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Abstract

Optical coherence tomography (OCT) of the human retina is now becoming established as an 

important modality for the detection and tracking of various ocular diseases. Voxel based 

morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the 

exploration of the regional differences in the brain. There has been limited work done in 

developing registration based methods for OCT, which has hampered the advancement of VBM 

analyses in OCT based population studies. Following on from our recent development of an OCT 

registration method, we explore the potential benefits of VBM analysis in cohorts of healthy 

controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM 

analysis in two pools of HCs showing no significant difference between the two populations. 

Additionally, we also present a retrospective study of age and sex matched HCs and relapsing 

remitting MS patients, demonstrating results consistent with the reported literature while providing 

insight into the retinal changes associated with this MS subtype.
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1. INTRODUCTION

Optical coherence tomography (OCT) is an imaging modality that provides micrometer 

images of the human retina using the optical scattering properties of biological tissues. The 

approach detects reflected or back-scattered light from tissue by passing a near-infrared 

beam of light through the lens of the eye and observing the reflection interference with a 

reference beam originating from the same light source. The resultant signal provides a 
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profile of the reflectivity along the beam axis, known as an A-scan. Multiple A-scans along 

the same plane of acquisition are used to create 2D images, also known as B-scans, and 

collections of these form 3D volumes. Quantitative measurements obtained from these 

images of the cellular layers within the retina, such as average layer thicknesses, has allowed 

for the study of disease-induced morphological changes. The retinal nerve fiber layer 

(RNFL) and the ganglion cell & inner plexiform complex (GCIP) in particular, have been 

observed to thin significantly in multiple sclerosis (MS) patients.1,2

There has been significant development of segmentation based methods3–8 of retinal OCT 

for identifying the retinal layers. These approaches provide a gross breakdown of anatomical 

changes within patients, it does not however provide insights into the more subtle changes 

that may be taking place. Voxel based morphometry (VBM)9 is a standard neuroimaging 

analysis tool that is used to compare patients with controls or to identify correlations with 

age and test-scores. It generates maps of the statistically different voxel locations and is 

based on comparing the volumes of regions of interest across cohorts. A particular type of 

VBM, known as the regional analysis of volumes examined in normalized space (RAVENS), 

uses a tissue segmentation in an unbiased normalized atlas space10,11 along with learned 

deformation fields from each of the subjects in the study with respect to the normalized 

space. RAVENS maps consider the relative local volume change, which allows for the subtle 

exploration of the mean compression and expansion of cohorts at each voxel. The key 

component in any VBM, including RAVENS, is a deformable registration method that can 

be used to build unbiased normalized atlases and map subjects into those atlases. The recent 

work of Chen et al.12,13 presented an intensity based deformable registration based approach 

for OCT data with a preliminary demonstration of the potential application of the approach. 

A brief review of Chen et al.12,13 is included in Section 2.

Traditional analyses of OCT data have thus far only considered the average regional 

thicknesses of individual layers. For instance, the early treatment diabetic retinopathy study 

(ETDRS) grid is frequently used in the analyses of macular scans. Rectangular grids of 

varying size are also currently available as part of on-board software suites on certain 

spectral domain OCT (SD-OCT) scanners. These global measures have proved successful in 

providing insight into numerous diseases including macular edema,14 age-related macular 

degeneration,15 Alzheimer’s disease,16 and Parkinson’s disease.17 However, these types of 

analyses have focused on large regional changes and are not well suited to detecting 

complex disease-related patterns of atrophy. VBM based approaches, on the other hand, can 

provide a more nuanced understanding of these changes while controlling for specific 

confounding factors (age, sex, etc.). VBM style analyses could prove to be more sensitive 

than thickness changes alone if the disease-related changes lie within specific layers, such as 

small cysts common in microcystic macular edema.18,19

Here, we provide an overview of the framework for the VBM analysis of SD-OCT scans: 

From the creation and validation of the normalized atlas spaces; to the generation of 

RAVENS maps; and finally to the statistical comparison of controls and patient data.
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2. METHOD

SD-OCT volumetric scans were acquired from both eyes of 114 healthy controls (HC) and 

142 patients diagnosed with relapsing-remitting multiple sclerosis (RRMS). The macula 

raster scans (approximately 6mm×6mm×2mm) were acquired on a Spectralis OCT system 

(Heidelberg Engineering, Heidelberg, Germany) with 49 B-scans, where each B-scan had 

1024 A-scans with 496 pixels per A-scan. The healthy control cohort was stratified by age 

(≤30, 31–40, 41–50, 51–60, ≥60) and sex, thus creating 10 strata. Each stratum was then 

divided into two, thereby creating two age- and sex-matched sets, HC Set I and HC Set II, 

with 57 subjects each (see Table 1). An equal number of patients within each stratum were 

also selected from the RRMS cohort to create an equivalent age- and sex-matched RRMS 

cohort. Thus, any changes noted in specific retinal layers can be attributed with more 

certainty to the disease rather than extraneous confounding factors. This was also verified by 

controlling for age and sex in an additional experiment.

