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Abstract. Interactive segmentation is becoming of increasing interest to the medical imaging community in that it
combines the positive aspects of both manual and automated segmentation. However, general-purpose tools
have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling
between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individ-
ual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be
considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is speci-
fied in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation
interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided
by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example appli-
cations of its generality. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.2.024003]
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1 Introduction
Interactive segmentation is the middle-ground between fully
manual segmentation, where a user manually contours slices
of a three-dimensional medical image to define objects of inter-
est, and automated segmentation, where, with minimal user
input, an algorithm attempts the segmentation task with no guid-
ance or interaction with the user. The former is widely known to
be time-consuming and subject to inadequacies regarding the
number of slices segmented and the consistency between seg-
mentations. The latter is often very rigid, being specific to a
particular anatomy of interest in a designated modality under
specific conditions and difficult to incorporate anatomical
knowledge into, especially in the presence of pathology. In inter-
active segmentation, the user and algorithm work together, with
the user providing initial input and corrections while the algo-
rithm ensures the consistency of the segmentation across slices.1

Interactive segmentation has long been known to improve seg-
mentation time and consistency for tasks in which manual seg-
mentation would otherwise be necessary.2

From a purely input-output point of view, interactive seg-
mentation programs differ only in terms of the mechanisms
in which the user can provide information and the algorithms
used to process said information. More specifically, interactive
segmentation programs differ in terms of

• the number of labels allowed by the interface and their
topology (label orderings),

• the sampling mechanisms available to the user, such as
paint-brushes, contours, and so on,

• the algorithms that process these sampled data to derive
a labeling, and

• the organization of the multiple processing components
used, which together form the segmentation pipeline.

These variables are inter-related, with the number of labels
and types of sampling mechanisms constraining the types of algo-
rithms available, and the types of algorithms constrain what types
of algorithm organizations are meaningful. These factors dictate
the scope of segmentation problems that can be readily addressed.

The number of labels allowed by the interactive segmenta-
tion interface is arguably the simplest method for categorizing
interactive segmentation interfaces. Early methods in interactive
segmentation, such as Interactive graph-cuts,3 Grab-cut,4 and
Intelligent Scissors,5 were constrained to the use of only two
labels: foreground and background. TurtleSeg6,7 and ITKSnap8

permit the use of an arbitrary number of labels, making them
better suited for multiregion problems. As of yet, there are
no prior interactive segmentations that consider label orderings
as a form of input. However, several take advantage of a particu-
lar label ordering suited to a particular segmentation problem.9,10

In terms of sampling image data to build a descriptive data
model, Interactive graph-cuts3 used a paint-brush mechanism,
Intelligent Scissors5 and TurtleSeg6,7 a contouring mechanism,
and ITKSnap8 provides mechanisms for both. Some interactive
segmentation frameworks, such as the MIDAS framework,11

provide limited direct user manipulation of labels, shifting its
focus to the user definition of pipelines containing fundamental
segmentation algorithms, such as thresholding and region grow-
ing, and morphological operators with an emphasis on segmen-
tation reproducibility.

Interactive segmentation interfaces display a considerable
amount of variability in terms of the algorithms available to
extrapolate the user’s sampling information and other indica-
tions. Several methods utilize optimization-based approaches
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ranging from shortest path algorithms5 to discrete graph cuts,3,4

level-sets,8 and random walk based segmentation.6,7,12 These
algorithms generally have a fairly rigid organization, with the
exception of interfaces in which pipelines are the primary
focus of user interaction.11

As stated earlier, one issue with general-purpose interactive
segmentation programs is their overall lack of explicit incorpo-
ration of anatomical knowledge in an intuitive manner. Initially,
the concept of incorporating anatomical knowledge into a gen-
eral-purpose (and therefore application/modality agnostic) pro-
gram may seem paradoxical. However, certain abstract forms of
anatomical knowledge about the spatial arrangement between
objects may be expressed quickly and easily while maintaining
generality across applications. The application of hierarchies to
segmentation and natural scene understanding has been well-
studied,13,14 but often treats the hierarchy as a structure that
the algorithm must learn aside from user input.

