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Abstract

Renal segmentation on contrast-enhanced computed tomography (CT) provides distinct spatial 

context and morphology. Current studies for renal segmentations are highly dependent on manual 

efforts, which are time-consuming and tedious. Hence, developing an automatic framework for 

the segmentation of renal cortex, medulla and pelvicalyceal system is an important quantitative 

assessment of renal morphometry. Recent innovations in deep methods have driven performance 

toward levels for which clinical translation is appealing. However, the segmentation of renal 

structures can be challenging due to the limited field-of-view (FOV) and variability among 

patients. In this paper, we propose a method to automatically label the renal cortex, the medulla 

and pelvicalyceal system. First, we retrieved 45 clinically-acquired deidentified arterial phase CT 

scans (45 patients, 90 kidneys) without diagnosis codes (ICD-9) involving kidney abnormalities. 

Second, an interpreter performed manual segmentation to pelvis, medulla and cortex slice-by-slice 

on all retrieved subjects under expert supervision. Finally, we proposed a patch-based deep neural 

networks to automatically segment renal structures. Compared to the automatic baseline algorithm 

(3D U-Net) and conventional hierarchical method (3D U-Net Hierarchy), our proposed method 

achieves improvement of 0.7968 to 0.6749 (3D U-Net), 0.7482 (3D U-Net Hierarchy) in terms of 

mean Dice scores across three classes (p-value < 0.001, paired t-tests between our method and 3D 

U-Net Hierarchy). In summary, the proposed algorithm provides a precise and efficient method for 

labeling renal structures.
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1. INTRODUCTION

Imaging of renal structures using computed tomography (CT) aids in various clinical 

indications, including diagnosis, evaluation, and treatment delivery for renal abnormalities 

such as artery stenosis, renal fusion, and nephroblastoma [1, 2]. As shown in Figure 

1, kidney substructures consist of 1) the renal cortex; 2) the medulla; and 3) the renal 

pelvicalyceal system. The cortex forms the outer kidney layer and is contiguous with renal 

columns that descend between the renal pyramids. Both contain glomeruli and tubules, 

which form the functioning units of the kidney, the nephrons [3]. The medulla is organized 

into multiple cone-shaped pyramids, which include collecting ducts that drain into the renal 

calyces. Minor renal calyces coalesce into major calyces, which drain into the renal pelvis 

that drains into the ureter and ultimately into the bladder for voiding of urine to the exterior 

[4]. Anatomical differences between individuals give rise to differences in numbers and 

positioning on renal pyramids, minor and major calyces, and differences in the size and 

divisions of the renal pelvises [5]. Herein, accurate evaluation of renal structures offers 

clinicians better understanding of the kidney morphology and therefore improves treatment 

procedures. Contrast-enhanced CT is used as an important means of providing imaging 

contrast and characterizing kidney function and physiology [6, 7]. For acquiring visible 

enhancement of renal structures, the arterial phase is selected, which is a short phase that is 

collected about 15–25 seconds after contrast medium injection as shown in Figure 2 [8].

The considerable interest in and study of renal substructures are highly dependent on 

manual annotations, which is time consuming and tedious. In the past years, there have 

been pioneer investigations [9, 10] in renal cortex segmentation on MRI and CT images. 

Several algorithms have been designed to perform semi-automatic renal cortex segmentation 

[11, 12]. Many attempts at fully automatic segmentation have also spurred movement 

toward efficient cortex labeling of MRI images [13]. Historically, these studies provided 

compelling investigations on specific kidney donors but have not yet looked at multiple renal 

substructures in healthy kidneys. In recent studies, several kidney segmentation methods 

have been proposed and have achieved promising performance boosted by deep neural 

networks [14–17]. 3D methods were also explored for medical image segmentations [18–

20]. However, most automatic algorithms focused on whole kidneys (right and left) or single 

tissue type (i.e. cortex segmentation) [8, 10, 21].

In this paper, we explore an automatic algorithm to segment three renal structures including 

the cortex, the medulla and the pelvicaliceal system. We propose a coarse-to-fine framework 

based on deep neural networks, a regime of increasing resolution at successive stages called 

random patch network fusion (RPFN). This technique includes a kidney detector and a 

patch-wise segmentor. In RPFN, we utilized both advantages of the full context in entire CT 

volumes (low resolution) and smoother boundary in patch-wise volumes (high resolution). 
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We performed multiple random sampled patches and fuse the second segmentation model 

with the low resolution contexts.

We retrieved 45 deidentified CT images under IRB approval, and manually assessed ICD-9 

codes for identifying normal kidneys in adults (age 18–50 years). Then, a trained interpreter 

manually traced right and left renal structures on these subjects under expert supervision. To 

evaluate our method, we compared methods of 3D U-Net [14] and hierarchical architectures 

[22] for 3D medical image segmentation. To the best of our knowledge, this is the first work 

that investigates an automatic method for renal multi-structure segmentation.

