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ABSTRACT

Data embedding mechanism used for authentication applications should be secure in order to prevent an adversary
from forging the embedded data at his/her will. Meanwhile, semi-fragileness is often preferred to allow for
distinguishing content changes versus non-content changes. In this paper, we focus on jointly enhancing the
robustness and security of the embedding mechanism, which can be used as a building block for authentication.
The paper presents analysis showing that embedding through a look-up table (LUT) of non-trivial run that maps
quantized multimedia features randomly to binary data offers a probability of detection error considerably smaller
than that of the traditional quantization embedding. We quantify the security strength of LUT embedding and
enhance its robustness through distortion compensation. We introduce a combined security and capacity measure
and show that the proposed distortion compensated LUT embedding provides joint enhancement of security and
robustness over the traditional quantization embedding.

Keywords: D ata hiding, digital watermarking, look-up table (LUT) embedding, distortion compensation, joint
security and robustness enhancement.

1. INTRODUCTION

Tampering detection is one of the promising application areas of multimedia data hiding [1,2]. The data
embedding mechanism for these authentication applications should be secure enough to prevent an adversary
from forging the embedded data at his/her will [3]. Meanwhile, semi-fragileness is often preferred to allow
for distinguishing content changes versus non-content changes. Robustness against moderate compression is
desirable since the multimedia data embedded with authentication watermarks may inevitably go through lossy
compression, as in the emerging application of building trustworthy digital cameras [4-6]. In this paper, we focus
on jointly enhancing the robustness and security of embedding mechanism, which can be used as a building block
for authentication.

Among various embedding mechanisms, quantization based embedding is common for authentication purposes
owing to its high embedding rate under blind detection, which is commonly needed in such applications. A
popular technique, often known as odd-even embedding [7] or dithered modulation [8], is to choose a quantization
step size ¢ and round a feature, which can be a sample or a coefficient of the host signal, to the closest even
multiples of ¢ to embed a “0” and to odd multiples to embed a “1”. Motivated by Costa’s information theoretical
result [9], distortion compensation has been proposed to be incorporated into quantization-based embedding and
has substantially improved the tradeoff between payload and robustness [8,10,11].

Security is a major problem of quantization based embedding when used for authentication applications.
An adversary who knows the embedding algorithm can change the embedded data at his/her will, which raises
concerns of counterfeiting attacks on authentication [3]. There are several directions to alleviate this security
problem: some involves adding uncertainty to the embedding mechanism, some generates features with ran-
domness such as projecting a set of media components onto proprietary directions [12,13], and some focuses
on making the data to be embedded more tamper-proof and forge-proof such as via encryption. In this paper,
we concentrate on adding security to the core embedding mechanism to make it difficult for an adversary to
embed a specific bit at his/her will. More specifically, we propose new enhancement strategies for quantization
based embedding, which leads to joint improvement of security and robustness. Unlike the other two types of
approaches discussed above, the security enhancement through core embedding mechanism is not necessarily tied
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with multiple samples or coeflicients. As such, it is compatible to system designs that can localize the tampered
regions, which is a desirable feature for authentication applications [2,4]. It can also be combined with the other
approaches to further enhance the security strength.

The proposed approach is built on top of a general embedding technique known as look-up table (LUT)
embedding. A pixel-domain LUT embedding scheme was proposed by Yeung and Mintzer [2] and was extended
to quantization based embedding in a transform domain [4], whereby the proprietary look-up table can be
generated from a cryptographic key. We may constrain the maximum allowable run of 0 and/or 1 entries when
generating LUTs. With the same quantization step size, the LUT embedding with increased run generally
introduces larger distortion than the traditional odd-even embedding or dithered modulation (equivalent to
imposing run constraint of one), making it less popular in the literature. In this paper, however, we present
analysis showing that the probability of detection error for LUT embedding can be smaller than the odd-even
embedding over a wide range of watermark-to-noise ratio (WNR). The intuition behind is that with larger run
in LUT, stronger noise dragging a watermarked feature out of the enforced interval does not necessarily lead
to errors in detection. We further quantify the security strength of LUT embedding and analyze the effect of
distortion compensation on it. As will be seen, our proposed distortion compensated LUT embedding provides
joint enhancement of security and robustness over the traditional quantization embedding.

