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PARTITIONING SPARSE MATRICES FOR PARALLEL
PRECONDITIONED ITERATIVE METHODS∗
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Abstract. This paper addresses the parallelization of the preconditioned iterative methods
that use explicit preconditioners such as approximate inverses. Parallelizing a full step of these
methods requires the coefficient and preconditioner matrices to be well partitioned. We first show
that different methods impose different partitioning requirements for the matrices. Then we develop
hypergraph models to meet those requirements. In particular, we develop models that enable us
to obtain partitionings on the coefficient and preconditioner matrices simultaneously. Experiments
on a set of unsymmetric sparse matrices show that the proposed models yield effective partitioning
results. A parallel implementation of the right preconditioned BiCGStab method on a PC cluster
verifies that the theoretical gains obtained by the models hold in practice.
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1. Introduction. We consider the parallelization of the preconditioned itera-
tive methods that use explicit preconditioners such as approximate inverses or fac-
tored approximate inverses. Our objective is to develop methods for obtaining one-
dimensional (1D) partitions on a coefficient matrix and a preconditioner matrix or
factors of a preconditioner matrix simultaneously to efficiently parallelize a full step
of the preconditioned iterative methods. We assume preconditioner matrices or their
sparsity patterns are available beforehand. It has been shown that the rates of conver-
gence of iterative methods depend on the partitioning method when the precondition-
ers are built from partitioned coefficient matrices [26]. With the above assumption in
mind, we neither deteriorate nor improve the effects of the selected preconditioners on
the rate of convergence. Our assumption is justified in applications where the precon-
ditioner matrices can be reused; see, for example, [12] and a discussion of it in [10]. The
assumption is also justified in the preconditioner constructing methods that require a
priori sparsity patterns for the preconditioner matrices [44, 45], where techniques to
develop effective sparsity patterns already exist in the literature [23, 24, 39].

Approximate inverse preconditioning techniques explicitly compute and store a
sparse matrix M ≈ A−1 to be used as a preconditioner. Application of such pre-
conditioners requires one or two matrix-vector multiply operations. Two types of
approximate inverses exist in the literature. In the first type, an approximate inverse
is stored as a single matrix, whereas in the second type it is stored as a product of two
matrices. The second type of preconditioners are referred to as factored approximate
inverses. Among the most notable approximate inverse preconditioners are AINV
and its variants by Benzi et al. [5, 6, 7, 8]; SPAI by Grote and Huckle [33]; FSAI by
Kolotilina and Yeremin [44, 45]; and MR by Chow and Saad [25]. See [4, 9, 31] for
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1684 BORA UÇAR AND CEVDET AYKANAT

a recent survey and the use of the approximate inverse preconditioning techniques.
See [48, 52] for a general treatment of the preconditioning techniques.

Hendrickson and Kolda [36] give a thorough survey of the graph partitioning
models used for partitioning sparse matrices. In these models, a K-way partition of
the vertices of a given graph or hypergraph is computed. The partitioning constraint
is to maintain a balance criterion on the number of vertices in each part; if the vertices
are weighted, then the constraint is to maintain a balance criterion on the sum of the
vertex weights in each part. The partitioning objective is to minimize the cutsize
of the partition defined over the edges or hyperedges. The partitioning constraint
and objective relate, respectively, to maintaining computational load balance and
minimizing the total communication volume. Among those models, the hypergraph
models by Aykanat, Pınar, and Çatalyürek [2], Çatalyürek and Aykanat [17, 18], and
Pınar et al. [49] and the bipartite graph model by Hendrickson and Kolda [37, 43]
are said to have more expressive power than the other models [18, 34, 36, 37]. These
models have the flexibility of producing unsymmetric partitions on the input and
output vectors of the sparse matrix-vector multiplies. A distinct advantage of the
hypergraph models over both the standard graph and the bipartite graph models
is that the partitioning objective in the hypergraph models is an exact measure of
the total communication volume, whereas the objective in the graph models is an
approximation [18, 34, 36, 37]. As noted in the survey [36] and in [34], all these
graph and hypergraph models, except the bipartite graph model, are used to optimize
a single sparse matrix-vector multiply operation. However, a single sparse matrix-
vector multiply operation is only a piece of a larger computation in the preconditioned
iterative methods. Therefore, new partitioning models that optimize a full step of
these iterative methods are needed—this was also stated by Hendrickson [34].

Optimizing a full step of the preconditioned iterative methods requires partition-
ing the coefficient and preconditioner matrices. This problem has been formulated in
terms of bipartite graph partitioning [37]. In the bipartite graph model, each vertex
in one part represents a row of A and a column of M , and each vertex in the other
part represents a column of A and a row of M . There is an edge between two vertices
if the corresponding entries in A or M are nonzero. Partitioning this bipartite graph
produces unsymmetric partitions on A and M , where the row partition of A and the
column partition of M are the same, and the column partition of A and the row parti-
tion of M are the same. The formulation is based on the cut edges and hence does not
capture the total communication volume exactly. The multiphase mesh partitioning
method of Walshaw et al. [47, 64] and multiconstraint/multiobjective graph partition-
ing methods of Karypis et al. [41, 53] address the partitioning problem in scientific
computations whose computational structures are similar to that of preconditioned
iterative methods. These models can be used to partition a graph corresponding to
the sparsity pattern of the matrix A+M to find a single partition for both of the ma-
trices. Partitioning such a graph will produce symmetric partition on the coefficient
and preconditioner matrices.

In this work, we propose methods to build composite hypergraph models for
preconditioned iterative methods from simple hypergraph models for a single matrix-
vector multiply [18]. We show how to use the composite models to obtain 1D partitions
on a matrix and its approximate inverse preconditioners for optimizing a full step
of the preconditioned iterative methods. The composite hypergraph models encode
the total communication volume exactly, can handle unsymmetric dependencies, and
can produce unsymmetric partitions. Furthermore, they are more powerful than the
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bipartite graph model in the sense that they can produce a variety of partitions on
the matrices. For example, given two matrices A and M , it is possible to obtain a
symmetric partition on A and a unsymmetric partition on M while optimizing a full
step of a preconditioned iterative method.

We review simple hypergraph models which are the building blocks of composite
models in section 2. We discuss a procedure to analyze iterative methods in order to
determine partitioning requirements for efficient parallelization and illustrate the pro-
cedure on a well-known iterative method in section 3. The partitioning requirements
of a number of widely used iterative methods are also given in the same section. We
propose methods to build composite hypergraph models for meeting the partition-
ing requirements in the preconditioned iterative methods in section 4. We discuss
the applicability of the composite hypergraph models to a few additional scientific
applications in section 5. The proposed methods are evaluated in section 6.

2. Preliminaries. The kernel operations in the iterative methods that use app-
roximate inverse preconditioners are matrix-vector multiplies with both coefficient
and preconditioner matrices. These multiply operations are performed on vectors
that are dependent on each other through linear vector operations. For example, the
computations of the form y ← AMz are performed as x ← Mz and then y ← Ax.
If the partition on the x vector for the first multiply operation is different from that
for the second multiply operation, then the x-vector entries should be reordered in
between the two multiplies. Since the reordering requires communication, it should
be avoided. In order to avoid this reordering operation, there should be only one
partition on the intermediate vector x, and the partition should be helpful for both of
the parallel multiply operations. We call the problem of finding partitions on two or
more matrices in such a way that the common vectors are not reordered in a parallel
implementation the simultaneous partitioning problem.

2.1. Parallel multiplies. Given a K-way rowwise partition on a matrix A, a
conformable partition on the output vector, and a possibly different K-way parti-
tion on the input vector of a matrix-vector multiply operation, the matrix A can be
permuted into a block structure:

(2.1) PAQ = ABL =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK

⎤
⎥⎥⎥⎦ .

Here, K is the number of processor and P and Q are permutation matrices. The
partition on the rows of A is used to define the permutation P by permuting the rows
belonging to processor Pk before those belonging to P� for k < �. The partition on
the input vector is used to define the permutation Q by permuting the columns cor-
responding to the vector entries belonging to processor Pk before those corresponding
to the vector entries belonging to P� for k < �. In either of the permutations, the
order of the rows or columns associated with a common processor can be arbitrary.

Similarly, given a K-way columnwise partition on A, a conformable partition on
the input vector, and a K-way partition on the output vector among K processors,
the matrix A again can be permuted into a K×K block structure PAQ = ABL (2.1).
Here, P is defined using the partition on the output vector, and Q is defined using
the partition on the matrix columns (and input vector).