In summary, our contribution in this study are as follows:

• We retrieved 45 arterial CT scans and performed electronic health record data­

based filtering mainly focused on demographics and ICD-9 codes.

• We manually labeled 45 subjects, with structures from 90 kidneys, including the 

renal cortex, the medulla and the pelvicalyceal system.

• We proposed a coarse-to-fine method called random patch network fusion, which 

learns renal segmentation both in low resolution and high resolution perspective.

• We evaluated the performance of the proposed algorithm as compared to the 

baseline that defines the state-of-the-art performance on multi-structure renal 

segmentation.

2. METHOD

We present an algorithm for renal segmentation on clinically acquired arterial phase CT 

scans. Images from 45 patients were manually labelled and introduced into the training 

dataset under the RPFN architecture and evaluated under a “leave-out” testing cohort, as 

seen in Figure 3. The RPFN is motivated by the coarse-to-fine framework and random 

patch-based methods, and employed to adapt renal segmentation tasks.

2.1 CT Imaging

Abdominal images were acquired from scans performed at Vanderbilt University Medical 

Center (VUMC). We performed de-identified data retrieval from the ImageVU project. This 

retrospective study was approved by the Institutional Review Board (IRB). Initially, data 

from 2000 patients were retrieved. In order to obtain comprehensive evaluation, we used 

exclusion criteria for identifying normal kidneys from the cohort. Out of 2000, 720 potential 

subjects were selected after assessment by excluding 992 ICD-9 codes related to kidney 

dysfunction and including age 18–50. For example, subjects with ICD-9 CM code 585.9 

group (kidney disease) were excluded. Filtering and exclusion criteria were supervised by 

kidney disease experts and radiologists. A subset of subjects was categorized by ICD-10 

codes; these ICD-10 codes were converted to ICD-9 standard. Out of 720 potential subjects, 

we limited our study to those who had arterial abdominal CT scans, which yielded 101 

subjects. Among the 101 patients, we selected 23 female subjects and 22 male subjects, with 

a median age of 35.
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All CT examinations were performed with Philips or Siemens CT scanners. Before image 

acquisition, patients were injected with 120–140 ml of contrast agent. CT scans were 

acquired at 25–35 seconds during imaging cycles. The in-plane pixel dimension ranged 

from 0.78–0.86 mm. Slice thickness ranged from 1.2–3.5 mm. The number of slices ranged 

from 80–120. Electronic health records (EHR), including demographics, ICD codes were 

retrieved for all subjects.

2.2 Manual Segmentation

With the 45 arterial CT scans from ImageVU, we manually annotated the renal cortex, the 

medulla and pelvicalyceal system for both right and left kidneys. A window level of −30 

and 200 Hounsfield units (HU) was used, respectively. One trained interpreter performed 

manual labeling for each patient under expert supervision. Annotations were made on 

the axial slices of the scans while also consulting the sagittal and coronal views. The 

medulla and the pelvicaliceal system in many scans are very small structures, displaying a 

weak boundary between them. The pelvicaliceal system is the initial section of the ureter, 

connected from numerous ducts. The calyces and pelvis are included in the kidney as the 

main contours of the pelvicalyceal system, and the ureter was excluded. These tracing 

guidelines were followed consistently for all slices. The interpreters are supervised by 

experienced radiologists (> 10 years of experience in kidney radiology). When labeling 

cortex and medulla, the manual labels were checked against each other to ensure no overlap 

between the manual segmentations of the two anatomies. We manually traced the contour 

of the cortex and medulla boundaries to define the outer zone and inner layer slice by slice. 

The outer cortical tissues and renal columns are classified as the cortex label, the inner 

cone-shaped lobes are identified as the medulla.

2.3 Automatic Segmentation: Random Patch Network Fusion

As shown in Figure 3, the proposed algorithm for renal segmentation consists of two 

sections: 1) a 3D kidney detector that produce coarse segmentations, and 2) a renal 

structures segmentor which trained on imposed field of view (FOV) constraints. The final 

segmentation is formed by statistical fusion. Between two sections, the imposed FOV is 

sampled randomly.

