4 Determining the frequency of solutions
The period of the gastric mill rhythm can be computed as the sum of the LG burst and the
LG interburst. During the interburst, s1 increases toward a maximum value which we shall
denote smax. Similarly, during the burst, s1 decreases toward a minimum value smin. The
periodic solutions in Cases 1–4 are then computed by finding out how much time is needed
for s1 to evolve between the values of smax and smin on the left (during the interburst) and right
(during the burst) branches. Using equation (7), it is straightforward to see that
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(32)

The main question now is to determine the values smin and smax for each of the four cases.
However, these values have already been determined in the construction of the periodic
solutions above. In particular, for Case 1,  and . For Case 2,  and

. Note that . Since the AB inhibition does not affect the right branches of the
VI nullcline too much, . Thus from equation (32), it is seen that the period of Case
2 is smaller than the period of Case 1 since the interburst of LG is shorter. This result is
consistent with what was found by Manor et al. [16].

In Case 3,  and . Here . Finally,
for Case 4, when m ∈ (0, Tc], the periodic solution is different than the one constructed in Case
3 due to the shifting of the VI nullcline. However, the period of the solutions in Cases 3 and 4
are the same because the values of smin and smax are the same. When m > Tc,

 and
. Calculations of , and  can be

found in the Appendix. Using (32), we calculated values for the period for Cases 1 through 4.
The analytic results are shown in Table 1 for Cases 1 through 3. There, we assumed for Case
2 that  equals the average of  and , while for Case 3, .

To confirm the validity of our analytic computations of the period using (32), we also
numerically solved the set of equations in our model using XPP [11]. See the Appendix for
parameter values. For Cases 1 through 3, these results are also given in Table 1 and show a
close correlation between the calculation of the periods obtained analytically and numerically.

In Figure 14, we show the results of numerically calculating the period in Case 4 as a function
of the delay parameter m with τr1 = 7200 and τf1 = 5500. We see that for 0 < m ≤ 60, the period
of the gastric mill rhythm for Case 3 is equal to that of Case 4. For 470 < m ≤ 740, the period
of the gastric mill is equal to the period of AB activity. For 60 < m ≤ 470, there is a transition
between having a period equal to that of Case 3 to the much shorter period of AB activity.
Similarly, for 740 < m ≤ 1000, the period begins to increase from 1 sec up to the period found
in Case 3. As stated in the previous section, for 60 < m ≤ 470 and for 740 < m ≤ 1000, it may
take several cycles of LG and Int1 oscillations before the LG and Int1 burst lengths duplicate
themselves where R1 = 470 and R2 = 740. In these situations, the period is calculated as the
time is takes to have two duplicate LG burst lengths divided by the number of cycles of LG
oscillations occurring in that time. Figure 15 shows the gastric mill rhythm frequency as found
in experiments by Wood et al. [30] for Cases 1–4. In this work, Wood et al. [30] artificially
replicate the affect of AB activity to MCN1 through computer controlled stimulation of
MCN1. We see that for MCN1 tonic, the frequency of the network is much higher when the
AB input to Int1 is present. For MCN1 rhythmic, the frequency of the network is higher than
when MCN1 is tonic, however, there is no change in frequency when the AB input to Int1 is
added to the network. Figure 16 shows that our model accurately replicates the behavior of the
actual gastric mill when 0 < m ≤ 60. Thus, the time mismatch between the pyloric and
modulatory inputs to the gastric mill network is critical in establishing the correct frequency
of the system.
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5 Voltage Dependent MCN1 to LG synapse
We now consider the effect of having voltage dependent coupling between MCN1 and LG as
opposed to a constant conductance synapse. Therefore, we return to equation (1) with gs(VL)
= ḡss∞(VL) where s∞(VL) is a sigmoidal gating function varying between 0 and 1 of the form

(33)

Due to this voltage dependency, the amount of excitation that LG receives from MCN1 will
depend upon the voltage of LG causing LG to receive less excitation when it, itself, is at a low
voltage. Thus, when LG is in its interburst, the strength of the synapse will be weaker than in
the voltage-independent case. When LG is in its burst, the strength of the synapse will increase
to a value near to that of the previous section. As a consequence of the weaker conductance,
in all of the Cases 1–4, the voltage dependency will increase the LG interburst duration because
s will be required to grow to a larger value of smax for the fixed point to be lost on the left
branches of the nullclines. On the right branches of the nullclines, where LG is in its burst,
s∞(VL) is closer to 1 and, therefore, the burst duration of LG will not be directly affected as
significantly as the interburst duration. However, the value of smin will be slightly larger than
when the conductance is not voltage dependent because as VL decreases on the right branches,
s∞ also decreases. Therefore, s will not need to decrease as much to cause a loss of the fixed
point and an end to the LG burst. The increase in the interburst duration in all Cases 1–4,
however, is larger than the decrease in burst duration, resulting in an increase in the period of
the solutions.