The registration method described by Chen et al.13 begins by using the fovea as a global 

landmark to affinely align two OCT images. Each A-scan is subsequently rescaled to align 

the inner limiting membrane (ILM) and Bruch’s membrane (BM), and finally, 1D radial 

basis functions are used to register the retinal layers. To construct a normalized atlas space 

(NAS), the ILM, BM, and fovea were used to globally align all the scans in the cohort in 

order – this centers the scans and eliminates tilts induced by off-axis SD-OCT acquisition. 

The average of these centered scans was then used as the initial reference and the scans are 

registered to it using the deformable registration approach.13 These registered scans were 

then averaged to create a new atlas. This process – of registering to the atlas and then 

updating to a new average–is iterated through until changes in the average image fall below 

a threshold. In our experiments, a total of three iterations were required to create the 

normalized atlas spaces. This method was used to construct two atlases, NAS I and NAS II, 

which denote the normalized atlas spaces created using HC Sets I and II, respectively.

Registering scans to the NAS brings the data into a common reference frame; however, this 

changes the anatomy of the registered structure. RAVENS10,11 is a tissue density based 

analysis technique which preserves the volume of the registered tissue. It does this by 

maintaining a counter for each voxel location that is incremented (by fractional or integer 

values) each time a voxel is mapped into that location. NAS I & II were segmented using an 

automated layer segmentation approach6 that detects nine retinal surfaces. Figure 1(b) shows 

the segmented retinal surfaces at the central B-scan of NAS I (Fig. 1(a)), which was also 

used to divide the RAVENS map into eight retinal layers. Figures 1(c) and (d) show the 

RNFL region of the RAVENS map from a HC and RRMS scan overlaid on NAS I, 

respectively. The overall RAVENS maps values are noticeably higher in Fig. 1(c) than (d), 

indicating that the RNFL in this HC was thicker than the RNFL of the RRMS subject. 

Figures 1(e) and (f) show a similar comparison of the GCIP region of the RAVENS map 

from a HC and RRMS scan overlaid on NAS I, respectively. As SD-OCT scans are not 

always perfectly centered on the fovea and the registration begins by centering the scans on 

the fovea. However, this affine correction can sometimes lead to the peripheral regions not 

being well represented in the NAS. Thus, our analyses are limited to a 5mm circular region 

Antony et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



centered on the fovea. Our segmentations and RAVENS maps depicted in Figs. 1 are also 

limited to this 5mm region.

3. EXPERIMENTS & RESULTS

We conducted two experiments using HC Sets I and II, and the age- and sex-matched RRMS 

cohort. These experiments were focused on 1) establishing the validity of the VBM analysis 

method, and 2) comparing the cohorts.

3.1 Validating VBM Framework

In order to validate the VBM analysis framework, HC Sets I and II were first compared to 

each other as illustrated by the flowchart in Fig. 2(a). For this, HC Sets I and II were 

registered to NAS I and RAVENS maps were generated for the valid retinal region bounded 

by the ILM and BM. The RAVENS maps from the two sets were then compared using a two 

sample t-test. This VBM analysis was conducted using the statistical package SPM8.20 

Multiple hypothesis correction was done by controlling the false discovery rate (FDR),21 q ≤ 

0.05. Of the approximately five million voxels in the retinal region bounded by the ILM and 

BM, not a single voxel reached significance.

This experiment was repeated using NAS II as the normalized atlas space, by registering HC 

Sets I and II to NAS II. The VBM analysis was repeated with SPM8 and again no significant 

voxels were detected in the retinal volume. Thus verifying that the two healthy control 

cohorts are not statistically different from each other.

3.2 Comparing HC and RRMS with VBM

The second test conducted compared the control cohorts and the RRMS cohort, the 

flowchart in Fig. 2(b) explains the experimental setup. First, HC Set I and the RRMS cohort 

were registered to NAS II, followed by the statistical comparison of the RAVENS maps 

using a two sample t-test (FDR bound set to 0.05). Figures 3(a) and (b) show a central B-

scan from NAS II with the location of the significantly differing voxels within the RNFL and 

GCIP overlaid, respectively.

In addition to visualizing the 3D locations of these voxels, density maps were created in 

order to summarize and visualize the results in a manner that is equivalent to the more 

prevalent thickness maps. This was done by computing the number of significant voxels 

detected per A-scan (Fig. 4(a)) and normalizing by the thickness of the layer at that specific 

A-scan location (Fig. 4(b)). The density maps computed for these two layers are as shown in 

Figs. 3(c) and (d), respectively. The density maps indicate a pattern to the RNFL and GCIP 

thinning that is nasally dominant and extends around the fovea in a pattern similar to a 

“horse shoe”.

The comparison was repeated using HC Set II and the RRMS cohort registered to NAS I, 

with results shown in Figs. 3(e)–(h). While minor local differences exist between these two 

density maps of the RNFL (see Figs. 3(c) and (g)), the overarching pattern remains the same. 