1) Kidney Detector: Using the manually labeled image as the ground truth. Consider the 

segmentor network parameterized by θ. The model aims to:

argmin
θl, Y l

LDl θl (1)

where LDl θl  is the Multi-Sourced Dice Loss (MSDL) [23]. MSDL was proposed as a way 

of evaluating datasets with multiple labels with a score by extending the Dice loss to adapt 

renal segmentation,

LDl = − 2
A

∑a = 0
A w∑i = 1

M ∑j = 1
N Y ijPij + ϵ

∑a = 0
A w∑i = 1

M ∑j = 1
N Y ij

2 + ∑a = 0
A w∑i = 1

M ∑j = 1
N Pij

2 + ϵ
(2)
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where A denotes the number of anatomies and w represents the variance to different label 

set properties in given image dimension of M and N. Y is the voxel value and P are the 

predicted probability maps. A small number, ∈, was used in computing the prediction and 

voxel value correlation to prevent discontinuities. MSDL was iteratively optimized, and Pij 

was computed by the softmax of the probability of voxel j in image i to anatomy a.

After acquiring the coarse segmentation masks, we randomly picked predicted pixels in the 

coarse segmentation. Using the selected pixel as indices’ center, we used a bounding box 

as the local FOV. In order to perform randomness, a random shift was added. The distance 

of shifting was derived by a random number generator with mean and variance among 

bounding boxes centers.

2) Renal Structure Segmentor: In the second segmentation model, we built the 

hierarchy of non-linear features from random patches regardless of the anatomical context. 

It utilized detailed smoothness at original resolution and incorporated advantages of data 

augmentation with random shifting. Random patches have overlapped regions that provide 

multiple labels for single voxel. Herein, each voxel label was given by a vector of class 

values from n candidates. In RPFN, the majority vote was used as the label fusion algorithm, 

which fused n candidates from predictions to a single voxel. The final mask for voxel j in 

image i was acquired by:

Sij = argmax1
n ∑

m = 1

n
p a ∣ s′, j (3)

where p(a|s′, j) = 1 if s′equals to anatomy class a and 0 otherwise. Voters outside the image 

space are ignored, whose related values are excluded in the label fusion.

2.4 Preprocessing

The manual annotations and corresponding arterial CT images were preprocessed in three 

steps. First, original CT scans were clipped by soft tissue window with range of [−175, 250] 

HU. Second, soft-tissue windowed images and labels were normalized and re-sampled using 

spline interpolation. In the kidney detector, the input volume is processed to 168×168×64 

with intensity range from 0 to 1.

2.5 Experiment Design

We implemented experiments with maximum number (50) of patches for evaluating 

performance of baselines and RPNF. We implemented experiments with 5 fold cross 

validation. To perform standard five-fold cross validation, we split 25 scans into five 

complementary folds, each of which contains 5 cases. For each fold evaluation, we use 

20 folds as training and validation on the remaining 5 cases.

We compared RPNF with three baseline architectures (low-resolution and hierarchy) with 

the same dataset and parameters. Briefly, we first trained the low-resolution approach, which 

has shown its capability on 3D renal segmentation with full spatial contexts.
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2.6 Implementation details

We adopted 3D U-Net [14] as the segmentation model backbone, which contains encoder 

and decoder paths with four levels resolution. It employs deconvolution to up-sample the 

lower level feature maps to the higher space of images. This process enables the efficient 

denser pixel-to-pixel mappings. Each level in the encoder consists two 3×3×3 convolutional 

layers, followed by rectified linear units (ReLU) and a max pooling of 2×2×2 and strides 

of 2. In the decoder, the transpose convolutions of 2×2×2 and strides of 2 are used. The 

last layer is a 1×1×1 convolution that set the number of output channels to the number of 

class labels. We used Multi-sourced Dice Loss and Dice Loss for multi-organ segmentation 

and single class segmentation, respectively. The baseline low-resolution segmentation uses 

the largest volume size of 168 × 168 × 64 in order to fit maximum memory of a 

normal 12GB GPU under architecture of 3D U-Net. The volume size is also employed 

in baseline hierarchical method for training the first level model. We used batch size of 

1 for all implementations. We used instance normalization, which is agnostic to batch 

size. We adapted ADAM algorithm with SGD, momentum=0.9. The initial learning rate 

was set to 0.001, and it was reduced by a factor of 10 every 10 epochs after 50 epochs. 

Implementations were performed using NVIDIA Titan X GPU 12G memory and CUDA 9.0.

3. RESULTS

Figure 4 and Table 1 compares the Dice scores of the renal cortex, the medulla and the 

pelvicalyceal system between the baseline and our proposed algorithm. The box plots 

presented were evaluated across 20 external testing subjects. The Dice values shown in 

Figure 4 are average performances across 5-fold cross-validation. Figure 4 indicates our 

algorithm achieved significant improvement compared with performance of segmentation 

baselines. The Dice scores of the RPFN are significantly superior to the Hierarchy algorithm 

across all three renal structures marked with ‘*’ (paired t-test p-value < 0.001). The mean 

and variance DSC for the cortex are 0.7637 ± 0.0516 (3D U-Net), 0.8146 ± 0.0504 (3D 

