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Abstract

Glaucoma is a potentially blinding optic neuropathy that results in a decrease in visual sensitivity. 

Visual field abnormalities (decreased visual sensitivity on psychophysical tests) are the primary 

means of glaucoma diagnosis. One form of visual field testing is Frequency Doubling Technology 

(FDT) that tests sensitivity at 52 points within the visual field. Like other psychophysical tests 

used in clinical practice, FDT results yield specific patterns of defect indicative of the disease. We 

used Gaussian Mixture Model with Expectation Maximization (GEM), (EM is used to estimate the 

model parameters) to automatically separate FDT data into clusters of normal and abnormal eyes. 

Principal component analysis (PCA) was used to decompose each cluster into different axes 

(patterns). FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 

eyes with abnormal (i.e., glaucomatous) FDT results, recruited from a university-based, 

longitudinal, multi-center, clinical study on glaucoma. The GEM input was the 52-point FDT 

threshold sensitivities for all eyes. The optimal GEM model separated the FDT fields into 3 

clusters. Cluster 1 contained 94% normal fields (94% specificity) and clusters 2 and 3 combined, 

contained 77% abnormal fields (77% sensitivity). For clusters 1, 2 and 3 the optimal number of 

PCA-identified axes were 2, 2 and 5, respectively. GEM with PCA successfully separated FDT 

fields from healthy and glaucoma eyes and identified familiar glaucomatous patterns of loss.
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1. INTRODUCTION

Pattern classification is a broad subject with applications in many different fields including 

biomedicine [1–9]. Recognizing patterns hidden in data sets can result in extracting valuable 

knowledge about the data. Unsupervised clustering techniques can mathematically describe 

patterns in data without the use of prior domain knowledge [10–12]. Pattern recognition 

techniques have been widely used in detecting and monitoring glaucoma [5, 13–15]. 

Glaucoma is a progressive optic neuropathy eye disease that is the second leading cause of 
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blindness in the world [16–18]. One of the key aspects of glaucoma management is 

identifying the disease-related functional defects and monitoring their progression over time. 

Standard Automated Perimetry (SAP) and Frequency Doubling Technology (FDT) testing 

are standardized visual field tests that provide information about visual function in the form 

of sensitivity measurements at 52 different test points (for 24-2 stimuli) across the visual 

field. The FDT stimulus tests the responses of a subset of all available retinal ganglion cells 

that have different temporal and spatial summation properties compared to those tested 

using SAP [19].

Several studies have investigated glaucoma visual field defect patterns [20–23]. Some of 

these rely just on clinicians and eye experts to subjectively evaluate and recognize the defect 

patterns [20–23], however, with the advent of new machine learning classifiers, several 

methods have been proposed based on objective evaluation of large databases of visual 

fields for recognizing glaucoma patterns using machine learning classifiers [24–27]. One 

unsupervised learning-based progression detection algorithm, Progression of Patterns (POP), 

is a recently introduced method based on changing patterns over time using the variational 

Bayesian independent component analysis mixture model (VIM). However, assessment of 

FDT visual field defect patterns has not been investigated thoroughly[28].

In the current study we used a Gaussian mixture model [29, 30] and expectation 

maximization (GEM) approach to separate a set of glaucomatous and normal FDT fields 

into clusters of glaucomatous and normal results and to determine if this technique can 

identify axes representing patterns of defect within the glaucoma clusters. We hypothesized 

that change in GEM defined patterns of defect would perform as well as or better at 

detecting known glaucomatous change than other techniques that would be evaluated in 

another study.

2. METHODS

In this section, we first describe the instruments used for data acquisition, the data 

acquisition and study participants. We then explain the mathematical derivations for 

modeling the data using GEM. We elaborate the framework and implementation of the 

glaucoma progression detection hierarchy and the evaluations employed. Next, we describe 

the clustering step.