Let A be of size m × n. Then the block Ak� in (2.1) is of size mk×n�, where
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∑
k mk =m and

∑
� n�=n. In a rowwise partitioning, the processor Pk holds the kth

row stripe [Ak1 · · ·AkK ] of size mk×n. In a columnwise partitioning, Pk holds the
kth column stripe [AT

1k · · ·AT
Kk]

T of size m×nk. In the rowwise partitioning, the row
stripes should have a nearly equal number of nonzeros for maintaining computational
load balance among processors. The same requirement exists for the column stripes
in the columnwise partitioning.

2.1.1. Row-parallel multiplies. Consider matrix-vector multiplies of the form
y←Ax, where A is partitioned rowwise. The rowwise partition of matrix A induces
a partition on the output vector y, i.e., y = [yT1 · · · yTK ]T , where the processor Pk is
set to be responsible for computing the subvector yk of size mk. According to the
partition on the input vector x= [xT

1 · · ·xT
K ]T , the processor Pk holds the subvector

xk of size nk. Assume the matrix A has been permuted into the block structure (2.1)
using these partitions. Then the row-parallel y←Ax executes the following steps at
processor Pk [37, 57, 59, 61]:

1. For each nonzero off-diagonal block A�k, send sparse vector x̂�
k to processor

P�, where x̂�
k contains only those entries of xk corresponding to the nonzero

columns in A�k.
2. Compute the diagonal block product ykk =Akk×xk, and set yk =ykk .
3. For each nonzero off-diagonal block Ak�, receive x̂k

� from processor P�, then
compute y�k =Ak�×x̂k

� , and update yk =yk+y�k.
In step 1, Pk might be sending the same xk-vector entry to different processors ac-
cording to the sparsity pattern of column k of A. This multicast-like operation is
referred to here as the expand operation.

2.1.2. Column-parallel multiplies. Consider matrix-vector multiplies of the
form w ← Az, where A is partitioned columnwise. The columnwise partition of A
induces a partition on the input vector z, i.e., z = [zT1 · · · zTK ]T , where the processor
Pk holds the subvector zk of size nk. According to the partition on the output vector
w=[wT

1 · · ·wT
K ]T , the processor Pk is set to be responsible for computing the subvector

wk of size mk. Assume the matrix A has been permuted into the block structure (2.1)
using these partitions. Then the column-parallel w←Az executes the following steps
at processor Pk:

1. For each nonzero off-diagonal block A�k, form sparse vector ŵk
� , which con-

tains only those results of wk
� =A�k×zk corresponding to the nonzero rows in

A�k. Send ŵk
� to processor P�.

2. Compute the diagonal block product wk
k =Akk×zk, and set wk =wk

k .
3. For each nonzero off-diagonal block Ak� receive partial-result vector ŵ�

k from
processor P�, and update wk =wk+ŵ�

k.
In step 3, the multinode accumulation on the wk-vector entries is referred to here as
the fold operation.

2.2. Hypergraph partitioning. A hypergraph H = (V,N ) is defined as a set
of vertices V and a set of nets N . Every net is a subset of vertices. The vertices of
a net are also called its pins. The size of a net ni is equal to the number of its pins,
i.e., |ni|. The set of nets that contain vertex vj is denoted by Nets(vj). Weights can
be associated with vertices.

Given a hypergraph H = (V,N ), Π = {V1, . . . ,VK} is called a K-way partition
of the vertex set V if each part is nonempty, i.e., Vk �= ∅ for 1 ≤ k ≤ K; parts are
pairwise disjoint, i.e., Vk ∩ V� = ∅ for 1 ≤ k < � ≤ K; and the union of parts gives
V, i.e.,

⋃
k Vk = V. In Π, a net is said to connect a part if it has at least one pin
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in that part. The connectivity set Λi of a net ni is the set of parts connected by ni.
The connectivity λi = |Λi| of a net ni is the number of parts connected by ni. A net
is said to be cut if it connects more than one part and uncut otherwise. The set of
cut and uncut nets is also referred to as external and internal nets, respectively. In
Π, the weight of a part is the sum of the weights of vertices in that part.

In the hypergraph partitioning problem, the objective is to minimize the cutsize:

(2.2) cutsize(Π) =
∑
ni∈N

(λi − 1).

This objective function is widely used in the VLSI community [46] and in the scientific
computing community [2, 18, 59], and it is referred to as the connectivity-1 cutsize
metric. The partitioning constraint is to satisfy a balancing constraint on part weights:

(2.3)
Wmax −Wavg

Wavg
≤ ε.

Here Wmax is the maximum part weight, Wavg is the average part weight, and ε is a
predetermined imbalance ratio. This problem is NP-hard [46].

A recent variant of the above problem is the multiconstraint hypergraph parti-
tioning [16, 20, 42] in which each vertex has a vector of weights associated with it. In
this problem, the partitioning objective is the same as in (2.2), and the partitioning
constraint is to satisfy a balancing constraint associated with each weight. Another
variant is the multiobjective hypergraph partitioning [1, 53, 55], in which there are
several objectives to be minimized. Specifically, a given net contributes different costs
to different objectives.

2.3. Hypergraph models for row-parallel and column-parallel multi-
plies. It is inherent in the parallel matrix-vector multiply algorithms given in section
2.1 and existent in the literature [18, 36, 37, 59] that in partitioning a matrix the key
is to find permutation matrices P and Q such that most of the nonzeros of the matrix
PAQ = ABL (2.1) are in the diagonal blocks. Here, we propose a slight enhancement
of the computational hypergraph models [18] to find permutation matrices P and Q.
The proposed enhancement is to add a new set of vertices into the column-net and
row-net hypergraph models.

In the column-net hypergraph model, an m×n matrix A is represented as a hy-
pergraph H = (VR,NC) for rowwise partitioning. Vertex and net sets, VR and NC ,
correspond to the rows and columns of A, respectively. There exist one vertex ri and
one net cj for each row i and column j, respectively. In this model, ri ∈ cj if and
only if aij �= 0. The proposed enhancement is to add n new vertices each representing
an input-vector entry of the y ← Ax multiply. Each new vertex xj is added to the
net cj , i.e., cj = cj ∪ {xj} and Nets(xj) = {cj}. Each vertex ri corresponds to the
task of computing the inner product of the row i with the column vector x. Hence,
the computational weight associated with the vertex ri is equal to the number of
nonzeros in row i. Each row vertex ri also represents the vector entry yi. Weights
can be assigned to the vertices in regard to the vector entries. For example, a unit
weight may be assigned to the vertex xj for the corresponding vector entry, and a
unit weight may be assigned to the vertex ri for the vector entry yi. These weights
can be used in a multiconstraint formulation to balance the linear vector operations.

Figure 2.1 shows a sample matrix and its column-net hypergraph model enhanced
with the x vertices. In the figure, the white and black circles represent, respectively,
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Fig. 2.1. Matrix A, enhanced column-net hypergraph model for row-parallel y ← Ax, and a
four-way rowwise partitioning.

the vertices and nets of the original column-net hypergraph model [18], and straight
lines show pins. The newly added vertices are shown with gray circles. A four-way
partition is shown by four big circles encompassing the vertices of the hypergraph.

Given a partition Π on H, the permutations P and Q can be found as follows.
The permutation P is partially defined by the partition on the row vertices. The rows
corresponding to the row vertices in Vk are mapped to processor Pk and therefore
permuted before the rows corresponding to the row vertices in V� for 1 ≤ k < � ≤
K. In Figure 2.1, the permutation of the rows of A is shown by the permuted row
indices, where the horizontal solid lines separate row stripes that belong to different
processors. The permutation of the rows in the same row stripe can be arbitrary. The
permutation Q is partially defined by the partition on the x vertices. The x-vector
entries corresponding to the x vertices in Vk are mapped to processor Pk, and therefore
the associated columns are permuted before the columns that are associated with the
x vertices in V� for 1 ≤ k < � ≤ K. Figure 2.1 shows the permutation on the columns
of A, where the vertical dashed lines separate virtual column stripes that are aligned
with the x-vector entries belonging to different processors. Again, the permutation
of the columns within the same column stripe can be arbitrary. In the figure, the
processor P2 is set to be responsible for computing the inner products of x with the
rows in the second row stripe, i.e., the rows 4, 9, and 12. P2 holds x4, x5, x7, x9, and
x16 and thus expands x5 to the processors P1 and P4. Observe that the net c5 connects
the parts P1, P2, and P4. This association between the connectivity of nets and the
communication requirements is not accidental, as shown by the following theorem.

Theorem 2.1. Let Π be a partition on the enhanced column-net hypergraph model
of a given matrix A, and let P and Q be the row and column permutations induced by
the partition Π. Then the cutsize of the partition Π quantifies the total communication
volume in the row-parallel y ← Ax multiply.