Upon relaxing the conditions that s2 and sAB→I jump between their minimum and maximum
values instantaneously, in addition to increasing the period in Cases 1–4, the voltage
dependency also increases the range of m over which the period of Case 3 equals the period of
Case 4. When the rise and fall of s2 is not instantaneous but occurs on the slow timescale, s2
moves continuously between its maximum and minimum values. Regardless of whether the
conductance of the MCN1 synapse to LG is constant or voltage dependent, the same condition
must be satisfied for the period of Case 3 to equal the period of Case 4. This condition is that
the fixed point on the left branches of the nullclines must be lost through . That is, m must
be chosen to live in a certain interval, say [M1, M2], such that once s1 has grown large enough
for s to reach  while sAB→I = 1, the VL nullcline must be shifted far enough to the left by
s2 when sAB→M = 1 so that the saddle-node bifurcation does not occur at . This situation
persists until m becomes just larger than M2. For M2 < m < DcPAB, when sAB→I jumps to 1,
sAB→M will already equal 1 so the VL nullcline will already be to the left. However, before
sAB→I returns 0, sAB→M will return 0. Consequently, the VL nullcline will move to the right
and the fixed point will not be lost through .

When s2 changes on the slow timescale and m is slightly too large as described above, the loss
of the fixed point through  often occurs while s2 is increasing toward 1 but has not yet reached
its maximum value of 1. As a specific example, for τr1 = τf1 = 4000, τr2 = τf2 = 325, and
conductance of the MCN1 to LG synapse constant (s∞(VL) = 1)> the periods of Cases 3 and
Cases 4 are the same for 80 ≤ m ≤ 275. Note the lower bound on the interval is 80, not 0, since
we have relaxed the condition that s2 and sAB→I change instantaneously. Once m > 275, the
saddle-node bifurcation occurs through  instead of , thus, causing the period of Case 4 to
be smaller than the period of Case 3.
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Now let us consider the effect of the voltage dependent conductance on the position of the
VL nullcline and, therefore, the role it plays in altering the interval of m over which the period
in Case 3 equals that in Case 4. When LG is at a low voltage, s∞(VL) is close to 0. Thus, on the
left branches of the nullclines, when s2 decreases to its minimum, there is a much larger jump
to the left of the VL nullcline than when the conductance is constant. Furthermore, even as s2
increases back to 1, the VL nullcline remains significantly far to the left until s2 gets very close
to 1. Therefore, even as m increases to the range [M2, DcPAB] where sAB→M jumps back to 0
(forcing s2 to increase back to 1) just before sAB→I returns to 0, the VL nullcline will remain
too far to the left (because it takes some amount of time for s2 to grow close enough to 1) for
the saddle-node bifurcation to occur at . Hence, the fixed point can not be lost through 
while s2 is growing toward 1 as occurs when the conductance is constant. Furthermore, when
sAB→I is a half-sine function as in Manor et al. [16], the VI nullcline spends less time in the
downward position. Consequently, there is again a smaller range of time for s to reach  when
the VI nullcline is in the downward position. Accordingly, a larger interval of m will exist for
the fixed point on the left branches of the nullclines to be lost from  as in Case 3 when the
conductance is voltage dependent than when the conductance is constant. Returning to the
example in the above paragraph but now allowing the conductance of the MCN1 to LG synapse
to be voltage dependent, the interval of m for which the period of Case 3 equals the period of
Case 4 extends to 80 ≤ m ≤ 350. When s2 has instantaneous kinetics, there is no significant
difference in the range of m between the voltage dependent and non-voltage dependent cases
because s2 is always either equal to 1 or 0 so the fixed point on the left branches can not be
lost while s2 is increasing toward 1.