2.1 Instruments

Visual field absolute sensitivity was measured at 54 points (2 blind-spot points were 

excluded) using the 24-2 FDT strategy (Humphrey Matrix, Carl Zeiss Meditec Inc., Dublin, 

CA) with Welch-Allyn technology (Skaneateles Falls, New York, USA) using the Zippy 

Estimation by Sequential Testing (ZEST) thresholding algorithm [31, 32].

FDT measures the contrast necessary to detect vertical grating targets that undergo counter-

phase flicker. Each target subtends 5 degrees of visual angle and has a spatial frequency of 

0.5 cycle/degree and counter phases with a temporal frequency of 18 Hz. The test is based 

on the frequency-doubling illusion and is a sensitive way to measure glaucomatous visual 

field loss. Figure 1 shows a sample visual field measurement using a 24-2 FDT system.
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2.2 Participants and data acquisition

Individuals included in the current study were participants in the University of California, 

San Diego (UCSD)-based Diagnostic Innovations in Glaucoma Study (DIGS) and African 

Descent and Glaucoma Evaluation Study (ADAGES, which also includes participants from 

University of Alabama, Birmingham, UAB; and New York Eye and Ear Infirmary, NYEE). 

FDT results from 1,976 eyes of 1,136 individuals were studied.

Each study participant underwent a comprehensive ophthalmologic evaluation, and FDT 

using the 24-2 test strategy.

2.3 Data modeling using GEM

Assume we have n observations of data and that each observation has d dimensions. To 

model the given data with a c-component Gaussian mixture model, assume Y = [Y1, …, Yd]T 

represent the d-dimensional Gaussian random variable and let y = [y1, …, yd]T represent a 

particular outcome of Y. Then, the probability distribution function of c-component finite 

Gaussian mixture model can be written as [29, 30]

(1)

where α1, …, αc are weights of each mixing distribution, and each θm is the set of 

parameters defining the m’th mixing distribution component. Therefore, the complete set of 

model parameters can be written as {θ1, …, θc, α1, …, αc}.

Assume the data samples,  = {y(1), …, y(n)} are independent and identically distributed. 

Then we can write the log-likelihood of the c-component Gaussian mixture model as

(2)

with constraints on the weighting coefficients as αm ≥ 0, m = 1, …, c and .

To find the parameters of this model, we can follow the approach below. The Maximum 

Likelihood (ML) estimate of the parameters can be written as

(3)

Likewise, the Maximum a Posteriori (MAP) framework can be written as

(4)

where p(θ) is the prior on the parameters.
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Finding an analytical solution for either ML or MAP is not practical. Therefore, the 

Expectation Maximization (EM) is the proper solution for computing the parameters in ML 

or MAP. The local maximum of ML or MAP can be found using EM iteratively. Assume 

that  = {z(1), …, z(n)} indicate which Gaussian mixture component produced each data 

sample. Therefore, each label is a binary vector , where  and 

, for q ≠ m, means that the sample y(i) was generated by the mth Gaussian mixture 

component. Including membership data to the model, we can write

(5)

Then the Expectation step can be written as [33]

(6)

where  = E[ | , θ̂(t)] and {t = 0,1,2, …} represents a time sequence.

Since the elements of  are binary, we can write

(7)

Note that in the case of MAP framework, the maximization step can be written as

(8)

The EM algorithm is iterated until a convergence criterion is satisfied. The mathematical 

framework above was utilized to model the data and perform the clustering.