The paper is organized as the follows. We begin with a general formulation of LUT embedding, and analyze
the security and robustness of LUT embedding in Section 2 and Section 3, respectively. We then propose and
analyze distortion compensated LUT embedding in Section 4 and demonstrate its capability of joint enhancement
of security and robustness. Section 5 presents experimental results on images, and Section 6 concludes the paper.

2. LOOK-UP TABLE (LUT) EMBEDDING AND ITS SECURITY

We focus on quantization based embedding in scalar features and use uniform quantizers in this paper. A
proprietary look-up table (LUT) T'(-) is generated beforehand. The table maps every possible quantized feature
value randomly to “1” or “0” with a constraint that the runs of “1” and “0” are limited in length. To embed a “1”
in a feature, the feature is simply replaced by its quantized version if the entry of the table corresponding to that
feature is also a “1”. If the entry of the table is a “0”, then the feature is changed to its nearest neighboring values
for which the entry is “1”. The embedding of a “0” is similar. For example, we consider a uniform quantizer * with
quantization step size ¢ = 10 and a look-up table {...,T(7) = 0,7(8) = 0,7(9) = 1,7(10) = 0,T(11) = 1,...}.
To embed a “1” to a coefficient “84”, we round it to the nearest multiples of 10 such that the multiple is mapped
to “1” by the LUT. In this case, we found that “90” satisfies this requirement and use “90” as the watermarked
pixel value. Similarly, to embed a “0” in this pixel, we round it to “80”.

This embedding process can be abstracted into the following formula, where X is the original feature, Y is
the marked one, b is a bit to be embedded in, and Quant(-) is the quantization operation:

v Quant(Xyp) if T(Quant(Xo)/q) =b, 1
Tl Xo+96 otherwise . (1)

Here, § £ argmind(z), where d(x) = Quant(z) — Xg s.t. T(Quant(z)/q) = b. The extraction of the embedded
data is by looking up the table, i.e., b = T(Quant(Y)/q), where b is the extracted bit.

During the process of LUT embedding by Eq. 1, when T'(Quant(X()/q) does not match the bit to be embedded
(b), we need to find a nearby entry in LUT that is mapped to b. As such, the run of “1” and “0” entries of an
LUT need to be constrained to avoid excessive modification on the feature. We denote the maximum allowable
run of “1” and “0” as r. To analyze security as a function of r, we start with the case of » = 1, which leads to
only two possible tables:

~ [ 0 (ifiis even), ~ | 1 (ifiis even),
TG = { 1 (fiis odd); " T = { 0 (ifiis odd).

*For a uniform quantizer with quantization step size ¢ considered in this paper, the quantization operation Quant(z)
is to round z to the nearest integer multiples of q.
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Figure 1. Quantifying the uncertainty in LUT table generation: (a) A Markov chain model for LUT table generation,

where the transition probability is 1/2 for solid arrow lines and 1 for dash arrow lines; (b) the entropy rate of LUT table
as a function of the maximum allowable run 7.

This is essentially the odd-even embedding [7] or the dithered modulation embedding [8]. Since there is little
uncertainty in the table, unauthorized persons can easily manipulate the embedded data, and/or change some
feature values while retaining the embedded values. As we discussed earlier in this paper, the odd-even embed-
ding, or equivalently the choice of r = 1, is not appropriate for authentication applications if no other security
measures are taken, such as a careful design of what data to embed.

