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ABSTRACT

This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion
estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI
using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme.
In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme,
we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is
employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting
optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with non-
differentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils
validate the performance of the proposed algorithm.

Keywords: D ynamic MRI, compressed sensing, parallel imaging, optical flow, primal-dual algorithm, line-

search.

1. INTRODUCTION

Dynamic magnetic resonance imaging (DMRI) reconstruction aims at obtaining spatial-temporal MRI sequences
from the measurements acquired in the k-t space. Due to the slow MRI acquisition, the trade-off between
spatial and temporal resolution in DMRI reconstruction is challenging. The existing methods to deal with
this issue include fast low-angle shot imaging,1 parallel imaging2 and compressed sensing (CS).3,4 In the CS
based framework, prior information (regularization) is helpful to regularize the ill-posed problem. The widely
used regularizations in DMRI reconstruction include sparsity in transformed domains,5 total variation (TV)
penalties,6 low-rank property7 or a combination of several priors.8–10 In the parallel imaging, a reduced amount
of data is acquired with an array of receiver coils. The corresponding coil sensitivity maps can be estimated in
advance. Therefore, the parallel imaging techniques can be readily incorporated in the CS framework, see e.g.11

Moreover, owing to the presence of anatomical motion in DMRI acquisition, combining the motion estimation
with the DMRI reconstruction has been widely explored in the literature, see e.g.11–14 In this paper, we couple
the reconstruction and motion estimation by embedding an intensity based optical (OF) constraint into the CS
framework. In order to reduce the computational cost, the OF constraint is exploited at a coarse resolution scale.
Moreover, an affine model is employed to model local tissue deformations.15 The resulting formulated problem
is addressed using the primal-dual algorithm with linesearch,16 which is efficient to handle non-differentiable
optimization problems. Experiments on the reconstruction of dynamic cardiac MRI are conducted to demonstrate
the efficiency of the proposed framework.

The remainder of this paper is organized as follows. The problem formulation is described in section 2.
Section 3 details the proposed algorithm and relevant derivations. Section 4 gives the experimental results.
Conclusions and perspectives are reported in Section 5.
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2. PROBLEM FORMULATION

2.1 Measurement model

Denoting f whose rows correspond to the voxels and columns represent the temporal frames as the DMRI
sequences, the DMRI can be modelled using the following matrix form equation

b = Af + n, (1)

where b is the measurement, f is the dynamic image sequences to be estimated, n is the measurement noise and
the measurement operator A = SF, where F is the partial Fourier transform at specific sampling locations and
S is the coil sensitivity map, which can estimated in advance.

2.2 Prerequisite

Optical flow constraint
Denoting f(x, t) as the tth frame MRI sequences at the location x = (x, y) (only 2D cases are considered in

this work), the brightness constancy constraint in DMRI is expressed by

f(x, t) = f(x− d(x, t), t0), (2)

where d(x, t) = [u(x, t),v(x, t)]T is the displacement field. Under the small displacement assumption, we have

f(x− d(x, t), t0) ≈ f(x, t0)− ∂xf(x, t0)u(x, t)− ∂yf(x, t0)v(x, t). (3)

Thus, the OF constraint equation is given by

f(x, t)− f(x, t0) + ∂xf(x, t0)u(x, t) + ∂yf(x, t0)v(x, t) = 0. (4)

In addition, since the motion patterns in DMRI can be very complicated, e.g., rotation, expansion and shear,
the affine model for the motion vectors [u,v]T has been introduced15,17 as following

u(x, t) = u0(x, t) + u1(x, t)x+ u2(x, t)y (5)

v(x, t) = v0(x, t) + v1(x, t)x+ v2(x, t)y, (6)

where u0, u1, u2 and v0, v1, v2 are the affine parameters defining the deformation field of pixels at position
(x, y) in frame t w.r.t. the reference frame f(x, t0).

Moreover, the weighted OF equation expressed in (7) has been exploited to estimate the motion vectors in
different resolution scale, see e.g.,.15,17∫

x

w(x− x0) [f(x, t)− f(x, t0) + ∂xf(x, t0)u(x, t) + ∂yf(x, t0)v(x, t)] dx, (7)

where w is a window function centered at x0. In this work, B-spline based function has been used to build the
window function. Varying the B-spline degree changes the size of w. Dilating and shifting the window function
leads to an OF equation at different spatial scale. Specifically, at a coarse scale j, the window function is given
by

w(j)(x− x0) = w

(
x− 2jx0

2j

)
. (8)

Proximal operator
The proximal operator of function g (lower semicontinuous) is defined as

proxsg(p) = arg min
x
g(x) +

1

2s
‖x− p‖2. (9)

Note that the proximal operator calculation always has a unique solution.