2.4 Implementation

The GEM data modeling introduced in the previous section essentially combined 

multivariate Gaussian components to model the visual field data points. Number of samples, 

n, was 1,976 and the number of dimensions, d, was 53 (52 FDT absolute sensitivity values 

and participant age). Clusters were assigned by selecting the component that maximized the 

MAP based on the EM-estimated parameters. Principal component analysis (PCA) was 

utilized to decompose each cluster into several axes. To identify a globally optimal GEM 

model that represents glaucoma category and visual field defect patterns, we generated 

several GEM models and selected a model that provided the best separation of abnormal and 

normal FDT fields (i.e., best sensitivity and specificity trade off). All stages of the model 

were implemented in Matlab (Mathworks, Natick, Massachusetts, U.S.A.). True Positives 

(TP), which are positive instances correctly classified as positive, and False Positives (FP), 

which are negative instances incorrectly classified as positive, True Negatives (TN), which 
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are negative instances correctly classified as negatives, and False Negatives (FN), which are 

positive instances incorrectly classified as negatives were used to define the performance 

metrics. Specificity, the proportion of all those without disease correctly identified as 

negative, and sensitivity, proportion of all those with diseases correctly identified as positive 

comprised the performance metrics.

We assessed the performance of the clustering stage using the reference standard dataset 

(abnormal and normal FDT visual fields) and the sensitivity/specificity performance metrics 

defined above.

2.5 Clustering

The absolute visual field sensitivity values from the 52 perimetric locations (54, excluding 2 

blind spot locations) and age were used as input to GEM for data modeling. Using the 1,976 

DFT visual fields (cross-sectional) as input, GEM modeled c categories of glaucoma stages 

(i.e. c clusters) from the data and assigned each of these visual fields to the best fitting 

cluster. The initiating variable for the learning process was the number of mixing Gaussians, 

their mean and variance, and the number of clusters, c, which ranged from c = 2–5. 

Validation was done after learning the clusters by observing the distribution of abnormal and 

normal fields in each cluster and the GEM model with nearly 95% specificity and the 

highest sensitivity was selected from 600 trained GEM models. Figure 3 shows the 

specificity versus sensitivity for 600 trained GEM models in gray circles and the blue circle 

is the model selected for pattern generation.

From our assessment of sensitivity-specificity tradeoff among the 600 training GEM 

models, we found that three clusters provided a better separation of glaucoma and healthy 

fields. These three clusters were categorized into a normal cluster N, a moderate glaucoma 

cluster G1 and an advanced glaucoma cluster G2 depending on the centroid of the raw 

threshold sensitivities of these clusters (normal fields have higher threshold values than 

glaucomatous fields). In Figure 4, we show 2-D scatterplots of these 53-dimensional clusters 

for visualization. Figure 4 (left) shows the scatter plot of the superior hemifield (i.e. all 

visual field locations above the middle horizontal meridian shown in Figure 1) average 

absolute sensitivity versus the inferior hemifield (all visual field locations below the middle 

horizontal line as in Figure 1) average absolute sensitivity for all eyes. As can be seen from 

this figure, the eyes in different clusters are organized from top right to the bottom-left. The 

clinical interpretation of this organization is discussed in the Results and Discussion 

sections. Figure 4 (right) shows the scatter plot of MD versus PSD (two global clinical 

indices of visual function) for all eyes. As can be seen from this figure, three clusters have 

been organized from high to low MD and PSD values.

3. RECOGNIZING THE GLAUCOMA DEFECT PATTERNS

We decomposed all of the visual fields comprising each cluster into different axes using 

Principal Component Analysis (PCA). The number of axes in clusters N and G1 was 2 each, 

and the number of axes in cluster G2 was 5. This was determined by assessing the relative 

contribution of each PCA axis in decomposing the visual fields assigned to the respective 
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cluster. The visual fields associated with each axis define the patterns of visual defect that 

we are seeking.

To organize the visual field loss patterns from mild to advanced, the visual field patterns are 

represented as axes through each cluster centroid. Clinicians typically rely on the Total 

Deviation (TD) or Pattern Deviation (PD) plots supplied by the instrument software. We 

used simulated TD plots in our analysis to display the patterns of visual defects in relation to 

normal eyes. The simulated TD plot is a 52-dimensional vector obtained by subtracting 

absolute sensitivities at the centroid of the normal cluster N from the absolute sensitivities at 

the centroid of the glaucomatous clusters and then representing field defects as plots at −2, 0 

(cluster centroid), and +2 Standard Deviation (SD) along each of the axes. The numerical 

TD-like plots were further converted into color representations to aid in visualization. The 

−26 to +26 values were displayed in equal steps of gray from pure black to pure white.