When r is greater than 1, the number of LUTSs satisfying the run constraint grows dramatically. For example,
the total number of binary LUTs with length 256 and maximum run of 2 is on the order of 10%3. We quantify
such uncertainty inherent in LUT embedding by identifying the generation process of binary LUT as a 2r-state
Markov chain illustrated in Fig. 1(a). Defining a state vector as [0(),0) .00 1 13) 1] the state
transition matrix of this Markov chain is

0 3 0 0 % 0 0
00 4 o 0[5 0 0
0 0 3|13 0 0
0 .. 01 0 .. 0
P= % 0 0 3 0 .. 0 @
1
2 0 0 12 0 0
3 0 0 3
|10 0

We can show that the stationary probability of both 0() and 1() states is
2T—i—1

w(09) =7(10) = - —

for i = 1,...,r, and the entropy rate of the stationary process {Z1, Zo, ...} is [14]

1
Wm —H(Zy, ..., Zn) = lim H(Zy|Zp_1) =1

n—oo N n— oo or — 1

bit. (4)

For example, in the case of maximum allowable run » = 2, the LUT generation process is a 4-state Markov chain
with transition matrix

(5)
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The stationary probability is = = [1/3,1/6,1/3,1/6], and the entropy rate is 2/3 bit. In contrast, the entropy
rate with maximum run of 1 (or equivalently, the odd-even embedding) is 0 bit. We plot the entropy rate as a
function of  in Fig. 1(b), which indicates that the uncertainty of LUT has increased significantly with a slight
increase of the maximum allowable run.

It is important to note that the security quantified in this section measures how difficult an adversary can
manipulate the data embedded in a watermarked feature with the knowledge of only this feature. We are
interested in how much uncertainty a basic embedding mechanism can offer to each individual feature. Zooming
into an LUT embedding mechanism that is already sufficiently secure at the individual feature level, another
security aspect addresses how feasible it is for an adversary to derive the LUT from a number of watermarked
features. Such a threat can be alleviated by introducing location dependency so that effectively different LUTs
are used for different features [3].

3. ROBUSTNESS ANALYSIS ON LUT EMBEDDING

Though bringing higher security, the increase in the allowable run r will inevitably lead to larger embedding
distortion when a feature value of the host signal is not mapped by LUT to the bit to be embedded. In this
section, we analyze the mean squared distortion introduced by LUT embedding and its probability of detection
error under additive white Gaussian noise.

3.1. Distortion Incurred by Embedding

The mean squared distortion incurred by LUT embedding with binary LUT and maximum allowable run r = 2
is derived as the follows. First, we consider the error incurred purely by quantization, i.e., rounding an original
feature in the range of A = [(k — 1/2)q, (k + 1/2)q) to kq. We assume that the original feature distributed
(approximately) uniformly over this range A, leading to mean squared distortion of MSE( quantize to kq )|4 =
q?/12. This is the case when the LUT entry corresponding to the quantized version of the original feature equals
to the bit to be embedded. We then consider the case that kg does not map to the desired bit value by LUT. In
this situation, we have to shift the watermarked feature to (k —1)q or (k+ 1)g in order to embed the desired bit.
When an original feature falls in the half interval A; £ [(k —1/2)q, kq), with probability of P(T'(k) # T(k — 1)),
(k — 1)q maps to the desired bit by LUT and is output as watermarked feature. On the other hand, with
probability of P(T'(k) = T'(k— 1)), (k— 1)g maps to the same value as kq does, and that value does not equal to
the desired bit. According to the run constraint, (k + 1)g¢ must be mapped to the desired bit value and should
be output as the watermarked feature. By symmetry, the other half interval Ay £ [kq, (k +1/2)q) of an original
feature can be analyzed in the same way. The mean squared distortion when kq does not match to the desired
bit value is thus

MSE( quantize to (k£ 1)q )|
7 19
= { gy [PCT(R) 2 T = 1) + PAT(R) 2 T+ )]+ 53 [PAT(R) = 706 = 1) + PTGR) = 706 + 1)}
The probability terms P(T'(k) = T'(k—1)) and P(T(k) # T(k—1)) can be computed from the Markovian model
presented in Section 2. If the Markov chain is initialized with the stationary probability = = [1/3,1/6,1/3,1/6]
(or equivalently, the initial status of the LUT generation is set to this probability), we have

{ P(T(k) = T(k — 1))
P(T(k) # Tk —1))

1/3,
2/3. (6)

Since with probability of 1/2 the table lookup value of kg matches the desired bit, the overall MSE of the
embedding is MSE|4 = ¢%/2.

