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Abstract

We present an automatic segmentation and statistical shape modeling system for the paranasal 

sinuses which allows us to locate structures in and around the sinuses, as well as to observe the 

natural variations that occur in these structures. This system involves deformably registering a 

given patient image to a manually segmented template image, and using the resulting deformation 

field to transfer labels from template to patient. We use 3D snake splines to correct errors in the 

deformable registration. Once we have several accurately segmented images, we build statistical 

shape models for each structure in the sinus allowing us to observe the mean shape of the 

population, as well as the variations observed in the population. These shape models are useful in 

several ways. First, regular video-CT registration methods are insufficient to accurately register 

pre-operative computed tomography (CT) images with intra-operative endoscopy video because of 

deformations that occur in structures containing high amounts of erectile tissue. Our aim is to 

estimate these deformations using our shape models in order to improve video-CT registration, as 

well as to distinguish normal variations in anatomy from abnormal variations, and automatically 

detect and stage pathology. We can also compare the mean shape and variances of different 

populations, such as different genders or ethnicities, and observe the differences and similarities, 

as well as of different age groups, and observe the developmental changes that occur in the 

sinuses.
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1. DESCRIPTION OF PURPOSE

Automatic segmentation of medical images is important for several reasons. Manual 

segmentation is tedious and not scalable to large datasets. Automatic segmentation allows us 

to extract shapes from a large number of labeled images, and to study large populations. 

These shapes or structures play an important role in registration. However, for our 
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application, video-CT registration during minimally invasive surgery through the paranasal 

sinuses, simply having a segmented structure can be insufficient. Several structures in the 

sinus exhibit high variability, for instance structures containing erectile tissue. The three 

turbinates, superior, middle and inferior, which reside in the nasal passage contain erectile 

tissue. These turbinates undergo periodical deformation as the complete they nasal cycle, 

which is the alternating partial congestion and decongestion of the nasal cavities due to the 

expansion and contraction of the turbinates. These contractions can be further exaggerated 

due to decongestants administered to patients before surgery to facilitate easy movement of 

tools in the sinus. These changes in structure make registration of turbinates error prone. In 

order to tackle this problem, we need models explaining structure variability in addition to 

high quality segmentations.

Our aim, therefore, is to obtain accurate segmentations with correspondences for a large 

number of patient images, build shape models, and learn useful information from these 

models. In order to achieve these goals, we built a template image (Fig. 1) which we 

manually segmented under the supervision of an otolaryngologist, and deformably registered 

all given patient images to this template. We then automatically segmented the patient image 

by deforming the template segmentations to patient space using the deformation fields 

resulting from the registration. This segmentation is further improved using gradient vector 

flow (GVF) to drive mesh vertices closer to edges in the patient image. Since we deform one 

shape to a collection of images, we are guaranteed correspondence between the shapes. 

Finally, once we obtained accurate segmentations for several images, we built statistical 

shape models (SSMs) for each segmented structure, and acquired statistics for our patient 

population. Each of these steps is detailed in the next section.

2. METHODS

2.1 Template creation

In order to minimize the influence of individual variation in our registration, we built a 

template image which represents the mean of a collection of images. We use a standard 

template building technique (Fig. 1), which requires one target image, and n other images of 

the same dimensions and resolution as the target image. These n images are deformably 

registered to the target image using ANTs registration software,1 resulting in deformation 

fields that can transform the target image to each of the n images. If we average these 

deformation fields and transform the target image by this mean deformation field, it takes 

the target image towards the space of the mean of the n images.2 This process can be 

repeated several times using the output from the previous iteration as the new target image. 

Each iteration further reduces the individual variation of the target image, and moves it 

closer to the population mean. The resulting image results in a highly symmetrical and ideal 

looking image of the sinus. This is our template image, which we hand segment under the 

supervision of an expert, and use to automatically segment any given patient image.

