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Abstract

Deformable registration techniques play vital roles in a variety of medical imaging tasks such as 

image fusion, segmentation, and post-operative surgery assessment. In recent years, mutual 

information has become one of the most widely used similarity metrics for medical image 

registration algorithms. Unfortunately, as a matching criteria, mutual information loses much of its 

effectiveness when there is poor statistical consistency and a lack of structure. This is especially 

true in areas of images where the intensity is homogeneous and information is sparse. Here we 

present a method designed to address this problem by integrating distance transforms of 

anatomical segmentations as part of a multi-channel mutual information framework within the 

registration algorithm. Our method was tested by registering real MR brain data and comparing 

the segmentation of the results against that of the target. Our analysis showed that by integrating 

distance transforms of the the white matter segmentation into the registration, the overall 

segmentation of the registration result was closer to the target than when the distance transform 

was not used.
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1. INTRODUCTION

Deformable image registration is a crucial tool in medical image analysis, with applications 

including the characterization of anatomical variability, surgical planning, and atlas based 

segmentation.1–3 All of these applications are driven by the assumption that medical images 

can be deformably registered into a common frame of reference, thus providing spatial 

alignment. There has been extensive work on deformable image registration over the 

years,4–9 and the current literature offer a large variety of algorithms, each with their own 

approach for performing the optimization and deformation necessary for image alignment.
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The general framework of a deformable registration problem takes a source image  and 

attempts to map it to a target image τ through some deformation , where  is 

the domain of the respective images. One common factor among all existing registration 

algorithm is the use of a similarity metric, often incorporated into an energy function, to 

determine how close a given mapping brings the source to the target image. In recent years, 

mutual information, originally suggested by Viola and Wells,7 has become one of the most 

prominent similarity metrics used in medical image registration, with widespread presence 

in both academic and clinical applications.6

The strength of mutual information comes primarily from its lack of dependence on explicit 

intensity relationships between the images. As a result it is highly robust and applicable for a 

large number of image modalities. Unfortunately, despite its many advantages in matching 

mono- and multi-modal images, there are still several major drawbacks that affects its 

performance.6,9,10 One of these drawbacks is its loss of effectiveness as a matching criterion 

when working within areas of an image that has poor statistical consistency and a lack of 

clear structure.11 Examples of this includes cases where there is overwhelming noise or 

conversely, when the area has very homogeneous intensity and provide very little 

information. The intent of this paper is to present a method that address the latter issue by 

using a distance transform of anatomical segmentations to provide relevant image features in 

these areas that lack intensity information.

2. METHODS

2.1 Mutual Information

For a discrete random variable , with  representing the probability of the value a 

occurring in , the Shannon Entropy12 is defined by  . 

Similarly, for a second random variable  and joint probability distribution , the 

joint entropy is . If the random variable 

represents image intensity values, its entropy measures how well a given intensity value in 

an image (or a pair of intensities in two images) can be predicted. Using this, the mutual 

information of two images being registered is defined as:

where v(x) represents the deformation between a source image  and a target image τ, and 

the mutual information is maximized when v(x) maps  exactly to τ. Frequently, 

normalized mutual information (NMI),13

is used in place of mutual information and has been shown to be a more robust and 

consistent measure.
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2.2 Drawback of Mutual Information

One of the primary issues with using mutual information for image comparison is its poor 

response to areas where the image is homogeneous. Take for example a patch of an image 

where there is only a single intensity. In this case the total entropy of that patch is zero, and 

the joint entropy with any other patch is equivalent to the entropy of the compared patch. 

Hence, in this case the mutual information is always zero regardless of what the 

homogeneous patch is compared to. This causes algorithms that use local optimization to 

maximize mutual information to have problems when directing the deformation of these 

areas, since they can be effectively matched with any other patch. As a result, this makes 

these areas less reliable in the final registration.

This problem can be best demonstrated when using mutual information to register two 

binary images, as shown in Figure 1. The example shows the registration between two white 

matter masks, which, due to the lack of intensity information present, produced poor 

alignment and overall noisy boundaries in the registration result. However, when the same 

registration was performed on the the distance transform of the segmentation, the alignment 

was significantly sharper and incorporated finer details. In this case, the distance transform 

of the segmentation populated the image with strong structural features that allowed mutual 

information to find a more accurate alignment.

2.3 Registration

The registration algorithm used in our experiments was an adaptation of the Adaptive Bases 

Algorithm(ABA).4 The algorithm uses mutual information to approximate the total 

deformation v(x) by a summation of radial basis functions (RBFs), Φ(x):

where ci are the center locations of the RBFs and wi are the coefficients being optimized. 

This method was chosen primarily for its ability to provide homeomorphic deformations 

while allowing each individual RBF to be optimized independently, therefore increasing its 

speed.

2.4 Integrating Distance Transform of Anatomical Segmentation

The main contribution of our method comes from the application of distance transforms to 

assist registration algorithms in areas that lack intensity information. For our experiments, 

we identified three areas in brain magnetic resonance (MR) images where this is true: the 

white matter, the gray matter, and the combination of the putamen and caudate. The 

segmentations for these areas were performed by using the TOpology-preserving, Anatomy-

Driven Segmentation (TOADS)14,15 algorithm, which is capable of automatically producing 

topologically accurate segmentation of these structures.

TOADS was chosen for its high level of accuracy and robustness when compared to manual 

segmentation of cortical structures, and for its ability to automatically produce topologically 

correct results. The latter is particularly important when performing distance transforms, 
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since small topology defects within the segmentation, such as a hole or handle, can produce 

relatively large artifacts in its distance transform. Once the segmentation was produced, its 

distance transform was calculated, where every point inside the segmentation is mapped as 

its minimum distance to the boundary of the segmentation.