Proof. Consider an internal net ci. Since the net is not cut, the row vertices that
need xi should be in the part that contains the vertex xi. Hence, no communication
occurs for the x-vector entries associated with the internal nets. Consider an external
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Fig. 2.2. Matrix A, enhanced row-net hypergraph model for column-parallel w ← Az, and a
four-way columnwise partitioning.

net ne with the connectivity set Λe. The processors corresponding to the parts in the
set Λe need xe. One of them owns xe, since xe ∈ ne. The owner should send xe to the
others. That is, for each xe there are a total of |Λe| − 1 = λe − 1 messages carrying
xe. The overall sum of these quantities matches the cutsize definition (2.2).

With similar reasoning, it is concluded in [18] that the hypergraph partitioning
objective and constraint correspond, respectively, to minimizing the total communi-
cation volume and maintaining the computational load balance. In Figure 2.1, the
cutsize and hence the total communication volume is five units, and the part weights
and hence the computational loads of the processors are 12, 12, 11, and 11.

The row-net hypergraph model [18] can be enhanced by adding m new vertices,
each representing a w-vector entry to find the permutation matrices P and Q for the
column-parallel w ← Az multiplies. Recall that in the row-net model H = (VC ,NR),
the vertices and nets represent the columns and rows of A, respectively. In this
model, ci ∈ rj if and only if aji �= 0. Each new wi vertex is added to the net ri,
i.e., ri = ri ∪ {wi} and Nets(wi) = {ri}. Upon partitioning the enhanced row-net
hypergraph model, we use the partition on the w vertices and the partition on the
column vertices to find the permutation matrices P and Q, respectively, with a pro-
cedure similar to that discussed for the column-net model. Figure 2.2 shows a sample
matrix and its enhanced row-net hypergraph model. The column stripes determine
the computational loads of processors. The virtual row stripes are defined by the
partition on the w vertices and therefore designate the processors’ responsibilities on
folding the w-vector entries. For example, in Figure 2.2, the processor P2 is set to be
responsible for folding the w-vector entries that correspond to the rows in the second
virtual row stripe. Therefore, the processors P1 and P4 have to send their contribu-
tions for w4 to P2. Again, there is the same association between the connectivity of
the nets and the total communication volume. In the figure, the cutsize and hence
the total communication volume is five units.

3. Determining partitioning requirements. In iterative methods, all vectors
that participate in a linear vector operation should be partitioned conformally in order
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to avoid the communication of the vector entries during the operation. To obtain
such conformable partitions, we classify the vectors according to their relations to the
inputs and outputs of the matrix-vector multiplies. In particular, we call a vector to
be in the input space of a matrix A if it is multiplied by A or it undergoes linear vector
operations with other vectors in the input space of A. Accordingly, we call a vector
to be in the output space of a matrix A if it is obtained by multiplying A with another
vector or it undergoes linear vector operations with other vectors in the output space
of A. For example, in the y←Ax multiply, the y vector is in the output space of A,
whereas x is in the input space of A.

In some iterative methods, e.g., conjugate gradients [30], the input space and
output space of the A matrix coincide; i.e., the input-space vectors undergo linear
vector operations with the output-space vectors. Such methods require a symmetric
partition PAPT in which all vectors are partitioned conformally with the permutation
P . In some other methods, the input space and output space of A differ. Such methods
allow unsymmetric partition PAQ in which all output-space vectors are partitioned
conformally with P , whereas all input-space vectors are partitioned conformally with
Q. If the method involves more than one multiply with different matrices, the output
space of one matrix may coincide with the input space of another one. In this case,
the output-space permutation for the first one becomes an input-space permutation
for the other one.

All vectors in a full step of an iterative algorithm should be analyzed in terms of
their relations to the input and output spaces of all matrices to determine the par-
titioning requirements. We analyze the right preconditioned BiCGStab1 method [62]
given in Figure 3.1 and determine its partitioning requirements as an example. There
are ten vectors in the method: r, b, r̃, x, p, v, p̂, s, ŝ, and t. Because of the linear
vector operations in lines 1, 2, 4, 7, 10, 14, 15, 19, 20, and 21, the vectors r, b, r̃, p,
v, s, t, and x should be partitioned conformally. All these vectors are in the output
space of A because of the matrix-vector multiplies in lines 13 and 18. We are left
with the vectors p̂ and ŝ. Because of the matrix-vector multiplies in lines 13 and 18,
these two are in the input space of A, and thus can have a different partition Q. Since
we have completed the classification of vectors, we can determine the partitioning
requirements for A and M . The input and output spaces of A differ. Therefore,
the partitioning requirement for the A matrix is PAQ. The vectors p̂ and ŝ are in
the output space of M because of the matrix-vector multiplies in lines 12 and 17.
Therefore, the output space of M coincides with the input space of A. Similarly, the
input space of M coincides with the output space of A because of the vectors p and
s. Therefore, the partitioning requirement for the M matrix is QTMPT . The overall
requirement is thus PAQ and QTMPT . We express this requirement as PAMPT to
simplify the notation.

We examined a number of widely used preconditioned iterative methods whose
codes are given in the literature. We noticed that different methods have different
partitioning requirements, as shown in Table 3.1. Several caveats are necessary for
the table to be useful.

1. We analyze the methods in their original form as given in the references; i.e.,
we do not consider any type of code optimizations for performance gains.

1Note that the given code works with preconditioned x vector; i.e., the solution vector x obtained
at the termination is a solution to AMx = b. That is, in order to get a solution to Ax = b we have
to multiply x with the approximate inverse preconditioner M at the termination. However, using p̂
and ŝ instead of p and s in lines 20 and 16 would yield the solution to Ax = b as given in [3]. In this
case, the analysis would yield different classification of vectors.
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BiCGStab(A,M, x, b)#Solve Ax = b using the right preconditioner M
begin

(1) r(0) = b−AMx(0) for some initial x(0) = x

(2) r̃ = r(0)

(3) for i = 1, 2, . . . do

(4) ρi−1 = r̃T r(i−1)

(5) if ρi−1 = 0 method fails
(6) if i = 1

(7) p(i) = r(i−1)

(8) else
(9) βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

(10) p(i) = r(i−1) + βi−1

(
p(i−1) − ωi−1v

(i−1)
)

(11) endif

(12) p̂ = Mp(i)

(13) v(i) = Ap̂

(14) αi = ρi−1/r̃
T v(i)

(15) s = r(i−1) − αiv
(i)

(16) check norm of s; if small enough; set x(i) = x(i−1) + αip
(i) and stop

(17) ŝ = Ms
(18) t = Aŝ
(19) ωi = tT s/tT t

(20) x(i) = x(i−1) + αip
(i) + ωis

(21) r(i) = s− ωit
(22) check convergence; continue if necessary
(23) for continuation it is necessary that ωi �= 0
(24) endfor
end

Fig. 3.1. Preconditioned BiCGStab using the approximate inverse M as a right preconditioner.

Table 3.1

Iterative methods and partitioning requirements.

Method Partitioning Number of distinct
requirement vector partitions

BiCGStab right precond. [3, 33] PAMPT 2
BiCGStab right factor. precond. [3] PAM1M2PT 3

symmetric GMRES right precond. [21] PAPT –PMPT 1
GMRES right precond. [52] PAMPT 2
GMRES left precond. [52] PMAPT 2

TFQMR symmetric precond [29] PAPT –PM2M1PT 2
TFQMR original form [28] PM1AM2PT 3

CGNE [52] PAQ–PMPT 2

CGNR [52] QAPT –PMPT 2

CGS right precond. [3] PAMPT 2

PCG [3, 30, 45] PAPT –PMMTPT 2
PAPT –PMPT 2
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2. If two matrices are written consecutively in a partitioning requirement, then
the two matrix-vector multiplies involving these matrices follow each other without
any interleaving synchronization. For example, in the PAMPT case, the input space
of A and the output space of M coincide. In other words, there is an arbitrary
permutation matrix and its transpose in between the two matrices which designates
a distinct vector partition. Therefore, PAMPT means unsymmetric partitions PAQ
for A and QTMPT for M . We write the number of distinct vector partitions for each
method in the rightmost column of Table 3.1.

3. Listing two partitioning requirements separated by “–” means that there is at
least one synchronization point between the two matrix-vector multiplies. Therefore,
we distinguish the partitioning requirement PAPT and PMPT from PAPT –PMPT .
The first one states only that the output spaces of the matrices coincide with the
input spaces of the matrices. The second partitioning requirement further states that
the two matrix-vector multiplies are interleaved with synchronizations.

4. Factored approximate inverse M1M2 can be used (the table contains such
an example for BiCGStab) instead of M by just writing the factors consecutively in
place of M to determine their partitioning requirement. For example, the use of a
factored approximate inverse in the right preconditioned CGNE necessitates PAQ–
PM1M2P

T , which in turn gives the requirements PAQ, PM1R, and RTM2P
T .