4. RESULTS

The best GEM model identified 3 clusters. Cluster one, was composed of 1,118 FDT fields 

within normal limits (94% specificity) and had two axes. Clusters two and three, combined, 

were composed of 600 abnormal FDT fields (77% sensitivity). Based on evaluation of the 

average defect within each cluster, cluster two (n=349) was composed of mildly abnormal 

fields and two axes. Cluster three (n=251) was composed mostly of moderately to severely 

abnormal fields and 5 axes. FDT fields assigned to an axis resembled both each other and 

GEM-generated patterns for that axis. Along each axis, pattern severity increased in the 

positive direction by expansion or deepening of the axis pattern (increased defect area or 

decreased thresholds in a given area). The visual filed patterns were generated by this 

model. Figure 5 shows the centroid of the three clusters in the form of deviation from the 

centroid of the normal cluster. Figure 6 shows the generated patterns across two axes of the 

normal cluster. All patterns are displayed in −2/2 SD direction of each axis. In Figure 7 we 

have displayed the glaucoma defect patterns at early stages of the disease across two axes. In 

Figure 8 we show the identified glaucoma defect patterns across five axes.

5. CONCLUSION

GEM-identified clusters separated normal and abnormal FDT fields with reasonable 

specificity and sensitivity. In addition, distinctly different and recognizable patterns of 

glaucomatous field defects were identified. Because GEM is less computationally intensive 

than other clustering methods, GEM likely is a good candidate as a preliminary process for 

detecting glaucomatous progression.
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Figure 1. 
Absolute threshold sensitivities (in dB) of FDT visual points tested using the 24-2 system.
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Figure 2. 
Block diagram of the clustering method.
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Figure 3. 
Performance of all trained GEM models.
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Figure 4. 
2-D scatter plot of, left) average of absolute sensitivity values at the superior hemifield 

versus average of absolute sensitivity values at the inferior hemifield, right) Mean Deviation 

(MD) versus Pattern Standard Deviation (PSD).
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Figure 5. 
FDT visual field average defect patters using GEM clustering (The values shown are the 

total deviation from normal cluster). Left is normal visual field cluster, middle is mild 

abnormal visual field cluster, and right is moderate to severe abnormal visual field cluster.
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Figure 6. 
Normal visual field patterns. Top left: visual field across first axis +2 SD, top right: first axis 

−2 SD, Bottom left: visual field across second axis +2 SD, Bottom right: visual field across 

second axis −2 SD.
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Figure 7. 
Early glaucoma visual field patterns. Top left: visual field across first axis +2 SD, top right: 

first axis −2 SD, Bottom left: visual field across second axis +2 SD, Bottom right: visual 

field across second axis −2 SD.
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Figure 8. 
Moderate to advanced glaucoma visual field patterns. First row left) visual field across first 

axis +2 SD, first row right) first axis −2 SD, second row left) visual field across second axis 
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+2 SD, second row right) visual field across second axis −2 SD, third row left) visual field 

across second axis +2 SD, third row right) visual field across second axis −2 SD, fourth row 

left) visual field across second axis +2 SD, fourth row right) visual field across second axis 

−2 SD, fifth row left) visual field across second axis +2 SD, fifth row right) visual field 

across second axis −2 SD.
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Table 1

Demographic information of subjects used.

Parameter Abnormal visual fields Normal visual fields p-value

Number of eyes 786 1190 -

Age at baseline in years (SD) 55.9 (15.3) 50 (14.7) <0.001

FDT Mean Deviation (MD) in dB (SD) −5.57 (5.09) −1.00 (2.80) <0.001
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