Similar results were noted for the GCIP density maps, shown in Figs. 3(d) and (h).
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An additional multivariate analysis was also used to compare the two HC sets and the 

RRMS set while controlling for age and sex. First, the RAVENS maps obtained from HC Set 

II and the RRMS scans after normalization with respect to NAS I were analyzed using the 

multivariate regression option in SPM. T-tests conducted on the coefficients associated with 

age and sex did not yield any significant voxels in the retinal volume. The density maps of 

the significant voxels obtained for the disease coefficient in the RNFL and GCIP are shown 

in Fig. 5(c) and (d), respectively. This experiment was repeated for the RAVENS maps 

obtained from HC Set I and the RRMS scans after they were normalized to NAS II. The 

density maps obtained for the RNFL and GCIP are shown in Fig. 5(g) and (h), respectively.

4. DISCUSSION & CONCLUSIONS

The VBM analysis framework presented describes an analysis pipeline that can be used to 

compare SD-OCT scans from two cohorts within a normalized atlas space. Specifically, this 

statistical analysis can be used to identify voxels/regions of significant differences between 

the two groups. The method is robust as shown by the comparison of the two age- and sex-

matched healthy control cohorts within the two normalized atlas spaces, where no 

significantly differing voxels were detected in any of the retinal layers.

The statistical comparison of the HCs and the RRMS cohorts provides a 3D view of regions 

where significant difference exist between the two groups. Visualizing these regions in 

density maps revealed a pattern of structural loss, that has only been hinted at in thickness-

based OCT analysis.1,22 Regional thickness map analysis is able to detect the significant 

atrophy in the RNFL and GCIP, however visualizing minor local variations can be 

challenging. The multivariate analysis further indicated age and sex had not contributed 

towards these significantly different voxels.

VBM presents an alternative to thickness analysis alone, and is capable of providing a more 

detailed picture of the subtle morphological changes associated with disease progression. 

Furthermore, the segmentations of inner retinal surfaces, which are typically harder to 

reliably identify, are not required for the registration of the OCT scans. The segmentation of 

the normalized atlas space was only utilized for the visualization of the layer specific density 

maps, and only the normalized atlas was segmented.

It is also noteworthy that unlike numerous neuroimaging studies,9,10 the RAVENS maps 

were not smoothed prior to the statistical analysis and a minimum size was also not imposed 

on the statistically differing regions. Our results may benefit from some smoothing as it 

could make our results more uniform across the normalized atlas spaces when comparing 

HC Set I and II with the RRMS cohort. The density maps shown in Fig. 3(c) and (g) for 

example, show minor differences, which could be eliminated by smoothing the RAVENS 

map prior to the analysis.

In the future, we intend to extend this VBM framework to a larger MS cohort with other 

subtypes of the disease, the goal being to characterize any subtle differences that may exist. 

In combination with longitudinal analysis,23 we expect to be able to chart different disease 

trajectories.
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Figure 1. 
Shown in (a) is central B-scan from NAS I and (b) the overlaid corresponding automated 

segmentation6 used to extract the relevant layers. Example RAVENS maps of the extracted 

RNFL are shown for a (c) a HC, and (d) a RRMS subject scan. For the same two subjects we 

also show the GCIP RAVENS map in (e) the HC, and (f) the RRMS subject. Note the 

differing RAVENS scale for the two layers. The segmented surfaces and the RAVENS maps 

are only depicted within a 5mm circular region centered on the fovea.
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Figure 2. 
Flowcharts depicting (a) the validation experiment where the two age- and sex-matched HC 

sets were compared to each other, and (b) the comparison of the two HC sets and the MS 

cohort. The * denotes that the experiment was conducted twice, once using NAS I and once 

using NAS II.
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Figure 3. 
The comparison of HC Set I and the RRMS set are summarized with central B-scans 

depicting the significant voxels as detected through VBM analysis of (a) the RNFL and (b) 

the GCIP and the density maps of the (c) RNFL and (d) GCIP, respectively. An example of 

the density map computation can be seen in Fig. 4. The comparison of HC Set II and the 

RRMS set; central B-scans depicting the significant voxels as detected through VBM 

analysis of (e) the RNFL and (f) the GCIP and the density maps of the (g) RNFL and (h) 

GCIP, respectively.
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Figure 4. 
Density map generation. (a) The sum of the significant voxels in each A-scan location within 

the GCIP layer, (b) the thickness of the GCIP layer (in voxels) created using the layer 

segmentation of the NAS II, and (c) the density map created by normalizing the sum of the 

significant voxels by the thickness of the layer.

Antony et al. Page 11

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The multivariate regression comparison of the HC Set I and the RRMS cohort while 

controlling for age and sex are summarized with central B-scans depicting the significant 

voxels within (a) the RNFL and (b) the GCIP and the density maps of the (c) RNFL and (d) 

GCIP, respectively. Similar analysis of HC Set II and the RRMS set; central B-scans 

depicting the significant voxels as detected through VBM analysis of (e) the RNFL and (f) 

the GCIP and the density maps of the (g) RNFL and (h) GCIP, respectively.
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Table 1

Summary of age and sex statistics of the subjects in each of the three cohorts.

Cohort # Males # Females Mean Age ± SD Sample Size

HC Set I 22 35 35.72 ± 12.07 57

HC Set II 21 36 36.70 ± 13.87 57

RRMS 22 35 39.56 ± 12.10 57
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