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Abstract

The purpose of this study is to develop hyperspectral imaging (HSI) for automatic detection of 

head and neck cancer cells on histologic slides. A compact hyperspectral microscopic system is 

developed in this study. Histologic slides from 15 patients with squamous cell carcinoma (SCC) of 

the larynx and hypopharynx are imaged with the system. The proposed nuclei segmentation 

method based on principle component analysis (PCA) can extract most nuclei in the hyperspectral 

image without extracting other sub-cellular components. Both spectra-based support vector 

machine (SVM) and patch-based convolutional neural network (CNN) are used for nuclei 

classification. CNNs were trained with both hyperspectral images and pseudo RGB images of 

extracted nuclei, in order to evaluate the usefulness of extra information provided by hyperspectral 

imaging. The average accuracy of spectra-based SVM classification is 68%. The average AUC and 

average accuracy of the HSI patch-based CNN classification is 0.94 and 82.4%, respectively. The 

hyperspectral microscopic imaging and classification methods provide an automatic tool to aid 

pathologists in detecting SCC on histologic slides.
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1. INTRODUCTION

Squamous cell carcinoma (SCC) is a major cancer at original sites of the upper aerodigestive 

tract. It can occur in the nasopharynx, oral cavity, oropharynx, nasal cavity, paranasal 

sinuses, hypopharynx, larynx, and trachea. Surgical resection is the main treatment method 

for SCC.Surgeons have to work with intraoperative pathologists to ensure the cancer margin 
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by frozen-section (FS) microscopic analysis1. SCC cells appear variation in nuclei shape, 

increased nuclei size, atypical mitotic figures, increased number and size of nucleoli, and 

hyperchromasia. However, patients with negative FS can still be diagnosed as positive. 

Therefore, cancer detection methods are needed to facilitate the intraoperative FS process.

Cell segmentation on histologic images has many applications but remains a challenging 

task with only color and shape information. Hyperspectral imaging can utilize not only the 

morphological information but also the abundant spectral information of nuclei, thus has the 

potential to serve as a tool to improve the effectiveness and accuracy of pathologic 

diagnosis. Hyperspectral microscopic imaging has been previously used to detect colon 

cancer2, 3. Unsupervised clustering methods have been implemented for ductal cancer 

detection using hyperspectral imaging4. A hyperspectral microscopy system based on a line-

scanning hyperspectral camera and motorized stage was developed for brain cancer 

detection5, and a spectral-scanning-based hyperspectral microscopy system was developed 

for oral cancer detection6. However, the above systems needed a tradeoff between system 

complexity and resolution. Moreover, they either used the spectra from a whole slide, which 

included redundant information, or extracted nuclei manually from the slides.

This study aims to investigate hyperspectral microscopic imaging and machine learning 

methods for automatic detection of squamous cell carcinoma (SCC) on histologic slides. 

Cancerous nuclei and normal nuclei are extracted using a semi-automatic method, and both 

spectra-based support vector machine (SVM) and patch-based convolutional neural network 

(CNN) are implemented for the classification. To facilitate the clinical use, we developed a 

compact system with a customized hyperspectral camera, which is small and light-weighted.

2. METHODS

2.1 Histologic Slides from Head and Neck SCC Patients

Fifteen laryngeal and hypopharyneal histologic slides were obtained from 15 head and neck 

cancer (SCC, HPV-negative) patients of our previous studies7–9. The tissue of each slide was 

resected at the tumor-normal margin. A pathologist manually drew the cancerous and normal 

areas for each slide, which is used as the ground truth. For each slide, we chose at least three 

regions of interest (ROIs) for cancerous tissue and three ROIs for normal tissue, except one 

patient that did not have normal region. The selected cancerous ROIs were at or close to 

cancer nests, and the selected normal ROIs were from healthy stratified squamous 

epithelium far away from cancer regions. To make the spectra of cancerous nuclei and 

normal nuclei comparable, we only extracted normal nuclei from the second and third layer 

of stratified squamous epithelium, from which the SCC cells originally arise. Over 200 

nuclei were extracted from each slide, including both cancerous and normal nuclei. There 

were in total 51 ROIs selected for normal tissue and 60 ROIs for cancerous tissue, from 

which nearly 5,000 nuclei were extracted. Figure 1 shows the synthesized RGB images 

generated from hyperspectral images of some cancerous and normal ROIs.
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2.2 Experimental Setup and Hyperspectral Imaging

Our custom-made hyperspectral microscopic imaging system consists of a bright-field 

microscope (Olympus BX53) and a novel customized hyperspectral system, as shown in 

Figure 2. The design of the hyperspectral microscope system is compact. The wavelength 

range of hyperspectral images is from 460 nm to 750 nm, consisting of 87 spectra bands.

