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Abstract

The cerebellum is a somatotopically organized central component of the central nervous system 

well known to be involved with motor coordination and increasingly recognized roles in cognition 

and planning. Recent work in multi-atlas labeling has created methods that offer the potential for 

fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally 

equivalent to cortical gray matter areas). This work explores the trade offs of using different 

statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging 

protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative 

Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We 

demonstrate the effectiveness of our algorithm, Non-Local SIMPLE, for segmentation of a mixed 

population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging 

protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation 

techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms 

previous gold standard techniques but is outperformed by a non-locally weighted vote with the 

deeper population of atlases available. This work advances the state of the art in open source 

cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar 

segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted 

volumes with approximately 1 mm isotropic resolution.
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1. INTRODUCTION

The cerebellum is an anatomic region of the central nervous system located in the posterior 

fossa, inferior to the cerebrum and posterior to the brain stem. As with the cerebrum, the 
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cerebellum consists of two hemispheres (left and right), but also contains midline gray 

matter structure known as the vermis [1-3]. The cerebellum consists of a layer of tightly 

folded gray matter surrounding densely packed white matter beneath. The white matter 

contains four gray matter nuclei: the dentate, globose, emboliform, and fastigial, which 

receive input fibers from the cerebellar cortex and output to the cerebrum; these cerebellar 

nuclei account for most of the fibers leaving the cerebellum. The somatotopically organized 

cerebellum plays an important role in motor function and secondary roles in higher order 

cognition and decision making. Segmentation of the cerebellum provides a unique challenge 

in that the cerebellar lobules are not easily differentiated in healthy subjects due to the 

resolution of the imaging whereas subjects with cerebellar atrophy have more easily 

differentiable structures (Figure 1).

Automated segmentation of the cerebellum has been deeply discussed and characterized in 

the literature. Van der Lijn used atlas registration and local feature descriptors to segment the 

left and right hemispheres of the cerebellum but did not segment any of the individual 

lobules or the vermis [4]. Saeed and Puri developed a semi-automated procedure using 

template selection and local texture to segment the whole cerebellum [5]. Powell et al use 

machine learning with probabilistic atlases to segment the cerebellum into upper, middle, 

and lower lobules but do not explore deeper characterization of regions and only apply their 

method to healthy subjects [6]. Diedrichsen et al present a probabilistic atlas for 

segmentation characterizing all of the cerebellar lobules but the single probabilistic atlas 

does not individually provide robust segmentations across diverse subject populations [7]. 

Lastly, Yang et al propose performing multi-atlas segmentation of the cerebellar lobules and 

vermis followed by a post-hoc graph cut to model the boundaries [8].

Herein we propose new segmentation algorithms which combines the ideas of patch-based 

correspondence of Coupe et al and strong internal atlas selection of Langerak and SIMPLE 

[9, 10]. The first algorithms, Local SIMPLE and Local Spatial SIMPLE, incorporate 

intensity information into the generative model of SIMPLE similar to the models of locally-

weighted vote and we extend the model to allow spatially varying performance parameters 

[11, 12]. The third algorithm we propose, Non-Local SIMPLE, combines the ideas of patch-

based fusion with the strong semi-parametric atlas selection of SIMPLE, but instead of 

treating atlases independently, Non-Local SIMPLE assumes an independence between local 

patches and develops a performance model around them. We evaluate the effectiveness of 

these models on two distinct populations of cerebellum atlases and compare these 

algorithms to previous segmentation techniques.

2. METHODS

We begin be defining the data and the standard pipeline used for multi-atlas segmentation. 

We then define the generative models underlying Local SIMPLE and Non-Local SIMPLE. 

For these models, we define: Ti is the true label at voxel i, s is an arbitrary label, Ii is the 

intensity observed at voxel i by the target image, Di is a 1 × R vector of labels observed at i, 
R is the number of available raters, L is number of observed labels, N is the number of 

observed voxels, b is an integer pooling region, Ai is a 1 × R vector of the intensity values 

observed at i, c is a 1 × R binary vector indicating the current atlas selection state for each 
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atlas, ϵ is a 1 × R rater error vector, σ is the standard deviation used in intensity weighting, k 
is the current iteration during expectation maximization, j is a particular rater, θ is a R × 2 × 

L × L matrix where θjnss′ is the likelihood rater j observes s given that the true label is s′ 
and their atlas selection status is n. For brevity the definitions of θ are left to Xu et al [12].