We can see that using the quantization step size ¢, LUT embedding with maximum run of 2 introduces MSE
distortion of ¢2/2, which is larger than the MSE distortion of ¢?/3 by the odd-even embedding (or equivalently,
LUT embedding with run 1). However, with larger run in LUT, stronger noise dragging a watermarked feature
out of the enforced interval does not necessarily lead to errors in detection. An example is shown in Fig. 2.



When noise drags a watermarked feature k’'q away to (k' — 1)q, the extracted bit will have different value from
the embedded bit in the case of odd-even embedding (run 1). Such detection error may not happen when the
allowable run of LUT increases since with some probability (k' — 1)q and k’q are now mapped to the same bit
value, as shown in Fig. 2. The probability of detection error can therefore be reduced. Next, we present analytic
and experimental results on this issue.

3.2. Probability of Detection Error Under Additive White Gaussian Noise

To quantify the robustness in terms of the probabil-
ity of detection error, we assume that the watermarked
feature is at k’q and that the additive noise follows
i.i.d. Gaussian distribution A(0,0?) with zero mean

Distribution after
AWGN noise

and variance o2. The probability of noise pushing a ~ Marked feature
feature to other intervals that are far away from k’q is with “0” embedded
small due to the fast decay of the tails of Gaussian dis- . % . >
tribution, so the probability of detection error can be Feature values -1 q kg *k+1) g
approximated by considering only the nearby intervals
around k’q. When noise drags the watermarked feature LUT .

mapping 0 0 1

away from k’q to Y, we will encounter detection error

!/
only when T(Quant(Y)/q) # T(K'). Figure 2. Illustration of reduced detection errors of LUT
For LUT embedding with maximum allowable run embedding as the maximum allowable run r increases.
of 2, there are three cases for the LUT entries of &' — 1,
k', and k' + 1, namely, {T'(k') # T(K' —1),T(K') #
TK + D)} {TK)=TF& —1),T(K) #T(K +1)}, and {T(K') # T(k' —1),T(K') = T(k' + 1)}. Applying the
Markovian property of LUT to computing the joint probability

P(Zk-1, Zk, Zri1) = P(Zk 1) P(Zk| Zk 1) P(Zk111 Z)
where Z;, = T'(k), we obtain the probabilities of the three cases [15]

P(Zy -1 # Zir, Zy # Zir1) = P(Zy -1 = Zyr, Zyy # Ziry1) = P(Z 1 # Zyr s Zyy = Ziry1) = % (7)
Thus the probability of detection error under Gaussian noise can be approximated by P, ~ 4Q(q/20)/3, where the
Q-function Q(z) is the tail probability of a Gaussian random variable A(0,1). Defining the watermark-to-noise
ratio (WNR) « as the ratio of MSE distortion introduced by watermark embedding to that by additional noise,
we have v = ¢?/202 for the LUT embedding with maximum allowable run 7 = 2 according to the discussions
in Section 3.1. The probability of detection error in terms of WNR becomes Pr=2 49(+/7v/2)/3. This
analytic approximation of the probability of detection error vs. WNR is compared with the simulation result for
maximum allowable run » = 2 in Fig. 3(a), where we can see that the analytic approximation and simulation
conform with each other very well.

In contrast, for LUT with maximum run of 1 (or equivalently, the odd-even embedding), detection error
occurs as soon as the noise is strong enough to drag the watermarked feature to the quantization intervals next
to the k’q interval. The probability of detection errors for this embedding is

PI=Y =2 x [Q(q/20) — Q(3¢/20) + Q(5a/20)] = 2 x [Q(\/37/2) — Q(31/37/2) + Q(5/37/2)] (8)
where the WNR ~ = ¢%/302.