The hematoxylin and eosin (H&E) stained histology slides were imaged using the 

hyperspectral microscopic system with a magnification of 40X. The field of view of the 

camera with 40X magnification was 280 um × 280 um, and the image size was 2048 × 2048 

pixels. Therefore, the dimension of hyperspectral image was 2048 × 2048 × 87. We used the 

internal halogen light source of the microscope for illumination. White reference and dark 

reference images were captured after capturing hyperspectral image of each ROI. All 

hyperspectral images were calibrated with the corresponding white and dark references, as 

equation (1) shows.

Itransmittance λ = IRaw λ − IDark λ
IWℎite λ − IDark λ (1)

where Itransmittance(λ) is the normalized transmittance for wavelength λ, Iraw(λ) is the 

intensity value in raw hyperspectral image, Iwhite(λ) and Idark(λ) are the intensity values in 

the white and dark reference images, respectively.

For better visualization of the ROIs, we generated synthesized RGB images for each 

hyperspectral image. The transformation function from hyperspectral image to RGB image 

is shown in Figure 3(b), which is similar to the spectral response of human eye. The 

synthesized RGB offers a higher contrast and clear visualization of cellular structures than a 

single band within the HSI image.

2.3 Semi-automatic Nuclei Segmentation

Nuclei exhibit more cancer-related information compared to other sub-cellular components 

such as cytoplasm and lymphocytes in squamous epithelium. Therefore, by extracting nuclei 

from the image, the use of redundancy information can be avoided. Here we propose a 

nuclei extraction method based on principle component analysis (PCA). Because of the 

spectral distinction among nuclei, cytoplasm and background, the top three principle 

components (PCs) highlight these three parts separately, as shown in Figure 4 (a–c). 

Although nuclei in PC1 seem to be distinct, it is not easy to extract them with a hard 

threshold. Since the pixels of nuclei in PC1 have lower value than those of cytoplasm and 

background, while the pixels of nuclei in PC2 have higher value, the difference of PC2 and 

PC1 yields an image with high contrast of nuclei and cytoplasm. Generally, the pixels of 

nuclei have positive values, while those of cytoplasm have negative values, with slightly 

differences among different patients. Therefore, a binary mask can be easily made to 

segment nuclei from the slides. Considering the general size of nuclei, extracted components 

with a very small area were removed. For several overlapped nuclei, we used a watershed 

algorithm10, 11 to separate them.

Ma et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 Spectra-based support vector machine classification

We firstly investigate the classification ability of using spectra. With the binary masks 

generated, spectra of nuclei were extracted from the hyperspectral images of whole slides. 

Then, the average spectrum of all pixels in each extracted nucleus was calculated. Because 

of the illumination variation and thickness difference of the slides, spectra of nuclei have 

different amplitude. Therefore, each average spectrum was normalized by being divided by a 

constant, which is the sum of the spectrum at all wavelengths. The normalized average 

spectra were used for training and validation of SVM. Leave-one-patient-out validation was 

carried out. The patient that only had cancerous cells was only used for training. Each time 

spectra from 14 histologic slides were used for training, and 1 slide for validation. We 

implemented SVM with a radial basis function (RBF) kernel as classifier using MATLAB® 

(MathWorks, Natick, Massachusetts).

2.5 Patch-based convolutional neural network classification

After the segmentation of nuclei, HSI patches (101×101×87) were extracted, and each patch 

was centered on one segmented nucleus. Because some nuclei overlap too much to be 

separated, the size of patch was set to be large enough to include the overlapped nuclei. The 

nucleus-centered patches were used for the training and validation of a convolutional neural 

network (CNN) classifier. Leave-one-patient-out validation was carried out. The patient that 

only had cancerous cells was only used for training. The classifier is a 2D-CNN, consisting 

of 8 convolutional layers (stride 1×1) and 2 fully connected layers, as shown in Figure 5. 

Maxpooling between convolutional layers was 2×2. The optimizer used was Adam with a 

learning rate of 10−6. The output had two classes, i.e., cancerous and normal. Patches were 

augmented 12 times by being flipped and rotated before training the CNN.

Synthesized RGB patches of extracted HSI patches were used to train and validate the 2D-

CNN as well, in order to compare with the classification using HSI patches and evaluate the 

usefulness of extra spectral information. The number of RGB patches were the same with 

HSI patches. The CNN trained with RGB patches had the same architecture with the one for 

HSI patches, despite that the input size was 101×101×3.

2.6 Evaluation

Before capturing the images, we carefully selected regions in the slides to make sure that the 

ROIs belong to cancerous or normal tissue. Cancerous regions were selected from or close to 

cancer nests, and normal regions were chosen from stratified squamous epithelium far from 

cancerous area. In addition, our selection corresponded to the manual reference standard of 

the pathologist. Therefore, nuclei extracted from cancerous regions were considered 

cancerous, and those from normal areas were normal nuclei. After the nuclei extraction, we 

also looked through the nuclei and removed the outliers.