2.2 Automatic segmentation

Given a new patient image, we deformably register it to our segmented template image, 

again using ANTs registration software.1 We extract surface meshes3 from our template 
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segmentations, and use the deformation fields from deformable registration to move each 

vertex in our template meshes to patient space. We use GVF to correct errors in registration.4 

Since it is not possible to sequentially order vertices in 3D the way it is done in 2D, we need 

to find a way to order the vertices that make up our snake splines. Simple blob-like 

structures have been approximated with parametrized ellipsoids with high accuracy.5 

However, structures in the sinus can often be too complex to be approximated using a simple 

parametrization. We take a very simple approach to solving this problem, without having to 

parametrize a complex shape, or having to build and store a large matrix containing per 

vertex neighborhood information.

Algorithm 1

Order neighboring vertices

1: procedure Order_Neighboring_Vertices(Mesh m, v[][]) ▷ v[][] is a vector of vectors

2:  for each vertex i in m do

3:   f ← find_faces(i) ▷ Find faces incident on i, ordered clockwise

4:   for j = 0 → f.size() do ▷ For each face in f

5:    v[i][j] ← vertex at the end of half-edge6 facing vertex i

6:  return v[][]

Algorithm 2

Sample vertices

1: procedure Sample_Vertices(Mesh m, i, n, s[], v[][]) ▷ Sample n vertices in a spiral starting at i

2:  visited.resize() ← m.vertices.size()

3:  s.resize() ← n

4:  s[0] ← i

5:  visited[] ← 0 ▷ visited initialized to 0

6:  k ← 0

7:  x ← 0

8:  for j = 1 → n do

9:   if k < v[i].size () then

10:    if !visited[i][k] then ▷ Visit all unvisited vertices in one-ring neighborhood of 
i

11:     s[j] ← v[i][k]

12:     visited[v[i][k]] = 1

13:    k ← k + 1

14:   else ▷ Visit all unvisited neighbors of vertices in one-ring 
neighborhood of i

15:    k ← 0 ▷ Once the two-ring neighborhood is exhausted, proceed 
to the next

16:    x ← x + 1 ▷ Repeat until n vertices have been sampled

17:    i ← s[x]

18:  return s
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We use a simple but efficient sampling structure for our 3D snake control points. We sample 

points in a spiral around each vertex (Algorithms 1, 2), which allows us to store the points 

on this curve in a sequential order in a vector. These vertices can therefore be moved using 

simple vector-matrix operations. The user can specify how many points should be sampled 

at each iteration, which defines the length of the curve. These curves have consistent internal 

and external directions which make it easy to define internal and external energies4 on the 

spline (Fig. 2). The only points of concern with this sampling structure are at the source and 

end points on the spiral. These two points are attracted to each other despite being far away 

from each other spatially due to our closed loop formulation. We deal with this by updating 

all points after propagation, except these two points. These points are updated in other 

iterations when they are not source or end points (Fig. 3). We use GVF to guide these 

control points toward edges in the corresponding image.4 This method gives us highly 

accurate segmentations (Fig. 4, 5, Table 1), evaluated in the next section. We are working on 

further improving segmentation by making use of more information in our images and 

meshes, such as pixel intensity in addition to image gradients, as well as vertex orientation 

and mean shape information in addition to neighborhood information.

2.3 Statistical Shape Models (SSMs)

Once we have high quality segmentations in images of several healthy individuals, we can 

study the statistics of this population. We do so by using principal component analysis 

(PCA).7 We create shape vectors, stack them into a matrix, and find the eigenvectors and 

eigenvalues of this matrix. This allows us to observe the mean shape as well as the principal 

modes of variation in our dataset. This information not only shows us how different 

structures vary across our sample population, but also reflects natural variations that occur 

periodically in some structures in the sinus.

