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ABSTRACT

Landmark detection is a critical component of the image processing pipeline for automated aortic size mea-
surements. Given that the thoracic aorta has a relatively conserved topology across the population and that a
human annotator with minimal training can estimate the location of unseen landmarks from limited examples,
we proposed an auxiliary learning task to learn the implicit topology of aortic landmarks through a CNN-based
network. Specifically, we created a network to predict the location of missing landmarks from the visible ones
by minimizing the Implicit Topology loss in an end-to-end manner. The proposed learning task can be easily
adapted and combined with Unet-style backbones. To validate our method, we utilized a dataset consisting
of 207 CTAs, labeling four landmarks on each aorta. Our method outperforms the state-of-the-art Unet-style
architectures (ResUnet, UnetR) in terms of localization accuracy, with only a light (#params=0.4M) overhead.
We also demonstrate our approach in two clinically meaningful applications: aortic sub-region division and
automatic centerline generation.
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1. INTRODUCTION

Fast and accurate localization of aortic landmarks can facilitate image analysis tasks such as segmentation,
registration and classification of anatomic sub-regions. In clinical practice, these tasks are performed manually,
leading to significant inefficiency. Deep convolutional neural networks (CNNs) can be used to automate landmark
annotation using a variety of approaches including: classifying image slices,! model ensembling,? landmark
coordinate regression® and heatmap regression.* Classifying image slices suffers from severe class imbalance, and
directly regressing coordinates requires a large number of parameters and highly non-linear mapping. Heatmap
regression and ensemble learning models better handle overfitting and show robustness to image variability and
artifacts. Our proposed method aligns most closely with heatmap regression which assumes the probability of
landmark location is not uniformly distributed over the image.

Despite differences in size, tortuosity, and the location of adjacent structures between individuals, the thoracic
aorta has a relatively regular shape. Thus, we propose that the topology formed by landmarks in the thoracic
aorta can serve as a prior during learning. For example, a human rater can identify the approximate location
of a missing landmark after observing only a few examples as shown in Fig.1. Inspired by this, we designed an
auxiliary task for our model: learn to predict the locations of missing landmarks from a fraction of visible ones
by optimizing the so-called Implicit Topology loss in an end-to-end manner. We show that by combining the
proposed learning task with Unet-style backbone, the accuracy of localization is improved with a small parameter
overhead (0.4M extra parameters).

Beyond technical implementation, we also demonstrate two clinically meaningful downstream image analysis
applications: automatic centerline generation and classification of anatomic sub-regions. Generation of an aortic
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Figure 1: Humans efficiently learn the topology of spatial patterns. Even seeing a few examples of 4 aortic
landmarks, one can give a decent answer to the quizzes above. We propose an auxiliary task for a network to learn
landmark topology implicitly, which greatly improves landmark localization the accuracy prevents overfitting.

centerline is an important step for most two- and three-dimensional analyses of aortic disease including deforma-
tion analysis,” ” however, manually labeling seeds point to generate centerline can be cumbersome. We utilize our
model to predict accurate seed locations in the ascending and distal descending aorta to automate this process.
Additionally, by using the predicted landmarks as the boundary to subdivide the thoracic aorta into ascending,
arch, and descending segments, this work opens the possibility of performing segment-wise assessments of aortic
size and growth.

2. METHOD
Given the input CT image I, we predict a set of heatmaps H through a network parametrized by 6:

where M is the number of landmarks. The final landmark coordinates are obtained as the peak responses of the
predicted heatmaps.

To obtain the ground-truth heatmap, we apply a Gaussian function to the ground-truth landmarks:

w12
gi (x;04) = A exp <_”X_Lz”2> (2)

(27T)d/20f 202

where A is the scaling factor, L} is the coordinate of the i-th landmark, and o; controls the width of the filter
response. o is a learnable parameter that is optimized during training. To avoid a trivial solution of o going to
infinity and network predicting a constant everywhere, we minimize ||a'||§ as a extra regularization term.

For convenience, we denote the collection of g; as set G and define MSE over two sets H, G as:

1
MSE(H,Q,U) = WN Z ||h1 — Yi (X§Ui)H§’

hi € G,gi € H,|G| = |H]|
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Figure 2: Illustration of our pipeline. The uncropped image is sent to a Unet-style backbone to regress heatmaps.
The predicted heatmaps pass through the selection module to a light weight head, which is a three-scale resUnet,
to predict the heatmaps of missing landmarks. L., and £;; indicate losses for regression and learning implicit

topology.
where N is the number of voxels, thus, the heatmap regression loss can be simply defined as:

Lreg = MSE(H,G; ™) (3)

Then we introduce a selection module s, which randomly select k¥ maps from set H as visible heatmaps. k
will gradually increase during the training. The heatmaps of a missing landmark #H can be obtained by:

H = fi,(s(H; £);0,0), H = H — s(H; k), (4)

where f; is the function parametrized by both 6 and ¢. Note that the input for function f; only contains the
predicted visible heatmap but without image features, which eliminates the trivial solution of f; imitating fp,.

Then the implicit topology loss can be simply noted as:

Liy = MSE(H,G; 0", k) (5)

With aforementioned, the overall loss function is:

L= Leog+ L + B(|a"2 + ||o"]2) (6)

Note that there are two o’s in Eq.6, one for L;e; and another for £;¢. This design decouples two learning tasks:
predicting accurate landmark location by pushing o as small as possible and estimation of an approzimate region
for the missing landmarks in a more forgiving fashion with a moderate o.