6 Discussion
Networks involved in the generation of rhythmic movements often involve sets of reciprocally
inhibitory neurons that rely on external stimuli to trigger oscillations or to set the appropriate
frequency of the rhythm [2] [6] [25]. It has been observed that while tonic stimulation may
often times be sufficient to elicit the network activity, the synaptic inputs driving these circuits
are themselves rhythmic [5] [29]. An example of this is the pyloric network of the lobster
stomatogastric nervous system which receives rhythmic excitatory input. The same effects of
this rhythmic input, however, can be achieved through tonic firing of the input cells [19].

Furthermore, it has been noted in many cases that although one source of input is sufficient to
produce oscillations in the target network, multiple inputs act together to generate and set the
frequency of the network. The heartbeat of the leech, for example, is controlled by pairs of
reciprocally inhibitory neurons. These oscillators receive inhibitory input from interneurons
that act to coordinate the activity of the separate oscillators [7]. Einum et al [10] also recently
showed that reticulospinal neurons of the lamprey brain stem receive both excitatory and
inhibitory rhythmic inputs from neurons in the spinal cord during locomotor activity.

The stomatogastric nervous system of the crab, made up of an asymmetric half-center
oscillator, provides a nice example of a system that receives multiple rhythmic synaptic inputs
in order to oscillate. The interactions between the gastric mill network and pyloric network
have been extensively studied to show how each network acts to influence one another’s
frequency [3,4,28]. In their work, Nadim et al. [21] and Manor et al. [16] considered how the
frequency of the gastric mill rhythm is generated and controlled in the presence of both a slow
modulatory input and a much faster periodic input.

In this paper, we continued upon the work of Nadim et al. [21] and Manor et al. [16] with the
aim of mathematically explaining the experimental results of Wood et al. [30]. Specifically,
we addressed the effect of having a rhythmic modulatory input versus a tonic input drive the
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network oscillations and then how two simultaneous rhythmic inputs work together to
determine the network frequency. In order to do this, we incorporated the rhythmicity of the
modulatory projection neuron on the existing model of Manor et al. [16]. We then derived
conditions on the parameters that dictate the strength and rise and decay rates of the synaptic
currents to ensure the existence, local uniqueness, and stability of periodic solutions. Once
periodic orbits were established, we derived a formula to estimate the period of such orbits in
the presence and absence of pyloric input to the gastric mill network for both tonic and rhythmic
modulatory input.

Using geometric, singular perturbation theory, the multi-dimensional system is reduced to
studying the position of the nullclines in the VL − VI phase plane with the variable controlling
the amount of excitation provided from the modulatory projection neuron to the gastric mill
treated as a parameter. The model shows that the rhythmicity of the projection neuron speeds
the gastric mill rhythm by allowing the loss of a relevant stable fixed point to occur at an earlier
time than when the input is tonic. Thus, although tonic stimulation of the gastric mill network
can generate the gastric mill rhythm, the rhythmicity of the input speeds the frequency of the
gastric mill rhythm as in seen by Wood et al. [30].

In the presence of the rhythmic modulatory excitation and fast pyloric inhibition, the timing
of the jump of the VL and VI nullclines in response to the AB input to Int1 and to MCN1
determines how the loss of the stable fixed point on either the left or right branches of the
nullclines will occur. This, in turn, determines the length of the LG and Int1 interburst and
burst durations. The frequency calculated from this model, matches the experimental results
of Wood et al. [30] only when there is either a short delay or no delay in the timing of the two
pyloric inputs. In this case, the position of the VL nullcline in response to the AB inhibition of
MCN1 prevents the AB disinhibition of LG from ending the LG interburst. Thus, it is as if there
is only one source of synaptic input to the gastric mill network. Therefore the analysis gives a
possible biological mechanism by which the effect of the two simultaneous synaptic inputs can
overlap to result in a frequency equivalent to that of having only one of the inputs present. If
the delay is chosen differently, however, the gastric mill rhythm has a higher frequency than
when only one of the inputs is present because the position of the VL nullcline does not prevent
LG from getting disinhibited by AB. Thus, the timing of the inputs can be used as a tool to
switch between different modes of firing frequency. This may serve as a means by which
different chewing patterns are elicited.