In this work, we allow the user to explicitly define a segmen-
tation hierarchy, which can be optimized globally using gener-
alized hierarchical max-flow (HMF).15,16 These hierarchies
express object grouping behavior by way of partitioning. For
example, one can think of a super-object, such as the heart, as
being composed of several subobjects (the left and right ven-
tricles and atria), which can be recursively subdivided (blood
pool and wall). These partitioning relationships allow for
nuanced regularization requirements to be described.

2 Methods

2.1 Hierarchical Max-Flow Segmentation

HMFmodels15,16 extend the notion of orderings from the Ishikawa
model17,18 to hierarchies. In this case, collections of labels can be
joined to create a super-label. This process repeats itself until the
entire image is represented as a single label, denoted as S or the
root label. (Such S labels are shown at the top of the hierarchies in
Figs. 5 and 6.) Alternatively, one can take a top-down interpreta-
tion, recursively splitting objects in the image into their constituent
parts. The formula for these models is
EQ-TARGET;temp:intralink-;e001;63;331
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u
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The operator .C refers to parent/child relationships in the
hierarchy, specifically, L:C returns the set of child labels of
label L. This formula is similar to that of the continuous
Potts model19 in that it contains a series of unary data
terms, DLðxÞ, and a set of regularization or weighting
terms, SLðxÞ, on the gradient magnitude of each labeling func-
tion, j∇uLðxÞj, and that these terms are summed over each
label (and super-label). These hierarchical models are strictly
more expressive than both Potts20 and Ishikawa17 models
together,15 allowing for a wider array of segmentation prob-
lems to be addressed. However, hierarchies are more difficult
to specify.

This tree structure has previously been considered a hard-
coded part of the image segmentation algorithm, encouraging

the use of Potts20 or Ishikawa17 models and their continuous
max-flow counterparts18,19 to handle general-purpose segmen-
tation. However, this poses fundamental limitations on what
can be segmented. For example, in the Potts model, only a sin-
gle smoothness parameter is assigned, which makes it difficult
to simultaneously segment smooth structures alongside irregu-
lar ones. Ishikawa models allow for more parameterization but
require the objects being segmented to satisfy a full ordering,
which is not the case for complex anatomy.

The general HMF solver alleviates this problem by permit-
ting any arbitrary hierarchy to be defined, allowing for more
anatomical knowledge to be encoded. This intuitive form of
anatomic knowledge can be readily incorporated into the opti-
mization-based segmentation of multiple regions. Problems
regarding constructing the largest meaningful hierarchy given
label grouping information are NP-hard (see the Appendix),
meaning that interactive methods, at least for hierarchy defini-
tion, may be required so as to make use of a user’s anatomical
knowledge.

Details of the precise implementation of the HMF solver
can be found in the technical report.15 The solver is provided
open-source at Ref. 21 in both MATLAB® and C++
implementations.

2.2 Definition of Cost Terms

A crucial decision in optimization-based segmentation is the
structure of the cost terms. Log-likelihood data terms, derived
from Bayes’ theorem, have been effective in interactive3 and
multiregion segmentation,22 taking the form

EQ-TARGET;temp:intralink-;e002;326;425DLðxÞ

¼
(∞ if x is a seed for a label

other thanL or element of L:P�

− lnfP½IðxÞjxεL�g else

;

(2)

where P½IðxÞjxϵL� is the likelihood of a voxel in label L having
the same intensity as x, IðxÞ and L:P� is the set of ancestors
(parents, grandparents, and so on) of label L. The probability,
P½IðxÞjxϵL�, is estimated from the histogram of the seeded vox-
els, which approximates the true value when a large number of
seeds is used. The infinite cost ensures that any voxels used to
seed a particular object remain a part of said object in the seg-
mentation and that any voxel that has been seeded as a particular
label can only be assigned to said label if it is an end-label or to
its child labels otherwise.