The network is trained to minimize the loss function Eq. 6 in an end-to-end manner.

3. RESULTS

Dataset & Training Details. We collected 207 thoracic computed tomography angiography (CTA) scans. CTA
scans were performed with electrocardiogram (ECG) gating during the administration of iodinated intravenous
contrast, with images reconstructed at 75% of the R-R interval. All images are pre-cropped from just above
the aortic arch through the upper abdomen (i.e., celiac artery). This dataset includes various aortic pathologies
including aneurysm and dissection in patients with and without aortic endografts. The average volume size is
230 x 230 x 440 with a voxel spacing of 0.64 x 0.64 x 0.75 mm?. Images were resampled to have isotropic spacing
of 1.8 x 1.8 x 1.8 mm3. We center-crop/pad input images along the three dimensions to create a 96 x 96 x 176
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Figure 3: Qualitative result on unseen examples. For clarity, we only visualize the result of two best models,
namely ResUnet+Lit and ResUnet, for comparision. B < ground truth location; + < ResUnet+Lit; + <
ResUnet.

patch, which is also the size of target heatmaps. We then clip the image intensity [-1000,1000] and normalize to
[0,1]. Image data was augmented by adding Gaussian noise and random rotations during training.

For training the networks, we used the loss function in Eq. 6 with parameters a = 0.1, 3 = 10~%, A = 10° that
were empirically determined, with M = 4 landmarks in total. We initialized o with 10 voxels. Using the selection
module, heatmaps were randomly erased with a probability p, which linearly increased from 0 to 0.5 during over
the entire training procedure. We used the AdamW optimizer and CyclicLR (base_lr = 2x 1073, maz_Ir = 1072)
as a learning rate scheduler, with a mini-batch size of 2 and 20,000 total iterations. The training and inference
code were implemented in pytorch. Using 5-fold cross-validation, 80% of the subjects were randomly chosen for
training and the remaining were used for validation. A GTX 2080Ti GPU was used for training and inference.

We used three Unet-like architectures: vanilla Unet,® ResUnet,” and UnetR.'® Most recently, UnetR combined
the original Unet with a transformer module to achieve state-of-the-art performance on several 3D medical image
segmentation benchmarks. Since all of these architectures are proposed to predict segmentation, i.e., pixel-wise
class label, we can simply adapt these architectures as a backbone in our implicit topology learning framework to
perform landmark localization tasks, where the number of output channels is equal to the number of landmarks
rather than number of label classes. The light-weight head is a smaller version of ResUnet, consisting of three
scales with the number of channels (16,32,64). We use a strided convolution of stride = 4 between each scale.
We also trained larger models (”Unet-L” and ”ResUnet-L”) with 16 more channels for each scale to investigate
the effect of increasing model parameters on performance.

The primary evaluation metric was landmark localization accuracy, defined as the Euclidean distance between
predicted landmarks and ground-truth landmarks.

Quantitative & Qualitative Results. The mean and SD of the landmark localization error is reported in
Table 1. Cumulative landmark error distributions in Fig.4. Qualitative examples are illustrated in in Fig.3. It can
be observed in Table.1 that UnetR suffered from overfitting due to the larger model capacity. Interestingly, when
combining UnetR with the implicit topology learning task, the overfitting problem is alleviated and performance
improves by 10% with only a 0.4% increase of parameters.
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Figure 5: Two applications of aortic landmark localization: sub-region division and automatic centerline gen-
eration. When applied to divide the aorta into sub-regions, L2 and L3 are used to determine the boundary
cross-sections which divides the aorta into three parts: ascending, arch, and descending aorta (App 1). When
applied to automatic centerline generation, L1 and L4 are used to determine the start and end seed for generating
the centerline (App 2).



Clinical Applications. Aortic centerline generation is a necessary step for most clinical and research
analyses of aortic geometry. However, the vast majority of centerline algorithms require manual interaction (e.g.
placement of starting and ending seed-points). Based on our method, we show this task can be fully automated
without human intervention.

To automate centerline generation, we ran our previously developed aorta segmentation network!! to obtain
an aorta mask, and then applied the method developed in this work to obtain the L1 (ascending root) and L4
(descending celiac) landmarks, which are taken as the seeds by Vascular Modeling Toolkit (VMTK) to reconstruct
the 3D mesh and centerline (Figure 5). This pipeline is fully implemented in python.

Recent work by our group has focused on developing techniques to quantify aortic growth/deformation over
time using B-spline-based deformable registration methods®® to analyze aortic aneurysms. Currently, these
techniques consider the whole aorta to compute deformation metrics and statistics. Equipped with the landmark
detection method described here, one can automatically subdivide analysis of the entire thoracic aorta into three
sub-regions, ascending aorta, arch, descending aorta, and descending root. However, the utility of defining aortic
sub-regions is not limited to such novel registration-based growth assessment techniques, but can also be used
to yield regional assessments of conventional metrics of aortic disease such as maximal diameter and volume.
These unique aortic segments are affected differently by disease and thus the ability to analyze each separately
may better allow regional assessments of disease.

4. CONCLUSION

We proposed a simple yet effective learning task to make the network learn the implicit topology of the thoracic
aorta. The proposed method can be easily combined with Unet-style backbones and is trainable in an end-to-end
manner. Localization accuracy is improved compared to baseline and the overfitting problem is alleviated. We
believe this method is broadly applicable, and in future work we plan to apply our method to anatomic landmark
localization tasks in other anatomies (e.g., hand joints, spine).
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