The biological and mathematical reductions of the full, compartmental model of Nadim et al.
[21] implemented by Manor et al. [16] and extended to this work have proven to be instrumental
in understanding the frequency regulation of the gastric mill rhythm and intercircuit
coordination with the pyloric network. The reduced model neglects all intrinsic currents and
models the neurons in this network as having only leak currents. Despite the severity of the
reductions, the reduced network is able to accurately model the gastric mill rhythm and its
response to the slow, modulatory and fast, pyloric inputs. In [1], Ambrosio shows that the
results found through analysis of the reduced model do extend to the full model. The reduced
model, also, clarifies the relationship between the synaptic rise and decay times of the AB
inhibition of MCN1 in the full model necessary to obtain the experimentally observed behavior.
Furthermore, because the reduced model consisting of passive neurons is able to accurately
reproduce the qualitative behavior of the full model, it is clear that the synaptic currents and
their timing with respect to one another are the primary components responsible for the
dynamics of the gastric mill rhythm. This is important because the ability to ignore the intrinsic
dynamics of each of the neurons results in significantly simpler equations. This makes
mathematical analysis much more accessible. For example, in this network, we were able to
reduce the study of our system to the study of a one-dimensional map. This then allowed us to
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define a Poincare map to prove the existence and stability of periodic orbits which would have
been much more difficult if working in higher dimensions.

Such techniques can be extended to numerous other models whose intrinsic and synaptic
currents act on multiple timescales. The leech heartbeat mentioned above, for example, is
controlled by a network of reciprocally inhibitory neurons that are dependent upon both
synaptic and intrinsic currents. These currents exhibit both fast and slow dynamics and a
biophysically detailed model of this network exists [22] [23]. Although this model was shown
to accurately reproduce many of the behaviors of the real network, some properties have not
yet been able to be reproduced and the significance of certain currents is not yet clearly
understood. In particular, a reduced model may give some insight into the extreme sensitivity
of the oscillations to the leak current parameters seen in the more detailed models. More
generally, a reduced version of this model that is more amenable to mathematical investigation
in terms of allowing for a reduction to lower dimensions and phase plane analysis is likely to
more clearly reveal many of the underlying properties responsible for such things as the
network oscillations and sensitivity to synaptic and intrinsic inputs.
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Appendix A

We describe how to calculate the bifurcation points  and . On the left branch,
when the two nullclines intersect tangentially for sAB→I(t) = 0, then . Similarly, on the
right branch when  and sAB→I(t) = 0 the fixed point occurs when the two nullclines
intersect tangentially. Thus, to calculate  and , we use the equations for the VL and VI
nullclines:

(34)

and
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(35)

We rewrite (35)

(36)

We find the equation for the tangent point by solving

(37)

From (37), we obtain a quadratic equation for s

(38)

Next, we use the restriction that the tangency of the nullclines must occur at a fixed point.
Therefore, we use the equations for the VL and VI nullclines to determine the fixed points for
different values of s. We rewrite (34) as

(39)

We then plug (36) into (39) to obtain an equation for s = S(VI). This equation says that for each
value of VI there exists a unique value of s which will cause the nullclines to intersect. We then
check to see if this value of s also satisfies the quadratic equation (38). If it does, we have found
a bifurcation point of the fast subsystem. There are two values of s which satisfy the equations
above. The smaller valued one corresponds to , the larger corresponds to . To calculate

 and , we follow the same steps as above but with sAB→I(t) = 1 in (35).

We used the analytically calculated values of the bifurcation points to obtain the results given
in section 4. In Case 2, we assume that  and smin is the average of  and . In Case
3, we assume the maximum value that s takes is  while s2 = 1 which implies that 

and the minimum value s assumes is  when s2 = s2min. Therefore, smin is . In Case 4, the
values of smax and smin depend on m. For m near 0, for example, smax and smin are calculated
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as in Case 3. We also numerically solved equations (1)–(8) and (33). The parameter values
used in the numerical calculations are given in Table 2.
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Figure 1.
Synaptic architecture of neurons associated with the gastric mill rhythm.
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Figure 2.
The synaptic variables sAB→I(t) and sAB→M(t). Note that sAB→M(t) decays with time constant
τAB.
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Figure 3.
The VL and VI nullclines plotted in phase space for two different values of s(t). The VL nullcline
is labeled F, the VI nullcline is labeled G, and the dashed vertical line is VL = VT. When s = 0,
the VL nullcline is to the far left. As s increases, the VL nullcline shifts to the right. Solid squares
denote fixed points of the fast equations (16)–(21).
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Figure 4.