Using a total of 500,000 simulation points at each WNR ranging from -6dB to +10dB, we compare the
probability of detection error vs. WNR for maximum allowable run r of 1, 2, 3, and infinity, respectively. As
can be seen from Fig. 3(b), P. of maximum run of 2 (solid line) is significantly smaller than run of 1 (dot line)
for up to 4d B-advantage at low and medium WNR, and is slightly higher at high WNR. In addition, the further
increase of LUT’s run (dot-dash line and dash line) gives only a small amount of reduction of P, at low WNR and
much larger P, at medium and high WNR. This indicates that LUT embedding with maximum allowable run
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Figure 3. Detection error probability under white Gaussian noise for LUT embedding: (a) analytic and simulation results
for maximum allowable LUT run of 2; (b) simulation results for different maximum allowable LUT runs.

of 2 can potentially provide higher robustness as well as higher security than the commonly used quantization
embedding with equivalent run 1. In the next section, we explore techniques that further improve the robustness
and capacity of LUT embedding.

4. DISTORTION COMPENSATED LUT EMBEDDING

Motivated by Costa’s information theoretical result [9], distortion compensation has been proposed and incorpo-
rated into quantization-based embedding [8,10,11], where the LUT enforced feature is combined linearly with the
original feature value to form a watermarked feature. Using an optimal scaling factor that is a function of WNR,
distortion compensated version of odd-even embedding provides higher capacity than without compensation [8].
The basic idea behind such improvement is to render more separation between the watermarked feature values
while keeping the mean squared distortion introduced by the embedding process unchanged. In this section, we
propose to apply distortion compensation to LUT embedding and study the impact of distortion compensation
on the reliability of LUT embedding.

4.1. Analysis of Probability of Detection Error

Let X be the original unmarked feature, X; the output from LUT embedding alone (with maximum allowable
LUT run r = 2), and Y the finally watermarked feature after distortion compensation. We use a quantization
step size of ¢/a to produce X; in the LUT embedding step, where a € (0, 1] is also used as a weighting factor
in distortion compensation:

YZO(Xl +(1—(X)X0. (9)

When a equals to 1, this is reduced to the LUT embedding with quantization step size ¢ and without distortion
compensation. The overall mean squared distortion introduced by this distortion compensated embedding is
E(lY — Xo|?) = E(02|X1 — Xo|*) = ¢2/2. In other words, the mean squared distortion by embedding remains
the same as in the non-compensated version that uses a quantization step size of q.

One criterion for selecting of « is to maximize the following “SNR”:

2 (g/a)?
(1—a)? @l | 52

SNR=2 = (10)

Here the “signal” power in the numerator is the mean squared distance between two neighboring, perfectly en-
forced feature values representing “1” and “0”, and the “noise” power in the denominator is the mean squared



deviation away from a perfectly enforced feature, where the deviation is introduced by both distortion compen-
sation and additional noise of variance o2. The « value that maximizes the above SNR can be found as

(07

(r=2) 1 1
opt 1 = T - (11)
? 1+ /202 I+ wrr

We can see that in terms of a function of WNR, this optimum

compensation factor is identical to the distortion compensa- P, vs. WNR under Gaussian noise and run < 2w/ compensation
tion case studied by Chen-Wornell [8] where the equivalent 05
. . --- simulation
run is 1. We also note that a watermarking system under 0.45] — analysis
. .. . . % 4-term approximation
study usually targets at optimizing the embedding capacity 04l

at a specific noise level. And this will give a specific tar- 035
geted WNR, and lead to an optimal « corresponding to this
noise level. When the targeted noise level changes, so is the
corresponding optimal a.