3. RESULTS

We compare our segmentation results to manual segmentations. Table 1 shows that 

segmentations after GVF have smaller average error, and almost always have smaller 

maximum error. Fig. 4 shows edge maps of deformably registered maxillary sinuses (red) 

and those after snakes splines (green) compared against manual segmentations (blue). The 

green and blue edge-maps overlap almost perfectly (right) indicating snakes splines 

minimizes errors in segmentation. Fig. 5 also shows results from deformable registration and 

GVF on the right maxillary sinus. Errors noticeable after deformable registration (top) are 

clearly reduced after GVF (bottom).

We build our SSMs using these highly accurate segmentations. However, our point 

correspondences may contains errors, especially after GVF since we move the vertices in 

each shape independently to improve segmentations. We use this initial point 

correspondence to estimate a SSM, which can then be used to re-estimate point 

correspondences.8 In this way, we update our point correspondences using SSMs. By 

repeating this process multiple times, we can iteratively improve our point correspondences. 

The results from iterative improvement in point correspondences on the middle turbinate can 

be seen in Fig. 6.
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Finally, we evaluate whether or not our shape models can estimate natural variations in the 

turbinates. We know that the turbinates, superior, middle, and inferior, contain erectile tissue, 

and facilitate the nasal cycle by expanding and contracting periodically. Since each image in 

our dataset likely contains turbinates at different points in the nasal cycle, we can 

hypothesize that the variation we see in our population reflects the natural variation that 

turbinates undergo. In order to evaluate this hypothesis, we segment two CT images from the 

same patient, one pre- and the other post-operation, using the automatic segmentation 

method described in section 2.2. Then, we project the skull from both the pre- and post-

operative images onto the skull model, and obtain mode weights for each shape. We can then 

use the mode weights and the shape model to estimate both the pre- and post-operative 

skulls. The mode weights for both the pre- and post-operative skulls are similar, and 

therefore, the two estimated shapes are also very similar. This is what we would expect 

because since skulls do not exhibit change over a short period of time.

We repeat the same process with the inferior turbinates, and observe are large variation in 

the mode weights, and hence also in the estimated shapes. This, again, is as we expected, 

since the turbinates are likely at different points in their nasal cycle in the two CT images. 

Fig. 7 shows the lack in variation in the pre- and post-operative skulls, whereas Fig. 8 shows 

the similarity between population variation and natural variation in the inferior turbinates.

4. DISCUSSIONS

Video-CT registration using natural shape variations in the turbinates

Since we can show that population variation is able to reflect natural variation in the 

turbinates, we hope to attempt to use this information to co-register pre-op patient CT and 

intra-op endoscopy video. The problem we face during this registration is due to topology 

changes that occur in the turbinates. During a CT scan, the patients turbinates are at some 

stage of the nasal cycle. However, during surgery, the patient is administered de-congestants 

to facilitate smooth insertion and movement of the endoscope and other surgical tools. This 

causes a very high amount of contraction in the turbinates. Since the endoscope sees the 

middle turbinate soon after entering the sinus, we want to be able to use this structure to start 

our video-CT registration. We aim to use the modes of variation of the middle turbinate to 

optimize registration (Fig. 9).

Normal vs abnormal variations

Since our SSMs are build from a set of patient images with “normal” or disease free sinuses, 

they tell us what types and amounts of variations we should expect in each of the segmented 

structures. This allows us to define the range of variations that can be described as normal, 

or observed in a normal population. If, however, we observe an individual who demonstrates 

variations exceeding this normal range, we can quantify the amount by which this individual 

exceeds the normal range, and relate this quantification to a grading scale for pathology (Fig. 

10). Further, we can evaluate the severity of disease according to our automatic grading scale 

against the manual grading scale currently in use, as well as against post-surgery patient 

quality of life.
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Population based statistics

Our current SSM is built from 53 images. Other than the scans, we did not have any 

additional patient information, such as age, gender, or ethnicity, available to us. Therefore, 

our SSM describes the statistics of a general population, not specific to age, gender, or 

ethnicity. We hope to collect more data in the future with additional patient information, and 

build SSMs for different age groups, genders, and ethnicities. Such specialized SSMs have 

several advantages. SSMs of different age groups would allow us to observe the 

developmental changes that structures in the sinus undergo as humans develop. It would also 

allow surgeons to adapt their tools to fit the size of structures present in different age groups. 