In this study, we use overall accuracy, specificity, and sensitivity to evaluate the 

performance, as shown in Equation (1). Accuracy is defined as the ratio of the number of 

correctly labeled nuclei to the total number of nuclei in the testing group. Specificity and 

sensitivity are calculated from true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN), where positive corresponds to cancerous and negative to normal. 
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Specificity is the ratio of TN to the sum of TN and FP, while sensitivity is the ratio of TP to 

the sum of TP and FN.

Accuracy = TP+TN
TP+FP + TN + FN ;    Sensitivity = TP

TP+FN;    Specificity

= TN
TN+FP

(2)

3. RESULTS AND DISCUSSION

With the proposed nuclei segmentation method, binary masks were generated, which only 

highlighted nuclei, as shown in Figure 6. Because of the slight spectral distinction and the 

small size, lymphocytes were avoided.

The average accuracy of SVM classification reached 68% using all the average spectra of 

cancerous and normal nuclei. The average specificity and average sensitivity of the SVM 

classification were 51% and 96.1%, respectively. The mean spectra of normal nuclei and 

cancerous nuclei with standard deviation are shown in Figure 7. In most cases, the average 

spectra of cancerous nuclei and normal nuclei have shown obvious distinction, except the 

three cases (Patient #127, #154, and #184) where spectra of cancerous and normal nuclei did 

not have much difference, and patient #110 that did not have normal nuclei. Overall there is 

a trend that normal spectrum is lower than cancerous spectrum in the wavelength range of 

460 nm to 600 nm, and turns higher in the range of 600 nm to 750 nm. However, spectra of 

two types of nuclei overlap, which makes it hard to achieve a high accuracy by merely using 

spectra-based classification.

The nucleus-centered HSI patch-based CNN classification could distinguish SCC nuclei 

from normal epithelium nuclei with an average AUC of 0.94, as well as 82.4% accuracy, 

81.9% specificity, and 84.8% sensitivity. The average AUC and accuracy of RGB patch-

based CNN classification were 0.93 and 81.6% using all the nucleus-centered RGB patches, 

as well as the average specificity and sensitivity of 79.1% and 88.8%, respectively. 

Classification results including AUC, accuracy, specificity and sensitivity of both CNNs are 

shown in Table 3 and Figure 8.

For most cases, HSI had better accuracy than RGB by 0.3% to 17.4%. However, for Patient 

#68, #127, and #134, classification using RGB patches outperformed HSI. For the 

hypopharyngeal slide #68, RGB patch-based CNN outperformed HSI with a 14.8% higher 

accuracy. Nevertheless, we could not conclude whether it was due to the spectral difference 

between organs, since we only had one slide. In addition, for patient #134, HSI patch-based 

CNN had very low specificity, which was the reason of its low accuracy. Moreover, both HSI 

patch-based CNN and RGB patch-based CNN outperformed the SVM classifier in 13 cases, 

except for Patient #161.

4. DISCUSSION

In this work, we developed a compact hyperspectral microscopic imaging system and 

utilized the system for SCC nuclei detection in 15 histologic slides of larynx and 
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hypopharynx from 15 head and neck cancer patients. H&E stained slides of normal-cancer 

tissue margin were imaged with our HSI microscopic system. We used the annotations drew 

by pathologists as ground truth, then carefully selected normal ROIs from healthy stratified 

epithelium areas, and cancerous ROIs from or close to cancer nest. Synthesized RGB images 

were generated using the hyperspectral data and a transformation spectrum that is close to 

human eyes spectral response. A semi-automatic nuclei segmentation method based on PCA 

was proposed to extract nuclei from hyperspectral images, in order to avoid using extra 

spectral information of cytoplasm and other sub-cellular components. Then, SVM classifier 

that uses average spectra of nuclei, as well as patch-based 2D-CNNs trained with HSI or 

RGB patches were implemented for the classification.

We tested three classifiers on 14 patients except for the patient that did not have normal 

nuclei from epithelium. The classification results show that the CNN method performed 

better than the SVM in 13 out of 14 cases, due to its use of both spatial and spectral 

information. The CNN trained with HSI achieved an average AUC of 0.94 and an average 

accuracy of 82.4%, while the RGB CNN had a slightly better AUC and slight lower average 

accuracy. CNN trained with HSI patches did not outperform RGB CNN all the time, but the 

additional spectral information has improved classification accuracy by 0.3% to 17.4% in 

most cases. For the only slide from hypopharynx, HSI did not have a satisfying result as 

RGB, however, we could not conclude whether it was due to organ difference.