Data

Two datasets were considered in this study. The first dataset, herein Anura, consisted of 25 

subjects, 13 with cerebellar ataxia and 12 healthy, ranging in age from 36 to 73, 23 female 

and 2 male, scanned with a 1.5T three dimensional SPGR sequence and cerebellum 

manually traced by a trained expert. The second dataset, herein AT, consisted of 45 subjects, 

15 healthy controls and 30 patients with various cerebellar diseases, ranging in age from 29 

to 90, 21 female 24 male, scanned with a 3T three dimensional MPRAGE sequence. Each 

subject was labeled by two intermediate experts and gold-standard segmentations were 

generated by fusing the manual labelings together.

Multi-Atlas Pipeline

All data from both populations followed the same protocol for registration. The data were 

first bias corrected with N4 bias correction. For each dataset, each pair of scans was non-

rigidly registered using the Advanced Normalization Tools (ANTs) SyN algorithm and the 

default parameters for brain registration [13]. Labels volumes were then deformed to the 

subject space using the ANTs warping tool and nearest neighbor interpolation.

We compare our new algorithms with several previous algorithms. The first algorithms we 

compare against are majority vote and non-locally weighted [9, 11]. Second, we compare 

against the SIMPLE algorithm from Langerak and a spatially varying extension, herein 

Spatial SIMPLE [10, 12, 14]. Lastly we compare our results to previous work on the same 

dataset by Yang et al where a multi-atlas segmentation was used as an initialization and a 

post-hoc graph cut was used to correct the image boundaries [15].

Local and Local Spatial SIMPLE

Following the generative model definition of SIMPLE from Xu et al [12] we incorporate 

local intensity into the model as

(1)

which we can solve through expectation-maximization. We define the E-Step as

(2)
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assuming conditional independence between the raters and the rater’s intensity and where 

 [11]. The M-Step directly follows Xu et al so it is excluded from 

this work. Briefly, the maximization of  is total weight of the observed label for rater j 

across the image and  is defined based on a semi-parametric atlas selection method from 

the original SIMPLE definition [10]. To extend the model to be spatially varying we redefine 

θ as an R × 2 × L × L × N matrix defined identically as before, c as an N × R matrix 

corresponding to the atlas selection decision for each rater at each voxel, and ϵ as an N × R 
error vector for each rater at each voxel. The E-Step becomes

(3)

and the M-Step once again follows Xu except the values of ϵ are calculated over the pooling 

are b and thus c is calculated per-voxel based on the estimates of ϵ.

Non-Local SIMPLE

Patch-based label fusion has been incorporated into many label fusion techniques such as 

Non-Local STAPLE and Non-Locally Weighted Vote [9, 16]. In these techniques, the 

correspondence model smooths the labels over the nearby region based on the intensity 

differences. We define the generative model of Non-Local SIMPLE as

(4)

where אs are the parameters of non-local search, אp are the parameters of non-local distance 

calculation, c as an N × R × אs matrix corresponding to the patch selection decision for each 

rater at each voxel over their non-local search space, ϵ as an N × R × אs error matrix for 

each rater at each voxel over their non-local search area, and θ is a confusion R × 2 × L × L 
× N × אs defined both spatially and over the non-local correspondence search region. We 

estimate the solution of this model through expectation maximization. We define the E-Step 

as

(5)

where
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(6)

which is the standard definition of non-local correspondence of Euclidean distance between 

the atlas and target patches in an exponential distribution [9, 16]. This E-Step expansion 

assumes a conditional independence between patches and the non-local intensity probability 

model. The M-Step follows as with Local Spatial STAPLE where the confidence is 

calculated over the pooling region b between the patch in the atlas and the target voxel in the 

atlas. For instance

(7)

following from the derivation of Xu et al, where δ is the dirac delta function. Thus, Non-

Local SIMPLE performs patch-based performance modeling with strong atlas selection 

following from the works of Langerak, Xu, and Coupe [10, 12].

Statistical Analysis

To assess the performance of each statistical fusion technique, each atlas was segmented in a 

leave-one-out study with each algorithm (i.e., 24 atlases per target in the Anura set and 44 

atlases per target in the AT set). Since the registration and label propagation steps were 

identical between algorithms, we treat the segmentation results as paired between label 

fusion algorithms. We calculate the Dice coefficient between each set of true atlas labels and 

each label fusion approach. Since we cannot assume these Dice results fit any distribution, 

we perform a Wilcoxon signed-rank test between each algorithm. All significant results 

reported are at a p<0.05.

