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Abstract

Several attempts have been made in the past few years to develop and implement an automated 

segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation 

remains challenging in this population because of the low signal-to-noise ratio, large partial 

volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we 

propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-

weighted images. We trained our algorithm using a neonatal dataset composed of 3 full-term and 4 

preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST 

algorithm from the FSL library software and a Bayesian segmentation approach to create a 

threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows 

promising results with our pilot training set. In both preterm and full-term neonates, automated 

Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, 

while successfully removing the subcortical structure and cleaning the edges of the cortical grey 

matter. This method show promising refinement of the FAST segmentation by considerably 

reducing manual input and editing required from the user, and further improving reliability and 

processing time of neonatal MR images. Further improvement will include a larger dataset of 

training images acquired from different manufacturers.
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1. INTRODUCTION

The last months of pregnancy are particularly important for the development of the child's 

brain and the effects of premature birth on neurological development are considerable. In 

spite of significant increases in survival rates, infants born preterm of very low birth weight 

remains at risk for poor neurological and neurodevelopmental outcomes1–5. In recent years, 

advances in neuroimaging techniques and quantitative methods have significantly improved 

the assessment of typical or atypical brain growth and the detection of brain injuries 

associated with prematurity6,7. Brain parcellation, or segmentation, refers to the labeling of a 

brain image into discrete anatomical or functional regions. An increasing number of image 

analysis tools are available to help neurologists and radiologists identify atypical brain 

structures or injuries in older subjects8–11. However, to date very few methods are able to 

precisely identify and categorize these regions in neonates and young children. This is 

largely due to the immature brain having a different water and fat composition than the adult 

one. The unmyelinated white matter in neonates and young infants typically gives neonatal 

images inverted cortical grey matter (cGM) and unmyelinated white matter (uWM) relative 

intensities, resulting in a smaller contrast between these tissue types (low contrast-to-noise 

ratio) as well as large partial volume effects12–14. Because of this, and along with the high 

anatomical variability in neonatal brain development, clinicians and scientists still largely 

use manual segmentation of neonatal brain tissue to examine overall brain growth or a given 

structure of interest in this population. This process is extremely time-consuming, as 

complete brain tissues segmentation (cortical and subcortical GM and WM structures, and 

cerebrospinal fluid (CSF)) can take up to 100 hours per infant12 and is subject to intra and 

inter-rater variabilities.

Several attempts have been made recently to develop and implement an automated 

segmentation adapted to the neonatal and infant population12,15–17. However, there is still a 

paucity in the standardization and availability of these methods to the scientific community 

and in the clinic. Furthermore, most of the commonly available segmentation methods use 

the same thresholds for the entire image to label each voxel according to different tissue 

types. These approaches often fail to consider the variation in contrast and intensity of a 

given brain tissue within different regions of the neonatal brain (i.e. anterior vs. posterior 

differential maturation rate is reflected by different intensity contrasts between cGM and 

uWM). Here, we aim to address the low contrast-to-noise ratio of the uWM and cGM and 

differential regional maturation rate of the neonate brain in developing an automated 

segmentation method of the cGM. We combine a commonly used Bayesian probabilistic 

segmentation algorithm along with manually segmented T2-weighted MR images of preterm 

and full-term born neonates to generate a learning algorithm adapted to the neonatal 

population.
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2. METHODS

2.1 Neonatal data

Our training dataset consists of 3 full-term neonates and 4 preterm neonates retrospectively 

recruited with visually normal MRI scans. The inclusion criteria for our preterm subjects 

were the following: 1) prematurity (fewer than 37 gestational weeks at birth), and 2) visually 

normal scans on conventional MR imaging. Demographic information of the neonatal 

dataset can be found in Table 1. All subjects with visible brain injuries such as 

intraventricular hemorrhage stage III or IV and hydrocephaly were excluded from the 

analysis. T2-weighted MRIs were acquired using a dedicated neonatal head coil on a 3T 

Siemens scanner at the Children’s Hospital of Pittsburgh using a coronal three-dimensional 

(3D) Fast (Turbo) Spin Echo sequence (Matrix = 256 × 256 in plane), Resolution = 

0.7×0.7×0.7 mm3, TE/TR = 418 ms/3100 ms, Flip angle = 120°, field of view = 180 mm in 

plane). The study protocol was approved by the institutional review board of the Children’s 

Hospital of Pittsburgh and Children’s Hospital Los Angeles.

2.2 Preprocessing

Preprocessing of the T2-weighted images was performed using the FMRIB's software 

library (FSL) (www.fmrib.ox.ac.uk/fsl). All images were skull-stripped using the Brain 

Extraction Tool (BET)18 with bias field correction to account for field inhomogeneities. 