5. The given requirements are independent of the dimensions along which the
matrices are partitioned. That is, matrices can be partitioned rowwise or columnwise,
whichever is preferable.

In choosing a partitioning dimension, three issues should be considered. The first
issue is the individual matrix characteristics, i.e., the number of nonzeros per row and
column. If, for example, a matrix has dense rows but no dense columns, then it is
advisable to partition it along the columns [37]. This choice will more likely lead to
reduced communication volume and better computational load balance compared to
partitioning along the rows [37].

The second issue in choosing a partitioning dimension is the relation between
the partitioning requirement and the set of concurrent tasks to be partitioned. For
example, in the PAMPT case, we have four partitioning choices for the pair of A
(of size m × n) and M (of size n × m) matrices: rowwise-rowwise (RR), rowwise-
columnwise (RC), columnwise-rowwise (CR), and columnwise-columnwise (CC). In
the RR scheme, the partitioning determines the output-space permutation for the two
matrices. Since the output spaces of the two matrices differ, there are a total of m+n
tasks, each representing computations involving either A or M . In the CC scheme, the
partitioning determines the input-space permutation. Since the input spaces differ,
there are a total of n + m tasks, each representing computations involving either A
or M . In the RC and CR schemes, the partition determines the permutation for
the coinciding input and output spaces. Therefore, in the RC and CR schemes, the
number of tasks reduces to m and n, respectively, each representing computations
involving both A and M . In any reasonable task partitioning for the RC and CR
schemes, each processor is guaranteed to take part in both of the multiplies. Therefore,
these two schemes may lead to more efficient parallel algorithms.

The third issue is the arrangement of computations and communications. Con-
sider the partitioning requirement of PAMPT for the multiplies of the form y ←
AMz, which are performed as x ← Mz and then y ← Ax. For each multiply, there
exists an expand or a fold communication operation. The partitioning dimension
determines whether these communications take place before or after the local com-
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putations. In the RC partitioning scheme, the fold and expand operations take place
successively in between the two multiplies. There are dependencies between these two
communication operations; before expanding a particular x-vector entry it should be
folded. Because of these dependencies, the successive fold and expand operations
are likely to incur a local synchronization point which separates the two multiplies.
Consequently, processor loads should be balanced for the individual matrix-vector
multiplies in the RC scheme. The RR and CC schemes have either an expand or a
fold in between the two multiply operations. Although such communications do not
incur synchronization points under the assumption that each processor has enough
local computation which overlaps with the incoming messages, it is advisable to bal-
ance processors’ loads for the individual matrix-vector multiplies when the matrices
have a comparable number of nonzeros. The CR scheme is unique in that the two mul-
tiply operations are performed successively without any interleaving communication.
Therefore, processor loads may be balanced for the overall computation y ← AMz.

4. Building composite hypergraph models. We combine enhanced hyper-
graph models of the matrix-vector multiplies with the coefficient matrix A and the
preconditioner matrix M or its factors M1 and M2 into a composite hypergraph whose
partitioning meets the requirements given in section 3. We define two operations to
combine the enhanced hypergraph models. These are called vertex amalgamation
and vertex weighting. The first operation is used to enforce identical partitions on
the vertices of the individual hypergraphs. The second operation is used to enable
load balancing. The key point in combining a number of hypergraphs is to preserve
the identities of the nets of the individual hypergraphs.

In the following discussion, we assume that A is to be partitioned rowwise and
M is assumed to be partitioned columnwise. In the factored case, where M = M1M2,
M1 is to be partitioned columnwise, and M2 is to be partitioned rowwise. That
is, we have the enhanced column-net hypergraphs for A and M2 and the enhanced
row-net hypergraph for M1. As discussed in section 2.3, weights can be associated
with the vertices in reference to the vector entries. However, we do not use weights
for the vector entries and show only the weights corresponding to the matrix rows or
columns to simplify the discussion. Figure 4.1 shows portions of the enhanced column-
net hypergraph model for y ← Ax and the enhanced row-net hypergraph model for
w ← Mz. These portions will be used while building composite hypergraph models.

Vertex amalgamation. In this operation, the vertices of the individual hyper-
graphs are combined into a single vertex. The net set of the resulting composite vertex
is set to the union of the nets of the constituent vertices. For example, in the PAMPT

case for the operations w ← Mz and y ← Ax, we amalgamate the row-vertex ri(A)
with the column-vertex ci(M) into vi so that Nets(vi) = Nets (ri(A)) ∪Nets(ci(M)).
Furthermore, we amalgamate the vertex xi with the vertex wi to avoid a vector
reordering operation. Figure 4.2(a) shows a portion of the resulting composite hyper-
graph. In a partition of the composite hypergraph, a row or a column vertex vi being
in a part Vk shows that the processor Pk is responsible for performing multiplications
with the ith row or ith column of the matrices. Similarly, a vector-entry vertex xi

being in a part Vk shows that the processor Pk is responsible for folding or expanding
xi. Figures 4.2(b) to 4.2(d) show portions of the composite hypergraph models built
using a vertex amalgamation operation for some other partitioning requirements from
Table 3.1.
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Fig. 4.1. Portions of enhanced hypergraph models for (a) row-parallel y ← Ax, (b) column-
parallel w ← Mz. We use ci(·) and ri(·) to represent, respectively, the ith column and ith row of
the matrices; |ci(·)| and |ri(·)| to represent the number of nonzero elements in the ith column and
row, respectively; and 〈·, ·〉 to represent the weight(s) of a vertex. The nets are labeled with a single
ri(·) or a single ci(·).
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(c) PAPT –PM1M2P
T (d) PAQ–PTMP

Fig. 4.2. Composite hypergraph models for different partitioning requirements. The computa-
tions to be carried out are y ← Ax, w ← Mz, w ← M1z, and t ← M2u.

Vertex weighting. This operation is used to enable load balancing. Remem-
ber that in some of the iterative methods there are synchronization points between
different matrix-vector multiplies. That is, computations occur in phases. There-
fore, we define multiple weights for vertices—one for each computation phase—and
use a multiconstraint formulation to obtain load balance for each computation phase.
For a certain phase, the weight of a vertex is set to the weight of the constituent
vertex in the hypergraph of the matrix associated with that phase. In case the ver-
tices of the simple hypergraphs bear weights for the vector entries, another weight
component should be defined to account for those weights. Consider right precon-
ditioned symmetric-GMRES [21] and its partitioning requirement PAPT –PMPT

which designates w ← Mz and y ← Ax, where all vectors are to be partitioned
conformally. As seen in Figure 4.2(b), we apply vertex amalgamation to the vertices
xi and wi. Since symmetric partitions are required for both of the multiplies, we
also amalgamate the row-vertex ri(A) and the column-vertex ci(M) with the ver-
tex composed of xi and wi. The vertex in Figure 4.2(b) has two weights, since
the multiplies with A and M occur in different phases. The first weight repre-
sents the computational load associated with the ith row of A, i.e., |ri(A)|. The
second weight represents the computational load associated with the ith column of
M , i.e., |ci(M)|. In some cases, different matrix-vector multiplies occur successively
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without any interleaving synchronization. In these cases, the weight of a compos-
ite vertex is set to the sum of the weights of its constituent vertices. Consider
the TFQMR method using symmetric preconditioning and its partitioning require-
ment PAPT –PM1M2P

T . Since M1 and M2 are partitioned columnwise and row-
wise, respectively, there is no synchronization between the respective matrix-vector
multiplies. Therefore, the weights of ci(M1) and ri(M2) are added up as seen in
Figure 4.2(c).

Note that partitioning a composite hypergraph results in partitioning the co-
efficient and preconditioner matrices simultaneously, since the vertices of the com-
posite hypergraph cover the rows or columns of each matrix. Given a partition
on the composite hypergraph, we obtain a rowwise or columnwise partition and
row and column permutations for each matrix by using the partitions on the ver-
tices pertaining to the respective matrix-vector multiply operation. For example,
when a matrix A is to be partitioned rowwise, we use the partition on the com-
posite vertices that contain the rows of A to obtain both a rowwise partition on
A and a row permutation, and we use the partition on the composite vertices that
contain the input vector entries to obtain a column permutation. Having defined
the row and column permutations for each matrix, we obtain the following theo-
rem.

Theorem 4.1. The cutsize of a partition in a composite hypergraph formed by
applying the vertex amalgamation operation on the enhanced hypergraph representa-
tions of a number of matrices quantifies the total volume of communication in the
respective sparse matrix-vector multiplies.