3. RESULTS

In the leave-one-out segmentation of the Anura dataset, Non-Local SIMPLE produced 

statistically significant improvements in mean Dice compared to all other algorithms. Non-

Local SIMPLE had an improvement in mean Dice of 0.03 on average compared with Non-

Locally Weighted Vote and the approach of Yang et al. On the AT dataset, Non-Locally 

Weighted Vote significantly outperformed all other techniques by at least 0.04 mean Dice. 

Non-Local SIMPLE significantly outperformed the results of Yang et al on the AT data by 

0.01 Dice (Figure 2). Qualitatively Non-Locally Weighted Vote tends to slightly over-

segment the cerebellar lobules whereas Non-Local SIMPLE under-segments. The results of 

Yang et al appear to produce segmentations more consistent with the true anatomic 

boundaries but have greater issues with labels shifting between regions (Figure 2). The full 

Dice scores for all regions of interest are available in Figures 3 and 4 and more qualitative 

results are available in Figure 5.
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4. DISCUSSION

In this work, we investigated new algorithms for fully-automated multi-atlas segmentation of 

the cerebellum. We proposed three approaches for segmentation deriving from the work of 

Langerak and Xu on the SIMPLE atlas selection and performance model [10, 12]. The first 

two algorithms, Local SIMPLE and Local Spatial SIMPLE, incorporated local image 

similarity into the generative model definition of SIMPLE and extended the base algorithm 

to consider only the local region in performance model calculation. The third algorithm, 

Non-Local SIMPLE, extends the SIMPLE model to patches in the area around the registered 

atlas images, incorporating the work of Coupe and patch-based segmentation into SIMPLE 

[9]. We then evaluated these algorithms against several previous algorithms, including the 

previous gold-standard cerebellar segmentation algorithm, on two sets of cerebellar atlases 

[15]. On the first set, Non-Local SIMPLE beat all other techniques with a p < 0.05. On the 

second set, Non-Locally Weighted Vote produced the best segmentation results, but Non-

Local SIMPLE still outperformed the previous gold-standard technique. In conclusion, we 

have shown that cerebellar segmentation is a challenging task and no current technique 

produces significant improvements over other techniques so application specific 

considerations and trade-offs should be considered. Future work will investigate secondary 

processing techniques [17] to address systematic over/under-segmentation concerns with the 

currently leading methods. We note that the proposed techniques are targeted at cases where 

a large number of atlases are available (i.e., greater than 30).
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Figure 1. 
Axial, coronal, and sagittal segmentation results for a healthy (A) subject and a patient with 

severe cerebellar ataxia (B). Note the easily differentiable lobules in the patient whereas the 

differentiation of the lobules is lost to the resolution of the imaging in the healthy subject.
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Figure 2. 
Summarized segmentation results for the Anura and AT datasets. Non-Local SIMPLE 

outperformed all other techniques on the Anura dataset (A). On the AT dataset Non-Locally 

Weighted Vote significantly outperformed all other techniques, but Non-Local SIMPLE still 

outperformed the previously gold-standard technique of Yang et al (A).Qualitatively, Non-

Locally Weighted Vote seemed to oversegment the lobules whereas Non-Local SIMPLE 

tended to undersegment. The results of Yang et al visually produced results more consistent 

with the anatomic boundaries but had more internal boundary shifts than either Non-Locally 

Weighted Vote or Non-Local SIMPLE.
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Figure 3. 
Quantitative segmentation results for the Anura dataset. Non-Local SIMPLE shows either 

significant improvements over other algorithms or comparable results to other algorithms for 

all labels.
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Figure 4. 
Quantitative segmentation results for the Ataxia dataset. No algorithm shows significant 

improvement across all labels but Non-Locally Weighted Vote provides both consistent and 

accurate results across most labels.
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Figure 5. 
Qualitative segmentation results from the median Ataxia subject. Non-Locally Weighted 

Vote tends to slightly over-segment regions of interest while Non-Local SIMPLE tends to 

under-segment regions. The adaptation of Yang et. al appears to generate a segmentation 

more consistent with anatomic boundaries but can produce severe missegmentations as seen 

in the sagittal view. Other algorithms are not shown since they infrequently outperformed the 

algorithms shown here.
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