Although spectra of nuclei from some slides had large overlap, we could find an overall 

trend that spectra of normal nuclei have smaller value than spectra of cancerous nuclei 

within the wavelength range of 460 nm to 600 nm, and higher value within the range of 600 

nm to 750 nm. This has shown a feasibility of using spectral information of nuclei as well as 

spatial information for cancer detection. For next step, we need to include more data of SCC 

nuclei from different organs, and employ a deeper network to better use the rich spectral 

information of hyperspectral images. In conclusion, the compact hyperspectral microscopic 

imaging system and classification method provides a promising tool for cancer detection on 

histologic slides.
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Figure 1. 
Representative synthesized RGB images showing the regions used for nuclei extraction and 

quantitative testing. (a-d) Normal regions in the second and third layers of stratified 

squamous epithelium. (e-h) Cancerous regions
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Figure 2. 
The compact hyperspectral microscopic system used for detection of SCC in histological 

slides.
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Figure 3. 
Synthesize RGB image from hyperspectral data cube. (a) Demonstration of different bands 

in a hyperspectral image. (b) Transformation function from hyperspectral data cube to RGB 

image. (c) Synthesized RGB image from (a).
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Figure 4. 
Nuclei segmentation using principal component analysis (PCA). (a) First principal 

component (PC1) that highlights nuclei with blurry pattern of cytoplasm. (b) Second 

principal component (PC2) that highlights cytoplasm with blurred nuclei. (c) Third principal 

component that highlights background. (d) Subtract PC1 from PC2.
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Figure 5. 
The 2D-CNN for HSI patch-based classification. The number above the layers indicate the 

feature channels.
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Figure 6. 
Nuclei segmentation from histologic slides. (a-c) Normal nuclei extraction. (d-e) cancerous 

nuclei extraction. (f) Synthesized RGB images of typical extracted cancerous and normal 

nuclei.
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Figure 7. 
Mean spectra with standard deviation of extracted cancerous and normal nuclei in each 

histological slide.
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Figure 8. 
Classification results of 14 patients using HSI patch-based 2D-CNN and RGB patch-based 

2D-CNN.
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Table 1.

Number of cancerous and normal nuclei extracted from each patient

Patient Number 62 68 74 110 127 134 137 154 161 166 172 174 184 187 188

Normal Nuclei 103 169 249 0 127 122 112 147 203 167 245 198 132 116 170

Cancer Nuclei 110 170 108 238 112 113 220 99 250 172 289 240 26 176 142
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Table 2

Confusion matrix

Predicted results

Positive (cancerous) Negative (normal)

Gold standard
Positive (cancerous) True positive (TP) False negative (FN)

Negative (normal) False positive (FP) True negative (TN)
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Table 3.

Patch-based 2D-CNN classification results of 14 patients using hyperspectral patches and RGB patches

Patient number Method AUC Accuracy (%) Specificity (%) Sensitivity (%)

62
RGB Patch 0.92 80.4 90.0 73.1

HSI Patch 0.95 83.5 98.7 68.4

68
RGB Patch 0.95 93.3 92.1 95.3

HSI Patch 0.89 78.5 90.9 67.0

74
RGB Patch 0.91 85.4 79.8 96.5

HSI Patch 1 87.2 81.9 100

127
RGB Patch 0.92 84.5 85.7 83.0

HSI Patch 0.92 75.6 60.3 92.9

134
RGB Patch 0.90 75.3 74.2 76.7

HSI Patch 0.86 69.2 32.2 99.1

137
RGB Patch 0.99 96.4 93.8 97.7

HSI Patch 1 99.1 97.3 100

154
RGB Patch 0.90 76.8 90.9 65.4

HSI Patch 0.90 77.5 58.2 97.0

161
RGB Patch 0.92 61.4 54.7 97.5

HSI Patch 0.93 65.0 100 48.4

166
RGB Patch 0.96 88.5 86.8 90.1

HSI Patch 0.97 89.3 90.4 87.9

172
RGB Patch 0.97 91.0 91.4 90.7

HSI Patch 1 97.4 94.7 99.7

174
RGB Patch 0.92 74.4 46.0 97.9

HSI Patch 0.98 91.8 85.9 96.7

184
RGB Patch 0.95 77.9 75.0 92.3

HSI Patch 0.94 80.2 83.3 70.5

187
RGB Patch 0.93 85.5 80.5 87.2

HSI Patch 0.94 87.5 83.5 90.2

188
RGB Patch 0.84 72.0 66.6 100

HSI Patch 0.84 72.3 89.4 69.1

Average
RGB Patch 0.93 81.6 79.1 88.8

HSI Patch 0.94 82.4 81.9 84.8
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