FMRIB’s Automated Segmentation Tool (FAST)19 was used to provide initial partial 

volume estimations (PVEs) for the cGM. Additionally, each image in the training set was 

manually segmented for cGM by an expert in pediatric neurology and reviewed by a second 

expert in pediatric radiology using ITK-SNAP20.

2.3 Segmentation pipeline

The Bayesian segmentation pipeline is displayed in Figure 1. One healthy full-term neonate 

(Subject TC_046) from the training set was aligned (rotated and translated) to a neonatal 

template image from JER lab21,22 using a 6 parameters linear registration from the FMRIB’s 

Linear Image Registration Tool (FLIRT)23,24. The aligned image served as the template for 

the rest of the segmentation pipeline, providing a standard space for all training and test 

volumes. All PVEs and manually performed segmentations were registered to the standard 

space using the transformation matrix obtained from a 9 parameters FLIRT registration of 

their respective T2-weighted images to the template (Figure 1A–D).

Registering a manual segmentation from the native space to the standard space results in a 

non-binary mask with values ranging between 0 and 1. A binary mask for the registered 

manual segmentation can be obtained by thresholding the file such that voxels with a value 

above the threshold are given a value of 1, and voxels with value below the threshold are 

given a value of 0. To obtain the binary masks used in the training phase, all non-binary 

manual segmentations were thresholded at 0.5, as this yielded the most consistent and 

reliable binary masks for our dataset. Binary masks obtained using different threshold values 

are illustrated in Figure 2.
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FSL FAST’s segmentation compares PVEs to a single threshold value to determine whether 

to include each voxel in the segmentation. This often results in an overly inclusive grey 

matter segmentation in infants, including subcortical grey matter, cerebellum and brainstem, 

uWM. To address this, we used a Bayesian approach which adjusts the probability of a voxel 

being included in the cGM segmentation based on its position in standard space. This is 

achieved by thresholding the PVE output values according to a variable threshold at each 

voxel in the standard space. The optimal threshold value for each voxel was determined by 

minimizing the error between the PVE (Figure 1B) and the manually segmented binary 

mask (Figure 1C) across all subjects in the training set. The training algorithm used to 

determine the optimal threshold values and the 3D threshold matrix is displayed in Figure 3. 

Once this matrix was trained, each voxel in the registered cGM PVEs from the testing set 

(Figure 1D) was compared to the corresponding voxel in the threshold matrix (Figure 4). To 

smoothen the edges and have a continuous structure representative of the cGM morphology, 

we combined the segmentation obtained from FAST and Bayesian approach, and used the k-

Nearest Neighbor (kNN) technique12 (Figure 1E). The kNN determine the inclusion of a 

given voxel in the segmentation based on the prior inclusion of its nearest k neighbors in a 

3×3×3 cube around the voxel of interest. This technique is sensitive to the local structure of 

the segmentation and is optimized for the k value to give the resulting segmentation (Figure 

1F) the best possible representation of the cortical morphology.

To compare the Bayesian and FAST segmentations performance to that of the manual 

segmentation, the Dice similarity coefficients (DSC) were calculated for both techniques 

according to equation 1:

DSC = 2| A ∩ B|
|A | + |B| (1)

This coefficient indicates the degree of similarity, or agreement, between images A and B, 

where A is an automated segmentation (FAST alone or Bayesian) and B is the manually 

segmented binary mask. Resulting DSC values ranges from 0 to 1, with lower values 

indicating no or low similarity and higher values denoting perfect or high similarity between 

the images.

Because of the limited sample size, we used a leave-one-out cross-validation method25,26 to 

evaluate the performance of the model. This method allows better usage of data to obtain a 

more realistic Dice score. Thus, training was performed using 6 of the 7 available images, 

and testing was performed using the remaining image. This was repeated with for all the 

images available in our dataset.

3. RESULTS

Figure 5 shows the FAST-only segmentation (Figure 5C), the FAST segmentation (white) 

with a Bayesian mask (red) (Figure 5D), the final segmentation output using the Bayesian 

technique and k-NN smoothing (Figure 5E), and the manual segmentation (binary mask) of 

the cGM (Figure 5F) performed on all the images of the training set. Dice similarity scores 
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between the three methods and the manually segmented binary mask of the cGM are shown 

in Table 2.

The Dice similarity score found when comparing the automated Bayesian segmentation to 

that of the manual segmentation show high similarity, suggesting that little or minimal 

editing is required from the user following the segmentation process. Further inspection of 

Figure 5 indicates that in both populations, the automated Bayesian segmentation generates 

a smoother and more continuous segmentation compared to the FAST segmentation. The 

Bayesian mask (Figure 5D) applied on the FAST segmentation allow for the removal of the 

subcortical structures, while also cleaning the outer and inner edges of the cGM. The 

resulting Bayesian segmentation, combined with the k-NN smoothing, gives a more 

representative segmentation of the cGM morphology, improving the continuity and 

smoothness of the cortical segmentation.