Proof. The proof follows easily by using the same arguments stated in the proof
of Theorem 2.1 under the following observations. First, the identities of the nets
are preserved while building the composite models. Second, each vertex of a net
contains at least one vertex of the original enhanced hypergraph model. Third, the
connectivity of a net can be calculated by using only the vertices of the respective
enhanced hypergraph model.

Illustration. Consider the right preconditioned BiCGStab method and its par-
titioning requirement PAMPT obtained in section 3. Let A and M be the matrices
shown in Figures 2.2 and 2.1, respectively. Suppose that A is to be partitioned
columnwise and M is to be partitioned rowwise. We generate the enhanced row- and
column-net hypergraph models of A and M , respectively, as shown in Figures 2.2
and 2.1. The partitioning requirement imposes identical partitions on the columns of
A and rows of M . Hence, we amalgamate the vertices ci(A) and ri(M). The method
has no synchronization point between the two multiplies, and the separated expand
and fold operations do not cause synchronization. Therefore, we add the weights of
the vertices ci(A) and ri(M). Since the partitioning requirement imposes identical
partitions on the output vector y of the first multiply (y ← Ax) and the input vector
z of the second multiply (w ← Mz), we apply vertex amalgamation to the vertices
yi and zi. A 4-way partition of the resulting hypergraph is shown in Figure 4.3(a).
In order to distinguish the nets, the source matrix names are written next to them.
The pins of the internal nets are not shown for the sake of clarity. The permuta-
tions on the matrices induced by the composite hypergraph partitioning are shown
in Figure 4.3(b). Note that the resulting partitions and permutations are identical
to those shown in Figures 2.2 and 2.1. As seen from Figure 4.3(a), the cutsize is
10, and hence the total volume of communication is 10 units, where each multiply
contributes 5.
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Fig. 4.3. (a) A composite hypergraph formed by combining the enhanced row-net hypergraph of
A and the enhanced column-net hypergraph of M for the computations y ← Ax and w ← Mz and
a partition which meets the requirement PAMPT . The pins of the internal nets and the weights of
the vertices are not shown. (b) A columnwise partition of A and a rowwise partition of M induced
by the partition on the vertices of the composite hypergraph.
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5. Further notes.

5.1. Investigations on composite models. In the enhanced hypergraph mod-
el, the partition on the vertices corresponding to the vector entries are used to obtain
permutation matrices. In the previous computational hypergraph models [18], each
net is mapped to a part in its connectivity set to obtain permutation matrices. The
freedom in mapping a net to one of the parts in its connectivity set has been exploited
to minimize communication cost metrics such as the total number of messages and
the maximum volume per processor defined in terms of sends [58, 59], and maximum
volume per processor [13, 63] defined in terms of both sends and receives. These works
achieve their goals by assigning the vector entries to processors upon partitioning the
matrix with the computational hypergraph models. In the enhanced hypergraph
model and the composite hypergraph model, the vertices that do not contain row or
column vertices can be reassigned with the same freedom. For example, the vertex
formed by xi and wi in Figure 4.2(a) and the vertex xi in Figure 4.2(d) can be
reassigned to optimize the aforementioned communication cost metrics.

5.2. Generalizations. The computational structure of the preconditioned iter-
ative methods is similar to that of a more general class of scientific computations,
including multiphase, multiphysics, and multimesh simulations.

In multiphase simulations, there are a number of computational phases separated
by global synchronization points. The existence of the global synchronizations neces-
sitates each phase to be load balanced individually. In our model, the multiple weights
associated with vertices can be used to achieve this goal as described in [41, 64].

In multiphysics simulations, a variety of materials and processes are analyzed
using different physics procedures. In these types of simulations, computational as
well as memory requirements are not uniform across the mesh [54]. For scalability
issues, processor loads should be balanced in terms of these two components. The
multiconstraint partitioning framework also addresses these problems [54].

In multimesh simulations, a number of grids with different discretization schemes
and with arbitrary overlaps are used. The existence of overlapping grid points neces-
sitates the simultaneous partitioning of the grids [54]. This simultaneous partitioning
should balance the computational loads of the processors and minimize the commu-
nication cost due to interactions within a grid as well as interactions among different
grids. The vertex amalgamation operation used in our models can be applied to
overlapped grid points to build a composite hypergraph. With the use of vertex
weighting operations, our models can be used to address the partitioning problem in
the multimesh computations. Although simultaneous partitioning seems to be more
adequate for these types of problems, independent partitioning is also possible (see,
for example, [51] for independent partitionings on a two-grid system).

In some contact/impact problems, there is a priori knowledge about the to-be-
contacting surfaces. The implementation in [38] uses this information to decompose
the underlying mesh among processors. The implementation uses the graph model
and adds edges between the to-be-contacting surface elements. Partitioning such a
graph using two constraints balances the loads of processors, both for the finite ele-
ment analysis and for the contact detection phases. The partitioning algorithm tries
to minimize the communication cost by minimizing the edge cut. By modeling the
interactions among the to-be-contacting surface elements with hypergraphs, we can
build a composite hypergraph to address these problems. However, the implementa-
tion in [38] is reported to be suffering from load imbalances and to be limited to a
small number of processors; see the comments on it in [50].
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In obtaining partitions for two or more computation phases interleaved with syn-
chronization points, our models lead to the minimization of the overall sum of the total
volume of communication in all phases. For the preconditioned iterative methods, this
approach will likely minimize the communication cost in one full step. However, in
more sophisticated simulations, the magnitude of the interactions in one phase may be
different from that of the interactions in another one. In such settings, minimizing the
total volume of communication in each phase separately may be advantageous [53].
This problem can be formulated as a multiobjective hypergraph partitioning prob-
lem [1, 53, 55] on the composite hypergraphs.

As discussed above, our models can be applied to the multiphase, multiphysics,
and multimesh computations but with certain limitations. The dependencies must
remain the same throughout the computations; our methods cannot be used, for
example, in adaptive mesh refinement. The weights assigned to elements, for load
balancing issues, should be static and available prior to the partitioning; our methods
cannot be used for applications whose computational requirements vary in time [35].
If, however, the computational requirements change gradually in time, then our meth-
ods can be used to repartition the load at certain time intervals. Some problems are
more suitable to geometric partitioning methods; contact detection without a priori
knowledge of the contacting surfaces, for example, should be performed on geometri-
cally close elements [14, 40, 50]. Our methods, in their current forms, will probably
be of little help in those problems. To be useful, the models should be enriched with
some geometric constructs, as is done in [40].

6. Experiments. We chose the right preconditioned BiCGStab method to eval-
uate the effectiveness of the proposed composite hypergraph partitioning approach.
We used a set of unsymmetric sparse matrices from the University of Florida Sparse
Matrix Collection [27]. Approximate inverse preconditioners were obtained using
SPAI version 3.0 [32]. Factored approximate inverses were obtained using AINV [11].
These two programs have parameters that affect the quality of the preconditioner
matrices. However, we set the parameters in such a way that the number of nonze-
ros of the approximate inverse or the total number of nonzeros of the factors of the
approximate inverse is at most twice and at least half the number of nonzeros of the
coefficient matrix. We adjusted the tolerance parameter eps, the number of nonzero
entries allowed per step mn, and the number of steps ns in SPAI. In AINV, we
adjusted the drop tolerance parameter τ . The properties of the matrices, approxi-
mate inverses, and factors of the approximate inverses are given in Table 6.1. In the
table, the coefficient matrices are listed with a suffix of A; the approximate inverse
matrices are listed with a suffix of M ; the factors of the approximate inverse matrices
are listed with suffixes of Z and W , where the approximate inverse is equivalent to
ZW . The hypergraphs were partitioned using PaToH [19] with default parameters.
The imbalance among processor loads is kept below 10% in all partitioning instances.
Throughout this section, we use the term “SPAI-matrices” to refer to a pair consist-
ing of a coefficient matrix and its approximate inverse preconditioner. Similarly, we
use “AINV-matrices” to refer to a triplet of coefficient matrix and the factors of its
approximate inverse preconditioner.

Since the partitioning tool PaToH incorporates randomized algorithms, it was
run 20 times starting from different random seeds for partitioning the hypergraphs.
Averages of the resulting communication volumes of these runs are displayed in the
following tables. PaToH is a fairly stable toolkit; the standard deviation of the total
communication volumes of the 20 runs is less than 4% of the mean for all hypergraphs
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Table 6.1

Properties of test matrices.