Smoothness or regularization terms are non-negative costs
used to both smooth the labeling and to align edges in the
segmentation with those visible in the underlying image. The
smoothness terms used were

EQ-TARGET;temp:intralink-;e003;326;180SLðxÞ ¼ αL � exp½−βLj∇IðxÞj� þ γL; (3)

where the parameters αL, βL, and γL are specified by the user.
The exponential term implies that lower costs are associated
with label boundaries, which occur when there is a high gradient
magnitude, encouraging nearby edges in the segmentation to
migrate to said areas similar to the contrast-sensitive smoothness
terms used by Boykov and Jolly.3
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2.3 Plane Selection

To improve efficiency and accuracy while encouraging interac-
tivity, plane selection can be used.6 Such planes can be used by
the algorithm to inform the user as to which areas of the seg-
mentation would benefit the most from user interaction. Top
et al.6 introduced a notion of active learning in which the seg-
mentation algorithm identifies areas of maximum uncertainty,
the uncertainty of a segmentation expressed as

EQ-TARGET;temp:intralink-;e004;63;657Uðx; yÞ ¼ λEUEðx; yÞ þ λBUBðx; yÞ þ λRURðx; yÞ
þ λSUSðx; yÞ; (4)

where UE is the entropy of the segmentation results, UB is the
uncertainty associated with boundaries in the segmentation, UR
is the uncertainty associated with the regional intensity, and US

is the uncertainty associated with the tortuosity of the boundary
around x. The λ‘s are constants with the majority (80%) of
the weight given to λE.

6 Note that the UR and UB terms are
explicitly handled by the segmentation algorithm itself by the

definition of the cost functions. We assign all the weight to
the UE term and use only maximum axis-aligned planes.
This ensures that the plane selection algorithm quickly produces
planes in orientations to which the user is accustomed. The seg-
mentation used in plane selection is the previous segmentation
generated by the user. Thus, plane selection is only defined after
the first segmentation is computed and remains available for all
subsequent interactions.

3 Interface Description
The interface is implemented using Kitware’s Visualization
Tool-Kit (VTK) for image processing and visualization and
the Qt framework for graphical user interface support. The gen-
eralized HMF solver was encapsulated into a VTK algorithm
object and accelerated using NVIDIA’s Compute Unified
Device Architecture. The sampling mechanism is brush-based
similar to that used by Boykov and Jolly3 and ITK-Snap8

allowing for large portions of an object’s interior to be covered
with relative ease while not requiring strong boundary contrast.

Fig. 1 Segmentation interface with user seeds (a) before segmentation and (b) after segmentation. The
hierarchy definition widget [bottom left corner of (a) and (b)] is shown enlarged in (c).
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The user can place seeds for any label or super-label using the
brush, creating the data model described in Eq. (2).

The interface is shown in Fig. 1. Hierarchies are defined in a
side bar as shown in Fig. 1(c), which also acts as a widget for
selecting the active label or super-label of the brush. This widget
also allows the hierarchy to be restructured quickly, operating in
a drag-and-drop manner. Last, the user can save the hierarchy
along with smoothness term parameters and the initial user-
defined samples for later use.

4 Example Applications of Interactive
Segmentation

4.1 Cardiac Segmentation

Because of the generality of the algorithm and the interface, sev-
eral existing continuous max-flow based methods, such as those
developed in Refs. 9 and 10, can be easily replicated. We repro-
duced the experiments performed in Ref. 9, which included
three cardiac volumes from computed tomography (CT),

Table 1 Cardiac segmentation numerical results.

(n ¼ 3) CT MRA TEE

Blood AVD (%) 6.6� 6.6 6.2� 3.6 14.2� 6.2

Myocardium AVD (%) 12.5� 11.3 16.7� 11.5 7.3� 4.5

Blood rMSE (mm) 1.14� 0.64 0.70� 0.21 1.080:27

Myocardium rMSE (mm) 1.31� 0.24 0.71� 0.24 1.48� 0.57

Blood DSC (%) 91.7� 2.6 94.3� 1.9 90.5� 4.3

Myocardium DSC (%) 83.8� 3.9 82.1� 3.7 91.8� 2.7

Weighted DSC (%) 87.5� 2.0 89.8� 2.7 91.2� 3.2

Interoperator variability
Weighted DSC (%)

92.7� 4.9 93.6� 2.5 92.0� 2.1

Weighted DSC from
Ref. 9 (%)

87.7� 3.7 89.3� 2.7 85.7� 2.0

Fig. 2 Cardiac segmentation with underlying (a) CT, (d) MRA, and (g) TEE. Manual segmentations are in
(b), (e), and (h), respectively, and interactive segmentation results in (c), (f), and (i).
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magnetic resonance angiography (MRA), and trans-esophageal
echocardiography (TEE).