Similarly, SSMs of different genders and ethnicities also allow us to observe the differences 

and similarities in the different groups, again allowing surgeons to customize their care.

5. CONCLUSIONS

In conclusion, we present a system which is able to automatically segment sinus images to 

sub-millimeter accuracy. We build statistical shape models that allow us to observe the 

different variations that structures in the sinus undergo, allowing us to estimate the kinds of 

deformations that happen in the turbinates during the nasal cycle. We are currently working 

on improving video-CT registration accuracy using these shape models. We also hope to use 

these models to allow us to identify and stage pathology, amongst other useful applications. 

In the future, we hope to further improve our segmentations, and build higher quality, 

population specific SSMs.
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Figure 1. 
Template creation pipeline: all input images are deformably registered to one target image, 

which is then deformed by the average of the deformation fields resulting from the 

registration. The colors in the deformation fields represent the direction of the vectors, 

whereas the intensity of the colors indicates the magnitude. Deforming the target image by 

the average deformation field takes the target image towards the mean of our input set of 

images. This process can be repeated with the output image as the new target image to be 

registered to. Individual variation from our initial target decreases with every iteration, and 

the resulting output gets closer to the true average of our input set of images.
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Figure 2. 
Sampling structure (blue dots represent sampled vertices, blue lines indicate adjacency; 

dotted lines imply that we do not want the connecting points to be attracted to each other; 

translucent lines cross through the shape): Random sampling causes inconsistent internal 

and external directions. The top middle sphere shows a vertex with external energy pointing 

inwards, and top right shows one with internal energy pointing outwards. Our spiral 

sampling maintains internal and external direction consistency.
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Figure 3. 
From left to right, we see how the vertices in our snake spline move towards the edge. Since 

we do not want corner points to get drawn inward toward each other, we do not allow corner 

points to move. However, they move during following iterations when they are not corner 

points. Finally, all vertices are on the closest edge.
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Figure 4. 
Left: Edge maps of hand-segmented left and right maxillary sinuses (blue) and deformably 

registered maxillary sinuses (red); Right: Edge map of maxillary sinuses after snakes splines 

(green) overlaps almost perfectly with the hand-segmented edge map.
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Figure 5. 
Top: Errors from deformable registration visualized on the mesh with lighting (left), to show 

structure, and without lighting (right), to show errors without distractions from secularity or 

shadows; Bottom: Errors after GVF, visualized similarly as above.
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Figure 6. 
Improving vertex correspondence with each iteration for the middle turbinate.
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Figure 7. 
Top: Population variation in the skull model. The middle shape is the mean shape, the left 

shape shows mean shape with −1σ, where σ is the standard deviation, and the right shape is 

the mean shape with +1σ. Bottom: The left image shows the pre-op patient skull, and the 

right image shows the post-op patient skull. The two images show no, or negligible, 

di_erence, where minute di_erence can sometimes be observed due to errors in registration. 

However, we can see that the population variation is not reflected in the two patient images.
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Figure 8. 
Top: Population variation in the inferior turbinate (IT) model. The middle shape is the mean 

shape, the left shape shows mean shape with −1σ, and the right shape is the mean shape with 

+1σ. Bottom: The left image shows the pre-op patient IT, and the right image shows the 

postop patient IT. The two images show significant differences, allowing us to conclude that 

the population variation is reflected in the patient images.
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Figure 9. 
The image from video (left) looks less like the middle turbinate segmented from CT (top 

right), and more like the middle turbinate estimated from PCA (bottom right).
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Figure 10. 
This image shows larger than expected difference between the mean (left) and patient 

(middle), implying disease. The volume between the orange and pink segmentations (right) 

can be related to the amount of disease.
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