Number of Number of nonzeros

rows/cols Total Average Row Column

Matrix row/col min max min max

Zhao1-A 33861 166453 4.9 3 6 2 7

big-A 13209 91465 6.9 3 12 3 12

cage11-A 39082 559722 14.3 3 31 3 31

cage12-A 130228 2032536 15.6 5 33 5 33

epb2-A 25228 175027 6.9 3 87 3 87

epb3-A 84617 463625 5.5 3 6 3 7

mark3jac060-A 27449 170695 6.2 2 44 2 47

olafu-A 16146 1015156 62.9 24 89 24 89

stomach-A 213360 3021648 14.2 7 19 6 22

xenon1-A 48600 1181120 24.3 1 27 1 27

SPAI

Zhao1-M 33861 180988 5.3 1 11 1 16

big-M 13209 109088 8.3 2 22 1 21

cage11-M 39082 424708 10.9 2 51 2 21

cage12-M 130228 1444650 11.1 1 62 2 21

epb2-M 25228 244453 9.7 2 177 2 21

epb3-M 84617 532851 6.3 2 20 2 20

mark3jac060-M 27449 276586 10.1 1 37 1 21

olafu-M 16146 719873 44.6 5 114 4 46

stomach-M 213360 2910283 13.6 2 120 2 46

xenon1-M 48600 878143 18.1 1 35 1 21

AINV; M = ZW

Zhao1-Z 33861 179803 5.3 1 13 1 28

Zhao1-W 33861 57832 1.7 1 5 1 6

big-Z 13209 56302 4.3 1 11 1 13

big-W 13209 56314 4.3 1 13 1 11

cage11-Z 39082 302775 7.7 1 26 1 110

cage11-W 39082 299939 7.7 1 26 1 32

epb2-Z 25228 116161 4.6 1 13 1 22

epb2-W 25228 107620 4.3 1 36 1 19

(except Zhao1-W in Table 6.3, which has a negligible total communication volume).
Details of the communication patterns can be found in the accompanying report [60].

6.1. Composite versus simple hypergraph partitioning. Here we evaluate
two alternative approaches to partitioning composite hypergraphs. These alternative
approaches are based on partitioning simple hypergraphs, i.e., partitioning hyper-
graphs of a single matrix. The first alternative is to obtain independent partitions on
the matrices by partitioning the simple hypergraph models of the coefficient and the
preconditioner matrices independently. This approach requires vector reordering in
between the two matrix-vector multiplies. We discuss this alternative in section 6.1.1.
The second alternative is to obtain the same partition for the coefficient and precondi-
tioner matrices. For this purpose, we partition the coefficient matrices symmetrically
by rows or columns using hypergraph models and apply the resulting partitions to
the preconditioner matrices as well. This alternative avoids the vector reordering op-
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Table 6.2

Total communication volume for 64-way simple hypergraph (C/R and R/C) and composite
hypergraph (CR and RC) partitionings for SPAI-matrices. In simple hypergraph partitionings, A
and M are partitioned independently, and therefore vector entries are reordered in between the two
multiplies to meet the partitioning requirement.

C/R CR R/C RC

(simple) (composite) (simple) (composite)

Volume Volume Volume Volume

Matrix SpMxV Reorder SpMxV SpMxV Reorder SpMxV

Zhao1-A 11421 134307 13026 10811 135348 13734

Zhao1-M 9857 10809 11756 14551

big-A 3210 52150 3666 3215 52804 5453

big-M 3054 3562 5447 7610

cage11-A 58177 153366 63779 58272 151840 79052

cage11-M 32937 38714 42512 61304

cage12-A 185531 504816 207077 185191 510824 248253

cage12-M 98493 119287 122513 180128

epb2-A 5984 98523 6731 5527 100912 10610

epb2-M 5967 7215 7411 11694

epb3-A 5713 332064 8167 7250 333320 17911

epb3-M 6846 9759 7057 18512

mark3jac060-A 13331 108209 17447 12676 109780 19503

mark3jac060-M 15567 18970 16563 21096

olafu-A 14012 63743 16743 13912 57372 23870

olafu-M 25137 29348 24735 36427

stomach-A 36800 837087 47689 37219 853440 77080

stomach-M 44232 57755 47965 89479

xenon1-A 26710 189847 29644 26669 178388 36044

xenon1-M 33597 40270 33241 46970

eration by partitioning all vectors conformally. Note that since we partition a single
matrix, a graph model could also be used. We discuss this alternative in section 6.1.2.

6.1.1. Simple hypergraph partitioning: Independent partitions on the
matrices. We have conducted experiments with the CR and RC partitionings of
SPAI-matrices where the first partition dimension corresponds to the matrix A and
the second to the matrix M . In the independent partitioning approach, we partition
the simple hypergraph models of the matrices A and M independently.

Table 6.2 displays the average communication volumes in the sparse matrix-vector
multiply (SpMxV) operations resulting from the composite and simple hypergraph
partitionings for 64-way partitioning of SPAI-matrices. The table also shows the vol-
ume of communication required to reorder the vector entries—in an iteration of the
BiCGStab method—when the matrices are partitioned independently. Suppose that
symmetric partitions PAPT and QMQT were obtained on the A and M matrices.
Then at each iteration we have to reorder p̂ and ŝ from Q to P after the matrix-vector
multiplies at lines 12 and 17 of the BiCGStab method (see Figure 3.1), respectively.
We also have to reorder v and t from P to Q before the vector update at line 15 and the
inner product at line 19, respectively. The volume of communication in the reordering
operation is given as the average of 20 different partitions of SPAI-matrices. In all of
the partitioning instances, the volume of communication in the reordering operation
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Table 6.3

Total communication volume for 64-way simple hypergraph (C/R/C and R/C/R) and composite
hypergraph (CRC and RCR) partitionings for AINV-matrices. In simple hypergraph partitionings,
A, Z, and W are partitioned independently, and therefore vector entries are reordered in between
the successive multiplies to meet the partitioning requirement.

C/R/C CRC R/C/R RCR

(simple) (composite) (simple) (composite)

Volume Volume Volume Volume

Matrix SpMxV Reorder SpMxV SpMxV Reorder SpMxV

Zhao1-A 11421 199423 15258 10811 199881 14977

Zhao1-Z 10808 12811 13580 17376

Zhao1-W 170 2494 377 4380

big-A 3210 77975 3730 3215 78077 3633

big-Z 1861 2262 1947 2314

big-W 1859 2305 1948 2325

cage11-A 58177 225147 65430 58272 226743 65052

cage11-Z 22023 28640 40428 48783

cage11-W 21676 27397 39731 48453

epb2-A 5984 148944 10313 5527 148830 10490

epb2-Z 2058 3967 2478 5672

epb2-W 1431 3786 1174 4935

itself is higher than that obtained by the simultaneous partitioning method. These
high volumes of communication and the associated message start-up overheads pro-
hibit the use of the independent partitioning method. For example, the independent
partitioning method incurs higher total communication volume than the proposed si-
multaneous partitioning method by an average ratio of 8.4 for 32-way CR partitioning
(see [60]). The average ratio in 64-way CR partitioning is 6.5. For RC partitioning,
the average ratios are 5.6 and 4.2 for 32- and 64-way partitionings, respectively.

Table 6.3 displays the averages of the communication volumes of the 64-way si-
multaneous and independent partitionings for AINV-matrices. In this table CRC
corresponds to the case where the A, Z, and W matrices are partitioned column-
wise, rowwise, and columnwise, respectively. Similarly, RCR corresponds to the case
where those matrices are partitioned rowwise, columnwise, and rowwise. With AINV
preconditioning, the independent partitioning method requires two additional vector-
reordering operations (due to the chains of matrix-vector multiplies at lines 12 and 17
of the BiCGStab method). For 64-way partitioning of AINV-matrices, the average
ratios of the communication volumes in the independent partitionings (including the
reordering cost) to those in the simultaneous partitionings is 7.2 for the CRC case and
6.5 for the RCR case. The average ratios for 32-way partitionings are 10.1 and 9.0
for the CRC and RCR cases, respectively (see [60]). As is clear from these numbers,
the independent partitioning approach is not feasible for the AINV-matrices as well.

Consider the difference between the total communication volumes of the compos-
ite and simple hypergraph partitionings (without the reordering cost). The increases
in the total communication volumes in the composite partitionings remain below 26%
of those in the simple partitionings, on average, for the 32-way CR partitioning in-
stances. The minimum and the maximum of these increases are 13% (Zhao1) and 61%
(epb3). The 64-way CR partitionings give better ratios. The average increase is 20%
with the minimum and the maximum being 12% and 43%, which are obtained for the
same matrices. In fact, for each matrix the increase in the 64-way CR partitioning
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Table 6.4

Relation between the sparsity patterns of the coefficient matrices and the approximate inverses.
We use A and M to represent the set of the positions of the nonzeros in the corresponding matrices.