Representative segmentation results are provided in Fig. 2.
Numerical results in terms of average volume difference
(AVD), root mean squared distance error (rMSE), and Dice sim-
ilarity coefficient (DSC) are recorded in Table 1. These results
are very consistent with interoperator variability above 90% and
comparable with those presented by Rajchl et al.,9 illustrating
that our general-purpose segmentation interface can perform
similarly to the one designed specifically for cardiac segmenta-
tion. Interestingly, the results for TEE indicate that the proposed
interface outperforms the previous interactive segmentation
interface.9

4.2 Neonatal Cranial Magnetic Resonance Imaging
Segmentation

Neonatal brain images display some unique challenges for auto-
mated segmentation in that there are relatively few compared to
adult brain images, making machine learning–based or atlas-
based segmentation approaches infeasible. Additionally, bleeds
in the ventricular system further complicated segmentation. In
this context, interactive interfaces can be extremely useful
since manual segmentation or correction is largely unavoidable.
Figure 3 displays the visual results of neonatal ventricle segmen-
tation using this interface.

To demonstrate the interactive segmentation interface’s
robustness to pathology, the previous experiment was extended
to a neonatal MR image in which a severe ventricular bleed
changes the intensity distribution of the ventricle to an extreme
degree. The segmentation results are given in Fig. 4. Note that
the hyperintense ventricular bleed is closer in intensity to white
and gray matter than to the ventricles, and its appearance on the
boundary of the ventricles would likely cause severe registration

artifacts. The segmentation of the ventricle was achieved by par-
titioning it into two components: a healthy cerebral spinal fluid
(CSF) component and the ventricular bleeding (Bl). The union
of these components could then be regularized similar to the
ventricle (Ve) in Fig. 3. The Ve label (the union of the CSF
and Bl labels) for the pathological case is given in Fig. 4 In
the hierarchies used in this segmentation problem, which are
given in Fig. 5, the remaining labels are K, which refers to
the background, He to the head, and Br to the brain.

5 Automatic Hierarchy Refinement
Although determining an appropriate hierarchy merely from
grouping information is a computationally difficult problem,
due to the mathematical formulation, it is possible to automati-
cally refine a user-provided hierarchy for improved computa-
tional efficiency without compromising segmentation quality.
This involves the contraction and removal of vertices in the hier-
archy with zero regularization or where zero regularization can
be induced without changing the optimization functional. One
specific example is that when the source node has only two chil-
dren, whereby one can be contracted by transferring its smooth-
ness value to the other. To demonstrate this, we performed
automatic hierarchy optimization on the method presented
by Rajchl et al.10 using late gadolinium enhanced magnetic
resonance imaging (LGE-MRI). This segmentation problem
involved partitioning the image into thoracic background (T)
and cardiac (C) labels, the latter being subdivided into blood
(Bl), healthy myocardium (M), and scar tissue (Sc) as shown
in Fig. 6(a). The cardiac label, C, was automatically contracted,
resulting in Fig. 6(b) and an estimated 20% improvement in
speed.

As with the previous experiments, the results (recorded in
Table 2) were comparable to those presented by Rajchl et al.10

and was within the range of interoperator variability. However,

Fig. 3 Neonatal ventricle segmentation with (a) MR, (b) manual segmentation, and (c) interactive seg-
mentation results. (d) Surface renderings of both the fully manual (left) and interactive (right) segmen-
tation results.
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this level of accuracy was achieved without postprocessing
steps, such as connected components analysis or other modifi-
cations that would make the interface specific to cardiac or
LGE-MRI segmentation.