Primal dual algorithm
Given an optimization problem as below

min
y
g(Cy) + h(y), (10)

where h and g are proper, convex and lower semicontinuous functions, C is a continuous linear operator. The
primal dual algorithm (PDA) to deal with the problem (10) is given by

For k = 1, . . .⌊
yk = proxσh

(
yk−1 − σC∗zk−1

)
zk = proxsg∗l (zk−1 + sC(2yk − yk−1))

(11)

where C∗ represents the adjoint of matrix C and g∗ is the conjugate of function g. Note that the stepsize
parameters in PDA need to satisfy the relationship sσ‖C‖ ≤ 1 to ensure the convergence. More details about
the PDA can turn to the literatures, see e.g.18

2.3 Problem formulation

We denote the DMRI acquired at instance t0, i.e., f(x, t0) as the reference frame. Note that a reference frame
can be obtained from a fully-sampled data. Moreover, by replicating the f(x, t0) and stack them into a cube of
the same size as the image sequences to be estimated, we obtain a reference cube, denoted as f̄0.

The problem of jointly reconstructing the DMRI and estimating the motion vectors can then be formulated
as blow

min
f ,d
‖Af − b‖22 + η1‖f‖∗ + η2‖∇f‖1 + τ‖Mw(j)(f , f̄0,d)‖1 + ψ(d), (12)

where ‖·‖∗ and ‖·‖1 represent the nuclear norm and `1 norm of variables, η1‖f‖∗+η2‖∇f‖1 is a joint regularization
term for the DMRI (low rank plus TV), Mw(j)(f , f̄0,d) is the weighted OF equation at scale j given by

Mw(j)(f , f̄0,d) = 〈f − f̄0〉w(j) + 〈∂xf̄0〉w(j)u + 〈∂y f̄0〉w(j)v

=〈f − f̄0〉w(j) + 〈∂xf̄0〉w(j)u0 + 〈x∂xf̄0〉w(j)u1 + 〈y∂xf̄0〉w(j)u2 + 〈∂y f̄0〉w(j)v0 + 〈x∂y f̄0〉w(j)v1 + 〈y∂y f̄0〉w(j)v2

(13)

where 〈r〉w(j) is the weighted average of variable r ∈ {f − f̄0, ∂xf̄0, x∂xf̄0, y∂xf̄0, ∂y f̄0, x∂y f̄0, y∂y f̄0} at scale j,
which is written as

〈r〉w(j) =

∫
x

w(j)(x− x0)r(x)dx. (14)

ψ(d) is the regularization for the motion vector. We consider the isotropic TV prior to smooth the displacement
field. Thus, we have

ψ(d) = γ

2∑
i=0

‖∇ui‖1 + γ

2∑
i=0

‖∇vi‖1. (15)

3. METHODOLOGY

The formulated problem is addressed using the primal dual algorithm with linesearch (PDAL),16 known to be
efficient in handling non-differentiable convex optimization problems. In order to use PDAL to address (12), we
rewrite it as blow

min
y
g(Cy) =

10∑
l=1

gl(Cly) ,
10∑
l=1

gl(Ωl) (16)

where y = [f ,u0,u1,u2,v0,v1,v2]T is the variable to be estimated, Ωl = Cly, the matrix C is expressed by



C =



C1

C2

C3

C4

C5

C6

C7

C8

C9

C10


=



A 0 0 0 0 0 0
〈·〉w(j) 〈∂xf̄0〉w(j) 〈x∂xf̄0〉w(j) 〈y∂xf̄0〉w(j) 〈∂y f̄0〉w(j) 〈x∂y f̄0〉w(j) 〈y∂y f̄0〉w(j)

I 0 0 0 0 0 0
T 0 0 0 0 0 0
0 ∇ 0 0 0 0 0
0 0 ∇ 0 0 0 0
0 0 0 ∇ 0 0 0
0 0 0 0 ∇ 0 0
0 0 0 0 0 ∇ 0
0 0 0 0 0 0 ∇


(17)

The ten functions are expressed as 

g1(Ω1) = 1
2‖Ω1 − b‖22,

g2(Ω2) = τ‖Ω2 − 〈f̄0〉w(j)‖1,
g3(Ω3) = η‖Ω3‖∗,
g4(Ω4) = η‖Ω3‖1,
gl(Ωd) = γ‖Ωd‖1, for d = 5, . . . , 10,

(18)

By introducing the dual variables z = [z1, . . . , z10]T , the PDA to solve problem (16) is given by

For k = 1, . . .⌊
yk = yk−1 − σ

(∑10
l=1 C∗l z

k−1
l

)
zkl = proxsg∗l (zk−1l + sCl(2yk − yk−1))

(19)

In order to accelerate (19), we use the PDA with linesearch to address (16), which is summarized as below

Algorithm 1 Joint MRI reconstruction and motion estimation using PDAL (J-PDAL)

Require: y0 = [f0,u0
0,u

0
1,u

0
2,v

0
0,v

0
1,v

0
2], z0l , l ∈ {1 · · · 10}, σ0 > 0, α > 0, ε ∈ (0, 1), ρ ∈ (0, 1)