Matrix Number of nonzeros

A ∪M A \M M \A A∩M
M

Zhao1 234205 67752 53217 0.63

big 147632 56167 38544 0.49

cage11 780776 221054 356068 0.48

cage12 2784199 751663 1339549 0.48

epb2 333794 158767 89341 0.35

epb3 773107 309482 240256 0.42

mark3jac060 397706 227011 121120 0.18

olafu 1357370 342214 637497 0.52

stomach 5182305 2160657 2272022 0.26

xenon1 1520936 339816 642793 0.61

is smaller than the increase in the 32-way CR partitioning. We investigated the 8-
and 16-way CR partitionings as well [60] and observed that for each matrix in our
data set the larger the number of parts, the smaller the increases. The same relation
holds for most of the RC partitioning cases and for the CRC and RCR partitioning of
AINV-matrices [60]. The reason behind this may be the following. The cutsize func-
tion almost always increases monotonically with the increasing K. In other words,
the flexibility of finding better partitions reduces with the increasing K. At the limit,
where K = |V| and all the nets are in cut, the cutsize of a partition on the composite
hypergraph will be equivalent to the sum of the cutsizes of partitions on the simple
hypergraphs (i.e., nnz(A) + nnz(M) − 2m) that forms it. Therefore, the difference
between the total communication volumes should decrease as K increases and has to
be zero at the limit.

6.1.2. Simple hypergraph partitioning: The same partition on the ma-
trices. Obtaining a symmetric partition on A and then applying the resulting parti-
tion to M results in CC or RR partitionings on the A and M matrices. Recall that in
CC and RR partitioning schemes, there is a communication phase in between the two
matrix-vector multiplies. Since the A and M matrices have a comparable number of
nonzeros (see Table 6.1), processor loads for the two matrix-vector multiplies should
be balanced separately, i.e., a two-constraint formulation is necessary.

Observe that the approach evaluated here disregards the sparsity pattern of the
preconditioner matrices. However, the sparsity patterns of the approximate inverse
preconditioners are usually related to the sparsity patterns of the coefficient matri-
ces [23, 39]. Therefore, the partitions on the coefficient matrices are expected to be
effective for the preconditioners. To justify this reasoning, we show the relation be-
tween the sparsity patterns of the coefficient matrices and the approximate inverses
in Table 6.4. As seen in the table, the relation between the sparsity patterns of the
coefficient and preconditioner matrices varies; 63% of the nonzeros of Zhao1-M are
covered by the nonzeros of Zhao1-A, and only 18% of the nonzeros of mark3jac060-M
are covered by the nonzeros of mark3jac060-A. Another reason for using the same
partition on the coefficient and preconditioner matrices is the following. Parallel con-
struction of the approximate inverse preconditioners produces preconditioners in such
a way that the initial partitions on the coefficient matrices become partitions on the
preconditioner matrices. For example, the left approximate inverse preconditioners
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Table 6.5

Total communication volume for 64-way simple hypergraph and composite hypergraph partition-
ings for CC and RR partitioning of SPAI-matrices. In simple hypergraph partitionings, A and M
have the same symmetric partition which is obtained by partitioning A.

CC RR

Volume % Volume %

Matrix Simple Composite gain Simple Composite gain

Zhao1-A 12982 12892 8 12502 12131 8

Zhao1-M 15406 13116 12523 10896

big-A 4089 3849 18 4068 3783 20

big-M 8082 6114 5548 3904

cage11-A 67198 64928 18 68374 63612 19

cage11-M 72710 49361 60385 41030

cage12-A 213360 208209 18 216501 203197 18

cage12-M 218227 146726 183548 125836

epb2-A 9820 9357 16 9611 8545 19

epb2-M 12913 9766 11649 8590

epb3-A 11764 11293 26 12441 11607 22

epb3-M 21010 13063 18036 12201

mark3jac060-A 15676 18090 34 18107 15891 36

mark3jac060-M 42608 20183 34929 18005

olafu-A 19802 16733 26 20273 16173 26

olafu-M 38318 26470 39026 27911

stomach-A 50980 57777 19 52582 58230 13

stomach-M 107817 71060 90605 66561

xenon1-A 30510 27683 21 29597 27615 17

xenon1-M 49568 35520 47909 36437

can be efficiently constructed rowwise when the coefficient matrix A is partitioned
rowwise [24]. The construction yields the same rowwise partition on the approximate
inverse M . Equivalently, a right approximate inverse preconditioner can be efficiently
constructed columnwise when the coefficient matrix A is partitioned columnwise.

The row-net hypergraph model of A can be used to obtain a CC partition on A
and M . In order to obtain load balance for the two multiplies, the vertices of A are
assigned two weights which correspond to the number of nonzeros in the respective
columns of A and M matrices. That is, vi has weights 〈|ci(A)|, |ci(M)|〉. Similarly,
the column-net hypergraph model of A, with two weights on the vertices, can be used
to obtain an RR partition on A and M .

The composite hypergraph model for the CC partitioning scheme is built in three
steps as follows. First, the enhanced row-net hypergraph models of y ← Ax and
w ← Mz are created. Second, vertex amalgamation operations are applied to the
vertices yi and ci(M)/zi, and also to the vertices ci(A)/xi and wi for each i. Third,
vertex weighting operations are applied to the vertices in such a way that the ver-
tex yi/ci(M)/zi has weights 〈0, |ci(M)|〉, and the vertex wi/ci(A)/xi has weights
〈|ci(A), 0|〉 for each i. Theoretically, a three-constraint formulation is necessary to
balance the vector operations; however, we use a two-constraint formulation in order
to ease the job of the hypergraph partitioning tool. The composite hypergraph model
for the RR partitioning scheme is built similarly.

Table 6.5 displays the averages of the communication volumes of the 64-way parti-
tioning of the SPAI-matrices with the composite hypergraphs and simple hypergraph
models of the coefficient matrices. The “% gain” columns in this table show the
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improvements achieved by the composite hypergraph partitioning as the percentage
of the total communication volumes found by partitioning the simple hypergraph of
A. The minimum improvements are obtained for the Zhao1 matrices in both CC
and RR cases. The maximum improvements are obtained for the mark3jac060 ma-
trices in both CC and RR cases. As seen in Table 6.4, the Zhao1-A and Zhao1-M

matrix pair have the highest ratio of common nonzeros, and the mark3jac060-A and
mark3jac060-M matrix pair have the lowest ratio of common nonzeros. Although
xenon1-A covers 61% of xenon1-M (second maximum), the improvements achieved
for these matrices are quite satisfactory. The average of the improvements is 20% in
the 32- and 64-way CC and RR partitioning choices (see also [60]).

We have also experimented with the 32- and 64-way CC and RR partitionings
using single constraint formulation. In the single constraint formulation, the weight of
a vertex vi is set to the sum of the number of nonzeros in the ith columns (rows) of A
and M for the CC (RR) partitioning. Both the composite hypergraph and the simple
hypergraph formulations were able to obtain balance on the total loads of the pro-
cessors. Since these formulations ignore the fact that there is a local synchronization,
both formulations could not obtain balance on the loads of the processors for the in-
dividual matrix-vector multiplies. The composite hypergraph partitioning approach
obtained (on average 17%) better solutions than the simple hypergraph partition-
ing [60]. The best and worst improvements are again obtained for the mark3jac060

and Zhao1 matrix pairs, respectively.

6.2. Effects of partitioning dimensions on the composite hypergraph
partitioning. Comparing the left and right halves of Table 6.2, we see that the CR
partitioning yields, on average, 26% better total communication volume than the RC
one. This ratio remains the same for 8-, 16-, and 32-way partitionings (see Table 6.6
and [60]). The matrices in our data set do not have dense rows or dense columns.
Therefore, the rowwise and columnwise partitionings of the matrices are expected to
be comparable in terms of the total communication volume. This theoretical expec-
tation is verified by the communication volume values listed in the SpMxV columns
in Table 6.2 for the simple hypergraph partitioning. In light of this observation, we
can deduce that the performance difference between the CR and RC partitioning
schemes is due to the two-constraint formulation in the RC scheme. This degradation
in the multiconstraint formulation is in concordance with the previously reported re-
sults [41, 64]. The degradation in our case stems from two facts. First, the additional
balance constraints shrink the search space. Second, the heuristics in PaToH are not
very well tailored toward handling the multiple vertex weights.

6.3. Parallelization results. It is important to see whether the theoretical
improvements obtained by the proposed simultaneous partitioning method hold in
practice. For this purpose, we have implemented a parallel program for the BiCGStab
method. The program uses the LAM/MPI 6.5.6 [15] message passing library. The
tests were carried out on a Beowulf class [56] PC cluster with 24 nodes. Each node has
a 400MHz Pentium-II processor and 128 MB memory. The interconnection network
comprises a 3COM Superstack II 3900 managed switch connected to Intel Ethernet
Pro 100 Fast Ethernet network interface cards at each node. The system runs Linux
kernel 2.4.20 and the Debian GNU/Linux 3.0 distribution.