6 Discussion
Improvements in interactive segmentation interfaces can have a
distinct impact in clinical contexts in which automated segmen-
tation is not feasible. Several clinical applications require
manual segmentation due to pathology such as tumors in
radio-oncological applications or bleeds in neonatal cranial im-
aging. These applications require a user to manually delineate
some anatomy in order to perform relevant measurements such
as tumor volume. In these applications, accurate segmentation
may be necessary for robust, correct measurements, and the
use of interactive segmentation can have a distinct benefit,

conserving user time while encouraging accurate results,
which will in turn improve patient outcomes by improving
the diagnostic capabilities of these measurements (compared
to manual segmentation) in single acquisition and longitudinal
studies.

The primary advantage of this interface over other interactive
segmentation programs is that it allows the user to interactively
specify both segmentation hierarchy and initial seeds. The for-
mer means that the interface is very general purpose, allowing
for arbitrary regions to be defined, while incorporating anatomi-
cal knowledge in a direct manner. This gives it a distinct advan-
tage over other interactive segmentation interfaces, which either
limit the number or type of regions or do not allow the user to
specify abstract anatomical knowledge. The latter takes advan-
tage of a paint-brush mechanism, which allows for large regions
of the interior of the object to be seeded with minimal user
effort, thus improving the probabilistic data terms.

The second major advantage is that the algorithm is founded
in optimization principles, ensuring robustness and repeatability
across images. The formulation of the costs also allows for the
regional and boundary uncertainty (UR and UB) identified in
Ref. 6 to be actively addressed by the segmentation process,
making plane selection simpler and more efficient. Plane selec-
tion is further improved by selecting only axis-aligned planes in
which the user is accustomed.

7 Future Work
There are several future directions in which to take this work
aside from general improvements to computational resource
usage and performance. Specifically,

Fig. 5 Hierarchies used in (a) healthy and (b) pathological neonatal
ventricle segmentation.

Fig. 4 Pathological neonatal ventricle segmentation with (a) MR, (b) manual segmentation, and (c) inter-
active segmentation results. (d) Surface renderings of both the fully manual (left) and interactive (right)
segmentation results.
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• incorporation of a more extensive model of label
organization,

• incorporation of geometric or shape constraints,

• improvements to the definition of the smoothness
model, and

• improvements to the plane selection mechanism.

Recently, work has been performed that extends the
possibility of label organization in continuous max-flow from
hierarchical models15 to models that allow for any possible
label ordering.23 However, there remain issues in terms of
how these structures can be specified by a user in run-time in
an intuitive manner as they are defined using a constrained set of
rooted, weighted directed acyclic graphs, which do not have
a user-friendly tool already in place.

There has also been increasing interest in the use of generic
geometric or shape constraints such as star-shaped priors in both
graph-cuts24 and max-flow image segmentation.25 Shape com-
plexes have already been proposed, which combine the notions
of label orderings and star-convex object constraints to develop
complicated models of object geometry from the union and
disjunction of star-convex objects.26 Such frameworks can be
readily incorporated into this interactive segmentation frame-
work with minimal changes to the interface or usability,
while contributing a significant improvement to the segmenta-
tion accuracy through the encoding of additional anatomical
knowledge.

Currently, the interface allows the user to modify the param-
eters in the smoothness term, but does not permit any other
manipulation. This could be incorporated through the addition
of a contouring mechanism similar to that in Intelligent Scissors,
TurtleSeg, and ITKSnap. These contours could supply specific
information, which can improve the smoothness terms, as well
as give the user complimentary ways to sample regions.

In terms of plane selection, future work could include defin-
ing a sequence of planes sensitive to the distance between them,
rather than a single set. This would allow the algorithm to intel-
ligently inform the user of multiple areas of uncertainty without
reinvoking the continuous max-flow segmentation algorithm
and allow the user to provide feedback on multiple high uncer-
tainty planes in a single interaction cycle.