4. DISCUSSION

Given the high MRI sensitivity to patient movements and the inherent difficulty in having 

young children remaining still for the acquisition duration, neonatal brain images require 

faster acquisitions and usually show poor signal-to-noise ratio27,28. In addition, partial 

volume effect artifacts often occur due to the poor intensity contrast of the unmyelinated 

white matter and the grey matter, leading to the mislabel of all tissue type (most frequently, 

labelling the CSF at the cGM boundaries as unmyelinated WM or excessively thick cGM)29. 

By combining the manual segmentation of the cGM and the Bayesian automated 

segmentation, we proposed an automated segmentation of the cGM adapted to the preterm 

and full-term neonate populations. Our method uses partial volume estimates (PVE) of the 

T2-weighted images as prior. The learning algorithm then generates probabilistic thresholds 

for every voxel by minimizing the error between the manually segmented cGM and the 

thresholded PVE.

When combined with the nearest neighbor smoothing, the automated Bayesian segmentation 

achieved a high similarity score compared to the manual segmentations. It successfully 

removed subcortical and cerebellar areas that were previously included in the FAST-only 

segmentation, and more accurately matched the delineation of cGM in terms of continuity 

and smoothness. Our method shows promising results given our limited training set and the 

high inter-individual variability of brain developmental rate in the neonatal population. In 

full-term and preterm neonates, in which higher inter-individual variability and lower 

contrast-to-noise ratio are frequently observed, the Bayesian method results in a smoother 

and more continuous cGM segmentation. The contribution of the Bayesian method to the 

commonly used FSL FAST algorithm provide an accurate and reliable parcellation of the 

neonatal cortex, with little manual editing required from the user. Our technique might 

reduce significantly the manual editing required from the user, thus improving both 

processing time and inter/intra-rater reliability throughout the segmentation process.

In future work, we plan to include additional manually segmented scans as part of the 

training set, including T2-weighted images acquired from different manufacturers to 

improve the stability and reliability of the segmentation pipeline. We also plan to improve 
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this pipeline by combining T1 and T2 weighted images to allow for a better grey and white 

matter contrast estimation, and by implementing normalization of local variation in intensity. 

We will also apply this pipeline on a larger dataset of prematurely and full-term born 

neonates. This pipeline will allow us to test for significant differences in whole brain cortical 

volume and morphometry between full-term and preterm born infants. These differences are 

likely to underlie important cognitive and neurodevelopmental outcomes that are frequently 

observed in preterm born children such as attentional deficit disorder or language delays.
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Figure 1. 
The Bayesian segmentation pipeline. Training phase: After images registration to the 

standard template, a threshold matrix is created to find the optimal values that minimize the 

error between the partial volume estimations and manual segmentations from the training set 

images. Testing Phase: Automated segmentations are then obtained from comparing the 

registered PVE of target images with the threshold matrix values for each voxel in the 

template space. Details regarding the training algorithm used to determine the optimal 

threshold values can be found in Figure 3. For the final output, the binary results from FAST 

Chou et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Bayesian cortical segmentation are combined and smoothened using the k-Nearest 

Neighbor (kNN) technique.
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Figure 2. 
The registered manual segmentation thresholded at 3 different values. Lower thresholds are 

overly permissive, while higher thresholds can leave breaks in the segmentation.
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Figure 3. 
Threshold training performed for each voxel in the common space. This algorithm 

determines the threshold value that minimizes the error between the automated and manual 

segmentations in the training set.
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Figure 4. 
The resulting matrix of optimal threshold values after the training phase. Voxels with higher 

thresholds require high PVE values to be included in the segmentation. Voxels with lower 

thresholds are included more readily. All PVE outputs in the testing phase are thresholded 

using this matrix.
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Figure 5. 
Images for all subjects in the training set. A) Linearly registered T2-weighted MRI images. 

B) cGM partial volume estimation. C) FAST segmentation. D) FAST segmentation (white) 

with Bayesian mask (red) E) Final segmentation using Bayesian technique and k-NN 

smoothing F) Manual segmentation.
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Table 2

Dice Similarity Coefficients comparing the performance of FAST only and FAST with Bayesian Segmentation 

to the manual segmentation of each subject.

Subject ID FAST
only

FAST with
Bayesian

Segmentation

Preterm 012 0.6900 0.7888

020 0.7665 0.8518

025 0.6920 0.7684

0375 0.7867 0.8638

Full-term 0432 0.8199 0.8865

046 0.7816 0.8836

047 0.8142 0.8799

Average 0.7644 0.8461
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