The additional information provided by the distance transform was integrated into the 

mutual information framework using a weighted multi-channel adaptation of ABA.16 In this 

approach, the original source and target images were treated as one channel, and their 

distance transforms were treated as a second channel. The registration for both channels 

were done simultaneously by optimizing a single deformation. However, the energy function 

used in the optimization was calculated as a weighted summation of the NMI of each 

channel separately:

where k specified the channel, and gk was the channel weight. For the purpose of this study, 

the weights were treated as equal for both channels. Since the distance transform overlaps 

the white matter directly, this formulation allowed it to to drive the registration in those 

areas where the image was too homogeneous for mutual information to be effective.

2.5 Data

The data used to evaluate our method consisted of 20 Magnetization-prepared, rapid 

gradient echo (MPRAGE) MR images of the brain from the OASIS data set (http://

www.oasis-brains.org/). The images were skull stripped using the SPECTRE17 algorithm.

3. RESULTS

3.1 Mutual Information With Regard to Rotation

To observe the behavior of mutual information when using an intensity, mask or distance 

transform image, we plotted the change in mutual information between each image and itself 

rotated in 5 degree increments. Figure 2 shows these plots when using a MR brain image, 

and its white matter mask and distance transform. From the plots we can see that while all 

three images maintained the same overall trend, the range and rate of change differed 

significantly. In particular, the distance transform produced a much higher maximum and a 

smoother drop off when compared to the WM mask. These two qualities play an important 

role in optimization, since a larger maximum makes it easier to avoid local extremas, and 

smooth transitions into the maximum provides an easier search space. This is particularly 

true for algorithms that use gradient descent type methods for optimization. The MR image 

of the whole brain provided the best characteristics for optimization, since it contained the 

strongest features and the most information.

3.2 Single-Channel Known Deformation Recovery

Table 1 shows the average absolute error from a known deformation recovery experiment 

using brain MR images and their respective white matter masks and distance transforms. For 
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this experiment, a known deformation was applied to an image, and the deformed image was 

registered to the original image to recover the deformation. The absolute error between the 

recovered and known deformations were then calculated and averaged to measure the 

accuracy of the registration. This process was repeated and averaged over 10 different 

OASIS brain images. To prevent bias towards images with larger volumes, the error was 

only calculated over the union of the non-background voxels in the source and target images 

for each case. The applied known deformation was a three dimensional sinusoid ranging 

from −9 to 9 voxels displacement.

The result show that the white matter mask performed significantly worst for recovering the 

known deformation when compared to the distance transform or MR image. The primary 

reason for this is due to a lack of features in the white matter mask that would allow various 

parts of the image to be differentiated. Since the entire mask is one intensity, a voxel can be 

deformed from almost any direction in order to match with the target.

3.3 Segmentation Comparison of Multi-Channel Results

To evaluate the performance of our multi-channel approach, 10 separate registrations were 

performed using different pairs of source and target brain MR images. Each registration 

result was then segmented by TOADS, and the overlap between the result segmentation and 

the target image segmentation was considered using Dice's coefficient, 

. This value ranges from zero to one, with one indicating a perfect 

overlap. Table 2 shows the Dice's coefficient between various structures from the 

segmentations. This experiment was repeated using just the MR images, the white matter 

mask as a second channel, and the white matter mask distance transform as a second 

channel.

From the results, we see that using the distance transform as a second channel improved the 

overall overlap for the resulting anatomical segmentations. Figure 3 shows an example of 

this result, where we can see that using the distance transform allowed the white matter 

boundary to be much more sharply aligned. However, from the table we also see that using 

the white matter mask as the second channel significantly decreased the performance of the 

algorithm. This result was as expected, since the lack of intensity information in the white 

matter is the problem being addressed by our method. Adding the white matter mask as a 

second channel elevated this problem by effectively weighting the influence of these areas 

even more.

4. DISCUSSION AND CONCLUSION

In this paper we have presented a novel integration of distance transforms of anatomical 

segmentation to assist mutual information based registrations in areas of images that lack 

significant intensity information. We have shown how homogeneous regions can negatively 

impact the effectiveness of mutual information as a similarity metric when recovering a 

known deformation. In addition, our results show that our adaptations improved the 

accuracy of MR brain registrations when comparing the segmentation of the results to the 

segmentation of the target image. This suggests that our method is capable of improving 
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registration in areas of the image where there is not enough information provided for mutual 

information to effectively align the source image to the target image. The method described 

in this paper, along with TOADS and SPECTRE are freely available for download as part of 

the Java Imaging Science Toolkit (JIST, http://www.nitrc.org/projects/jist/).18,19
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Figure 1. 
Registration results between two white matter segmentation masks(top row) and the same 

registration between their distance transforms(bottom row).
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Figure 2. 
Plots of mutual information as a function of rotation for an MR brain image, its white matter 

mask and distance transform.
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Figure 3. 
Single and multi-channel registration results between a source and target image. a.) shows 

the result when only using the MR images and b.) shows the result when using the distance 

transform of the white matter segmentation as a second channel.
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Table 1

Average error of the recovered deformation field, when using the whole MR image, the white matter mask, 

and the distance transform of the white matter mask.

MR Whole Brain White Matter Mask WM Distance Transform

Average Error(Voxels) 1.07 2.94 1.09
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Table 2

Overlap comparison using Dice's coefficient between segmentations of the registration result and 

segmentations of the target image for various brain regions, averaged over 10 registrations. The three columns 

represent(from left to right) when the registration was performed with just a the MR image, and when the 

white matter mask and its distance transform were used as second channels.

Region MR Image Only MR Image + WM Mask MR Image + WM Distance Transform

Grey Matter .759 .603 .770

White Matter .830 .640 .841

Putamen and Caudate .804 .671 .830
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