Position of the VL and VI nullclines for , and ( , 0). At these
four points, the nullclines intersect tangentially, resulting in the loss (or gain) of two fixed
points through a saddle-node bifurcation.
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Figure 5.
(A) s vs. t for the case when the MCN1 to LG excitation is constant (s2 = 1). s increases to 1
with rate 1/τr1 when VL ≤ VT and s decreases to 0 with rate 1/τf1 when VL > VT. (B) s vs. t for
the case when the MCN1 to LG excitation is rhythmic. When VL ≤ VT, s1 increases to 1 with
rate 1/τr1 and s2 jumps between 1 and s2min when sAB→M(t) jumps between 0 and 1. When
VL > VT, s1 decreases to 0 with rate 1/τf1 and s2 jumps between 1 and s2min when sAB→M(t)
jumps between 0 and 1.
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Figure 6.
VL and VI nullclines for different values of s when sAB→I(t) = 0. The dashed vertical line is
VL = VT. When s = 0.5, the fixed point is on the left branches of the VL and VI nullclines (VL

nullcline dotted). When , the fixed point undergoes a saddle-node bifurcation at ○. The
trajectory is therefore, forced to jump (dashed line with double arrows) to the stable fixed point
(shown by ●) on the right branches of the nullclines where VL > VT.
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Figure 7.
For MCN1 rhythmic, fixed points can be lost in two ways: through a saddle-node bifurcation
as s slowly changes due to s1 or when s2 changes on the fast timescale. In all figures, the dashed
vertical line is VL = VT. (A.) On the left branches of the nullclines, s2 = 1 and s1 moves the
VL nullcline to the right resulting in a saddle-node bifurcation of the fixed point at ○ once

. The trajectory is forced to jump to the stable fixed point on the right branches of the
nullclines (shown by ●). A similar transition can also occur when sAB→I = 1 and s1 reaches

. (B.) When s2 jumps from s2min to 1, the VL nullcline jumps from the left (dotted nullcline)
to the right (solid nullcline). Thus the fixed point on the left branches of the nullclines is
instantaneously lost because  and the trajectory will jump to the fixed point on the right
branches of the nullclines (shown by ●). A similar transition can also occur when sAB→I = 1
and s2 jumps to 1 such that . (C.) When MCN1 is rhythmic and sAB→I(t) oscillates between
0 and 1, the fixed point can be lost in another way. While s2 = 1 and sAB→I(t) jumps from 0 to
1 (the position of the VI nullcline jumps from the upward dotted nullcline to the lower solid
nullcline), the fixed point on the left branches of the nullclines (shown by ○) is instantaneously
lost because  and the solution trajectory is forced to jump to the fixed point on the right
branches of the nullclines (shown by ●). (D.) On the right branches of the nullclines for
MCN1 tonic, when sAB→I jumps from 1 to 0 (the position of the VI nullcline jumps from the
lower dotted nullcline to the upward solid nullcline), the fixed point (shown by ○) is
instantaneously lost because  and the solution trajectory must jump to the stable fixed
point on the left branches of the nullclines (shown by ●).
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Figure 8.
Circuitry for cases 1–4. (A.) The AB input to MCN1 and to Int1 is absent. (B.) The AB input
to Int1 is present but the AB input to MCN1 is absent. (C.) The AB input to MCN1 is present
but the AB input to Int1 is absent. (D.) The AB input to Int1 and to MCN1 is present.
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Figure 9.
Plots of the VI and VL nullclines for different values of s in case 1. ● marks the position of the
trajectory when it is at a stable fixed point, ○ marks the point from which the trajectory will
jump when the stable fixed point bifurcates, and the dotted lines indicate the position of the
trajectory during the jumps. The arrows show the direction of flow. The dashed vertical line
marks the threshold, VT. In (A.),  which is the point at which the saddle-node bifurcation
occurs on the right branches of the nullclines. Thus, the trajectory will be forced to lie on the
stable fixed point on the left branches of the nullclines. (B.) On the left branches of the
nullclines, VL < VT which means that s will begin to increase toward 1. (C.) s continues to
increase until it reaches the value  where the stable fixed point on the left branches of the
nullclines undergoes a saddle-node bifurcation. The trajectory is, therefore, forced to jump to
the fixed point on the right branches of the nullclines. This jump causes s to cross above VT so
that s begins to decrease. (D.) s has decreased to  at which the fixed point on the right
branches is again lost through a saddle-node bifurcation and the trajectory is forced to return
to the upper left branches of the nullclines. Therefore, the solution trajectory lies on a periodic
orbit. (E.) The voltage traces of LG and Int1 are plotted as s increases and decreases between