1: Set θ0 = 1
2: for k = 1 . . . do . Update y = [f ,u0,u1,u2,v0,v1,v2]

3: yk = yk−1 − σk−1
(∑10

l=1 CT
l zk−1l

)
4: Choose any σk ∈ [σk−1, σk−1

√
1 + θk−1]

5: Linesearch . Start linesearch
6: ȳk = yk + θk(yk − yk−1)
7: for l=1, . . ., 10 do
8: zkl = proxασkg∗l

(zk−1l + sClȳ
k) . Update zl by calculating the proximal operator of g∗l (·)

9: if
√
ασk‖CT zk −CT zk−1‖ ≤ ε‖zk − zk−1‖ then

10: break the linesearch . Break linesearch
11: else
12: σk = σkρ and go to linesearch

13: Until stopping criterion is satisfied. . Stopping criterion

Note that the calculations of the proximal operators of g∗l are given as following
proxsg∗1 (z̃1) = z̃1−sb

1+s ,

proxsg∗2 (z̃2) = ProjτP
(
z̃2 − s〈Ī0〉w(j)

)
,

proxsg∗d (z̃d) = ProjγP (z̃l), for l = 4, . . . , 9,

proxsg∗10(z̃10) = ProjλP (z̃10),

(20)



where ProjτP is a projector onto the convex set (Euclidean `2-ball) τP = {‖p‖∞ ≤ τ}, where ‖p‖∞ = maxi,j |pi,j |.
In practice, this projector can be computed using the straightforward formula

ProjτP (p) =
p

max{τ, |p|}
. (21)

4. EXPERIMENTAL RESULTS

In this section, We conducted experiments on in vivo cardiac perfusion (without parallel imaging) and cardiac
cine (with parallel imaging) data. The proposed algorithm was also compared with the L+S algorithm.13

The myocardial perfusion MRI data∗ was acquired using a saturation recovery FLASH sequence at the
University of Utah, courtesy of Dr. Edward DiBella.8 The radial sampling trajectory was employed in this
simulation with a decimation factor 6. The data is of size 90 × 190 × 70. Fig. 1 displays the fully sampled
data and the reconstructed image sequences for the cardiac perfusion data using the proposed J-PDAL and the
algorithm L+S†. The RMSEs of the two algorithms for each frame are also shown in Fig. 1. The proposed
algorithm outperforms the L+S algorithm in terms of the RMSEs.

The cardiac cine data was acquired in a healthy adult volunteer with a modified TurboFLASH pulse sequence
on a whole-body 3T scanner (Tim Trio, Siemens Healthcare, Erlangen, Germany) using a 12-element matrix coil
array.13 This data is of size 256 × 256 × 24. The Cartesian downsampling trajectory was employed with a
decimation factor 6. Fig. 2 shows the reconstructed images for the cardiac cine data using the J-PDAL and
L+S. More clearly boundaries can be observed in the reconstructed image sequences using the proposed J-
PDAL. Due to the absence of groundtruth of the cardiac cine data, the resolution gain (RG)19 is employed for
the quantitative evaluation of the reconstruction performance. RG is the ratio of the normalized autocorrelation
(higher than −3 dB) of the initial MRI sequences (i.e., ATb) to the normalized autocorrelation (higher than
−3 dB) of the restored MRI sequences. Fig. 3 displays the RGs using the two algorithms for each frame of the
cardiac cine data. Note that the RGs are calculated for the region of interest (ROI), shown in the blue box in
Fig. 2.

Figure 1. Left: fully sampled (top) and reconstructed cardiac perfusion data using L+S (middle) and J-PDAL (bottom);
Right: RMSEs calculated for different temporal frames using L+S (blue) and J-PDAL (red).

∗The dataset implemented in this paper can be downloaded https://research.engineering.uiowa.edu/cbig/

content/matlab-codes-blind-compressed-sensing-bcs-dynamic-mri
†The matlab implementation of the L+S algorithm can be found http://cai2r.net/research/ls-reconstruction

https://research.engineering.uiowa.edu/cbig/content/matlab-codes-blind-compressed-sensing-bcs-dynamic-mri
https://research.engineering.uiowa.edu/cbig/content/matlab-codes-blind-compressed-sensing-bcs-dynamic-mri
http://cai2r.net/research/ls-reconstruction


Figure 2. Reconstruction of cardiac cine data using L+S (top) and the proposed J+PDAL (bottom).

Figure 3. Resolution gain (RG) of the reconstruction of cardiac cine image sequences using L+S (blue) and the proposed
J+PDAL (red).



5. CONCLUSIONS

The proposed algorithm is able to integrate the image reconstruction and motion estimation. The joint low
rank plus total variation regularization is an appropriate prior for the dynamic cardiac dataset explored in this
paper. From the experimental results, the DMRI reconstruction quality on the in vivo cardiac data using the
proposed J-PDAL outperforms the performance of the L+S algorithm. Future works include the estimation of
the reference image and multi-resolution strategies for motion estimation.
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