8 Conclusions
Interactive segmentation helps bridge the gap between manual
and automatic segmentation, allowing each to address the weak-
nesses of the other. In this work, we present a general-purpose
interactive segmentation interface and apply it to cardiac and

Table 2 Scar tissue segmentation results.

(n ¼ 10) Accuracy

Scar AVD (%) 26.9� 15.6

Scar rMSE (mm) 1.30� 0.32

Scar DSC (%) 74.1� 3.5

Scar DSC from Ref. 10 (%) 76.0� 3.0

Interoperator variability from
Ref. 10—scar DSC (%)

76.2� 2.6

Intraoperator variability from
Ref. 10—scar DSC (%)

75.2� 2.8

Fig. 6 Example of automatic hierarchy segmentation. (a) The original hierarchy reproduced from Ref. 10
and (b) the optimized version; (c) an LGE-MRI with (d) manual segmentation and (e) interactive seg-
mentations results.
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neonatal cranial segmentation with performance comparable to
previously published methods specific to said applications.

This interface allows for the user to define a segmentation
hierarchy in run-time, taking advantage of a fast, GPU-acceler-
ated general HMF solver, which in turn allows for more knowl-
edge of spatial relationships between anatomical regions to be
encoded. This encourages the use of optimization techniques
and interactive interfaces in which a user can quickly define
and correct a segmentation, thereby increasing the speed, qual-
ity, and robustness of general segmentation tasks. The ability to
modify the hierarchy in run-time allows for the interactive seg-
mentation interface to account for extreme deviations, such as
ventricular bleeds, by the addition of multiple labels to account
for them. This interface is the first to allow the user to modify the
abstract anatomic knowledge, i.e., label ordering, provided to
the computer in run-time.

Appendix: NP-Hardness of Hierarchy
Definition

Theorem: Consider L to be the set of objects in an image.
Determining if there is a hierarchy with at least k elements
from a specified set of group relationships (G ⊆ 2L) is NP-com-
plete, and specifying the largest hierarchy is NP-hard.

Proof. Any hierarchy is equivalent to an independent set in a
particular, polynomial-time constructible graph. To prove this,
we will show the construction of this graph and proceed through
a proof by contradiction.

Let G be a graph in which each vertex represents a nonempty
set of labels in the segmentation that are expected to have some
regularization, that is, their union forms a meaningful structure
or their grouping is meaningful. In this graph, edges represent
conflicts, where the vertices refer to sets that are neither
embedded (one is a subset of the other) nor disjoint. For the
sake of notation, each vertex will be denoted via its correspond-
ing element of G, the grouping relationship it represents.

Assume there is a hierarchy where the nodes are selected
from the vertices of G, but do not form an independent set.
Consider the edge between two vertices that indicates a depend-
ency e ¼ ðg1; g2Þ. The two adjacent vertices g1; g2 ∈ G refer to
two sets of end-labels that are neither disjoint nor a subset of
each other. (That is, both g1 ∩ g2 and g1 \ g2 are nonempty.)
Consider label A to be an end-label common to both sets.
Note since each is a superset of {A}, they must correspond
to ancestors in the hierarchy and both lie on the direct path
from {A} to the root of the hierarchy. This implies that one
must be an ancestor of the other, which is a contradiction
since neither is a superset of the other. Thus, any hierarchy
must correspond to an independent set in G.

Without loss of generality, assume G is connected. Each in-
dependent set can be transformed into a hierarchy in polynomial
time in a top-down manner. At each iteration, we want to grow
the hierarchy by the vertices corresponding to the largest group
of end-labels at the lowest tier possible. We do this by ordering
the vertices in the independent set by the size of group they re-
present. Then, perform a breadth-first search through the current
tree to find the lowest tier that is a superset of the node under
consideration. We grow the hierarchy by adding the group under
consideration to the identified part of the hierarchy. We repeat
this for each node in the set, initializing the hierarchy as only the

root node, equivalent to the full set of end-labels. Last, we aug-
ment the hierarchy with the end-labels to make it valid.

Since the maximum hierarchy and maximum independent set
problems can be reduced to each other in polynomial time,
determining the largest hierarchy must be NP-hard. □
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