 and . The labels A, B, C, and D, indicate where the trajectory is in the phase plane at the
given values of s(t), VI, and VL.
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Figure 10.
In Case 2, a periodic orbit obeying property A jumps from the left to right branches and from
the right to left branches of the nullclines in the following way. (A.) When s1 lies between

 and , the stable fixed point lies on the right branches of the nullclines when sAB→I = 1.
(B.) As soon as sAB→I jumps back to 0, the fixed point on the right branches of the nullclines
is instantaneously lost because  and the trajectory jumps back to the left branches. (C.)
The trajectory lies at the stable fixed point (●) on the left branches of the nullclines where
sAB→I = 1 and s1 increases toward 1. (D.) While sAB→I remains equal to 1, s1 increases
sufficiently large for a saddle-node bifurcation to occur through . (E.) Voltage traces of
VL and VI for a periodic orbit obeying property A.
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Figure 11.

To define the Poincare map for Case 2, let  where . Note that
τf1 is chose sufficiently large to ensure that .
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Figure 12.
Case 3 solution trajectory and nullclines. (A.) The trajectory lies at the stable fixed point (●)
on the right branches of the nullclines where sAB→I = 0 and s2 = 1. (B.) When s2 jumps to
s2min, s instantaneously goes below  and the fixed point in lost. Thus, the solution trajectory
is forced to jump to the stable fixed point on the left branches of the nullclines (shown by the
dashed line with double arrows). (C.)–(D.) On the left branches of the nullclines, the fixed
point is lost while s2 = 1 and s1 increases large enough for the saddle-node bifurcation to occur
through . Now, the solution trajectory is forced to jump to the right branches of the nullclines.
(E.) Voltage traces of LG and Int1 for s satisfying the above conditions.
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Figure 13.

(A.) To define the Poincare map for Case 3, we let I = [s̃, sR] where 
and . (B.) For s = sR, when s2 jumps from 1 to s2min, s
jumps to . Similarly, for s = s̃, when s2 jumps to s2min, s jumps to s̃1 * s2min.
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Figure 14.
The period of the gastric mill cycle is plotted for different delays, m, in Case 4. The period of
Case 3 is marked by the dashed line. There is a small range of delays, 0 < m ≤ 60, for which
the period of the gastric mill rhythm is equal for Cases 3 and 4.
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Figure 15.
Experimental findings of the gastric mill rhythm cycle frequency for Cases 1–4 [30].
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Figure 16.
Calculations of the gastric mill rhythm cycle frequency for Cases 1–4 using our model with
τr1 = 7200msec, τf1 = 5500msec, τr2 = 1msec, τf2 = 1msec, period of sAB = 1sec, m = 25msec,
and ḡs = 6mS/cm2 in Cases 1 and 2 and ḡs = 7mS/cm2 in Cases 3 and 4.
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Table 1

A comparison of the analytic versus numerical determinations of period in Cases 1–3.

Period Calculation for τr1 = 4900 msec, τr1 = 4000 msec

Case XPP Simulation Analytic Formula

Case 1 Period=10,140 msec Period=10,075 msec

Case 2 Period=5,000 msec Period=4,688 msec

Case 3 Period=4,000 msec Period=3794 msec
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Table 2

Parameters of The Reduced Model

gleak,L = 1mS/cm2 Eleak,L = −60mV ḡI→L = 5mS/cm2 EI→L = −80mV

gleak,I = .75mS/cm2 Eleak,I = 10mV ḡL→I = 2mS/cm2 EL→I = −80mV

gleak,M = 2mS/cm2 Eleak,M = 10mV ḡAB→M = 15mS/cm2 EAB→M = −60mV

gs = 4mS/cm2 Eexc = 43mV ḡAB→I = .9mS/cm2 EAB→L = −60mV

VT = −30mV vx = −30mV kx= 4mV
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