U-Net Hierarchy) and 0.8475± 0.0487 (RPFN), the mean DSC and variance DSC for the 

medulla are 0.6639 ± 0.0467 (3D U-Net), 0.7349 ± 0.0452 (3D U-Net Hierarchy) and 

0.7895± 0.0429 (RPFN), the mean and variance DSC for the pelvicalyceal system are 

0.5972 ± 0.0482 (3D U-Net), 0.6951 ± 0.0471 (3D U-Net Hierarchy) and 0.7533± 0.0453 

(RPFN), respectively. Overall, the RPFN achieves improvement of 0.7968 to 0.6749(3D 

U-Net), 0.7482 (3D U-Net Hierarchy) in terms of mean Dice scores across three classes 

(p-value < 0.001, paired t-test). Figure 5 compares the qualitative result of 3D U-Net, 

Hierarchy and our method. The 3D U-Net Hierarchy method and RPNF achieve smoother 

boundaries among the medullas and cortex. RPFN shows more detailed structures than the 

result from 3D U-Net Hierarchical approach. Figure 6 shows the training and validation loss 

values to show the sensitivity of our method. The curve was evaluated by averaging five-fold 

cross validation and the shadow shows the variance of these five folds experiments. The 3D 

U-Net Hierarchical approach increases training resolution in the second step and achieved 

higher DSC than low resolution 3D U-Net. However, the hierarchical method’s performance 

is limited due to inaccurate localization from previous segmentation.
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4. CONCLUSION

In this paper, we study a challenging problem of multi-label renal segmentation, including 

the cortex, the medulla and the pelvicalyceal system. This task is crucial in identifying 

renal structures and functions with clinically acquired CT images. Our main contribution in 

this work is that 1) we retrieved and identified data from 45 patients, manually annotated 

right and left kidney structures and 2) employed a patch-based method for automatically 

segmenting renal structures. Shown in Figures 4 and 5, both the mean and the median Dice 

scores of the 20 external testing scans increased from the baseline segmentation model 

to the proposed algorithm on the cortex, the medulla and pelvicalyceal system. While 

the proposed algorithm yields substantive improvement of performance over the baseline 

under prospective evaluation, further exploration could be undertaken to further refine 

segmentation especially regarding small tissues of the calyx and pelvis. In the future, we 

would like to test our method on the subjects with pathological conditions. The investigation 

of clinically acquired pathology subjects will be worthy of interests
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Figure 1. 
Renal structures segmentation of clinically acquired CT image. Yellow box shows a 

representative right kidney, green box shows the left kidney. The zoom-in patches show 

the CT kidney field-of-view (FOV) and labels. The label patches display the renal cortex 

(blue), the medulla (red) and the pelvicalyceal system (green). Those small structures make 

automatic renal segmentation challenging.
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Figure 2. 
Five representative contrast enhancement phases in CT images, including non-enhanced CT, 

early arterial phase, late arterial phase, portal venous phase and delayed phase CT. Among 

these commonly used CT imaging phases, arterial scans (both early and late arterial phases) 

show clearer contrast of renal structures (the cortex, the medulla and the pelvicalyceal 

system) as shown in red boxes.
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Figure 3. 
Method framework. The top pipeline shows the low resolution model, which aims to detect 

location of kidneys. After acquiring the coarse segmentation mask, random sampling is 

performed and cropped to presented CT and context patches. The bottom pipeline shows the 

patch-based renal structures segmentor followed by the network fusion step.
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Figure 4. 
Boxplot of Dice similarity coefficient (DSC) on 20 external testing images. The result is the 

average across five-fold cross-validation. “*” indicates statistically significant differences 

(p<0.001 from paired t-test on mean DSC). We compared our method with two baseline 

approaches including 3D U-Net and 3D U-Net Hierarchy.
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Figure 5. 
Qualitative result of two representative subjects. We compared the RPFN with two baseline 

methods as well as the ground truth. Yellow boxes show the right kidneys, green boxes 

display the left kidney structures.
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Figure 6. 
Training and validation curves acquired from averaging lossed from five-fold experiments. 

The shadows show the variance of these trainings and validations. The Dice loss is 

summarized from all three classes. The curve shows consistent sensitivity across data folds 

and our multi-categorical segmentation model.
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Table 1.

Summarized statistics for the final automatic system compared to manual segmentation

Cortex Medulla Pelvicalyceal System

Hausdorff Distance 22.2424±19.9501 23.5101±14.1528 36.6512±12.1899

R Squared 0.8392 0.6319 0.3412

Pearson R 0.9681 0.7395 0.6029

Absolute deviation of volume (cm3) 5.5010±2.9511 4.6129±1.6511 1.3512±0.9158

Percent difference (%) 8.5159±3.5912 21.6193±10.6509 26.4501±19.9912
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