We are not concerned with the numerics of the preconditioners and the BiCGStab
method. Therefore, for each matrix, we let the BiCGStab run for 100 iterations and
measure the average running time of a single iteration. In order to guarantee 100 iter-
ations, we set ρ and ω of the BiCGStab method (see Figure 3.1) to 1.0 after computing
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Table 6.6

Communication patterns for 8- and 16-way composite hypergraph partitionings for SPAI-
matrices and the respective speedup values. Matrix name mark3jac060 is shortened to mark3 060.

8-way 16-way
Volume Message Sp. Volume Message Sp.

Matrix tot max tot max up tot max tot max up

CR

Zhao1-A 4098 746 32.2 5.7 6.2 6444 586 96.7 9.3 8.7
Zhao1-M 3514 694 32.2 5.6 5478 551 97.0 9.3

big-A 1032 201 31.4 5.7 5.7 1581 156 73.2 7.5 7.3
big-M 989 191 31.9 5.6 1527 150 75.3 7.5

cage11-A 24424 4144 54.6 7.0 5.5 34835 3314 201.2 14.8 8.1
cage11-M 14663 2439 55.1 7.0 21010 1917 208.9 15.0

cage12-A 87542 14306 56.0 7.0 5.9 122878 11925 230.3 15.0 9.4
cage12-M 50962 7839 56.0 7.0 71066 6136 233.1 15.0

epb2-A 2326 429 39.0 6.4 6.4 3357 371 102.8 9.6 8.6
epb2-M 2242 438 35.0 6.5 3335 335 84.7 8.4

epb3-A 2354 442 23.9 4.3 7.3 3971 393 66.0 6.5 12.4
epb3-M 3003 536 23.9 4.3 5023 496 66.3 6.5

mark3 060-A 5249 960 35.2 6.3 5.8 9370 786 115.0 11.3 8.7
mark3 060-M 6323 1182 32.2 6.0 10287 964 105.3 11.0

olafu-A 3908 960 25.8 5.0 6.7 6489 781 66.2 6.8 10.6
olafu-M 6749 1449 28.0 5.4 11258 1285 77.8 7.8

stomach-A 14614 2815 21.1 4.0 7.1 24436 2351 67.2 7.0 14.1
stomach-M 16193 3206 21.4 4.0 28014 2652 67.8 7.1

xenon1-A 10848 2037 36.2 6.5 6.7 15998 1496 113.2 11.3 11.2
xenon1-M 14437 2523 37.7 6.7 21459 2032 117.8 11.8

RC

Zhao1-A 4146 905 33.2 5.8 5.9 6728 734 95.5 9.3 8.1
Zhao1-M 4362 771 33.1 5.6 7141 716 95.5 9.3

big-A 1467 320 33.9 5.8 5.2 2408 280 84.7 8.8 6.4
big-M 2084 433 34.0 5.8 3326 366 85.9 8.4

cage11-A 30373 6054 55.9 7.0 4.2 43335 4599 227.0 15.0 5.5
cage11-M 24447 4302 55.9 7.0 34339 3151 227.4 15.0

cage12-A 107187 17621 56.0 7.0 4.4 147504 12516 239.8 15.0 6.2
cage12-M 80949 15047 56.0 7.0 109472 10885 239.7 15.0

epb2-A 3074 646 46.7 6.8 6.1 4555 560 132.1 12.9 8.6
epb2-M 3789 814 43.8 6.5 5388 633 109.5 10.6

epb3-A 6347 1907 39.8 6.8 7.2 8490 1244 108.3 11.7 11.7
epb3-M 6766 1937 39.5 6.8 8991 1480 108.0 11.8

mark3 060-A 5568 981 40.7 6.7 5.7 9792 906 137.4 13.0 7.4
mark3 060-M 6417 1213 38.6 6.8 11099 1027 126.3 12.2

olafu-A 5605 1088 30.5 5.8 6.0 9325 1012 86.0 9.1 8.6
olafu-M 9075 1947 33.5 6.2 14636 1636 99.8 10.2

stomach-A 21139 4354 27.4 5.3 7.1 35856 4255 81.5 8.8 12.7
stomach-M 24538 5221 27.6 5.7 41254 4660 82.8 8.9

xenon1-A 12654 2322 39.6 6.9 6.1 18800 1797 126.2 12.2 9.2
xenon1-M 16486 2974 40.8 7.0 24477 2286 131.6 12.9

their actual values. The speedup values corresponding to these running times are given
in Table 6.6 under the column Sp./up. The given speedup values are the averages of
20 runs corresponding to different partitions. In order to show how the improvements
obtained by the proposed method relate to parallel running times, we give the average
communication patterns induced by the partitions in the same table as well.

As seen from Table 6.6, CR gives better speedup values than RC for all matrices
(the reasons are discussed in section 6.2). On average, CR obtains speedup values of
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6.3 and 9.9 for 8- and 16-way partitionings, respectively, where the highest speedups
are 7.3 (epb3) and 14.1 (stomach). Meanwhile, RC obtains speedups of 5.8 and 8.4, on
average, for 8-way and 16-way partitionings, respectively, where the highest speedups
are 7.2 (epb3) and 12.7 (stomach). The lowest speedups for 8-way partitioning are
obtained for the cage11 matrix by both of the partitioning schemes. The lowest
speedups for 16-way partitioning are obtained for the big and cage11 matrices by
the CR and RC schemes, respectively. As seen from Table 6.6, the cage11 matrix pair
has a communication pattern inferior to all but the cage12 matrix pair in terms of the
total and maximum number of message metrics. Therefore, we were already expecting
to have the lowest speedups with the cage matrices. The big matrix has the smallest
number of nonzeros. The low granularity of computations may be the reason behind
having the lowest speedup with 16-way CR partitioning of the big matrix. The same
reasoning may also explain why we obtain better speedups in cage12 than those in
cage11.

We have also experimented with the CRC and RCR partitioning schemes for
AINV-matrices (see [60]). As expected, the speedup values are not as good as those
given in Table 6.6 because of an additional load balancing constraint for the third
matrix-vector multiply, and because of an additional communication phase. The high-
est speedups for 8- and 16-way CRC partitionings are 6.7 and 8.9, respectively. The
highest speedups for 8- and 16-way RCR partitionings are 6.4 and 8.9, respectively.

6.4. Partitioning timings. Finally, we comment on the additional partitioning
overhead introduced by simultaneous partitioning instead of individual partitionings.
Let the sum of the times elapsed in individual partitionings (of the SPAI- and AINV-
matrices) be 1.0. Then the average running times of the simultaneous partitioning
of the SPAI-matrices with the CR and RC schemes are 1.4 and 1.2, respectively, for
all K = 8, 16, 32, and 64. The average running times of the simultaneous parti-
tioning of the AINV-matrices with both the CRC and RCR schemes are close to 1.4.
These increases are acceptable because the simultaneous partitioning method obtains
much smaller total communication volume than the individual partitioning method
combined with the reordering cost. See [60] for a list of the partitioning times.

7. Conclusion. We demonstrated that hypergraph models are able to capture
the application of multiple matrices. In particular, we developed models that allow
simultaneous partitioning of a matrix and its explicit preconditioner or factors of the
preconditioner. These points were raised by Hendrickson and Kolda [37].

The computational structure of preconditioned iterative methods abounds in sci-
entific computing applications and data aggregation/reduction applications in large
distributed data sets. We discussed the applicability of the proposed work in certain
scientific computations. We think that the proposed work is applicable in distributed
data-set applications where hypergraph models have already been used [22].
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[20] Ü. V. Çatalyürek and C. Aykanat, A hypergraph-partitioning approach for coarse-grain
decomposition, in Proceedings of Scientific Computing 2001 (SC2001), Denver, CO, 2001,
pp. 10–16.

[21] T. F. Chan, E. Chow, Y. Saad, and M. C. Yeung, Preserving symmetry in preconditioned
Krylov subspace methods, SIAM J. Sci. Comput., 20 (1998), pp. 568–581.
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[61] B. Uçar and C. Aykanat, A Library for Parallel Sparse Matrix-Vector Multiplies, Tech.
Report BU-CE-0506, Department of Computer Engineering, Bilkent University, Ankara,
Turkey, 2005.

[62] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[63] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Rev., 47 (2005), pp. 67–95.

[64] C. Walshaw, M. Cross, and K. McManus, Multiphase mesh partitioning, Appl. Math. Mod-
eling, 25 (2000), pp. 123–140.