0.3

0.251

probability of error

0.2+
To analyze the probability of detection error, we focus on

the scenario when Xy is in the interval of [(k—1/2)q/c, kq/«) 0:

for some k, and study three cases of X7, namely, (1) X; = '

kq/a, (2) X1 = (k—1)g/a, and (3) X1 = (k + 1)q/a, re- |

spectively. Using the analysis from the previous section, the % 2 2 o s 6 8 10

2
conditional probability of each of these three cases is 1/2, YN (48)

1/3, and 1/6, respectively. In the first case of X; = kq/a, Figur.e 4. ].)etectior} error probability under white
Gaussian noise for distortion compensated LUT em-
the watermarked feature

bedding with maximum allowable run of 2.
Y=k¢+(1-a)Xo=(1—-a)AXy+kq/a

where AXy £ Xy — kq/a. Under white Gaussian noise N'(0,0?%), the conditional probability of error can be
further broken down into three substantial terms that reflect different combinations of the (k — 1)th, k", and

(k+ l)th entries in the LUT table. This analysis approach is similar to the one used in Section 3.2. Thus the
conditional probability of error for each of the above three cases becomes

PO(AXD) ;{Q((lfa)Aqu/?a) . Q(q/Qaf(lfa)AXo)] N

On On
1 {Q((l—a)AXo—i—Sqﬁa) 4o (3q/2a— (1—04)AX0)} 7
3 On On
PO (AX,) ~ Q (‘I*q/%f* (1*04)“0) 20 ((1fa)AXo+3q/2afq> Lo ((1 fa)AXo+5q/za7q) |
On 3 On 3 On
Pe(g)(AXo) ~0 ((1—a)AXUO+q—q/2a) +§Q(3q/2a—q;(l—a)AXo) +éQ (5q/2a—q;(l—a)AXo) .

The result for Xy € [kq/a, (k4 1/2)q/a] can be obtained by symmetry. Therefore, we arrive at the overall
probability of detection error as
2

0 1 1 1
P = ~PM(AX,) + PP (AXo) + = PP (AXL) | d(AX
o [P @xe) 4 5RO a0+ G| sy

o2/ /Um/ BPél)(t) + %Pé?)(t) + éPe(i”(t)} dt. (12)

where t = AXy/o,, and v = ¢%/20? is the WNR. Because of the fast decay of Q(z) as = increases, we can
further approximate P, into four terms

P =~ am./ﬂm/a {ég (\/5(1 —1/2a) +(1— a)t) +

% [o(vVar/20+ (1 - a)t) + 2 (VE/20 — (1~ 0)t) + (V271 — 1/20) — (1~ )t )] } dt. (13)



Fig. 4 plots the probability of error P, versus the WNR ~ for distortion compensated LUT embedding
with maximum allowable run of 2. Solid line represents the numerical evaluation of Eq. 12, cross marks are
approximations of Eq. 13, and dash line comes from our simulation of a total of 500,000 data points at each
WNR setting. We can see that the analytic approximations of Eq. 12 and Eq. 13 agree very well with the
simulation results especially at high WNR, while there is a small gap between them at lower WNR. Including
more LUT entries around k in our analysis will improve the approximation accuracy and reduce this gap at low
WNR.

Next, we jointly evaluate the robustness and security of the proposed distortion compensated LUT embedding
with maximum allowable run of 2 and of other embedding settings.

4.2. Joint Evaluation of Robustness and Security

We quantify the robustness of different embedding settings through their embedding capacities at a wide range of
WNRs. For simplicity, the channel between embedding and detection is modelled as a simple, binary symmetric
channel (BSC) [14] with cross-over probability being the probability of error P, studied above. That is,

Crur =1—h(P,) =1+ P.log(P.) + (1 — P.)log(1 — P.). (14)

We compare the BSC embedding capacity of five cases in Fig. 5, namely, the maximum allowable run of 2
with and without distortion compensation, constant run of 1 (traditional odd-even embedding) with and without
compensation, and maximum allowable run of infinity (i.e. no run constraint) with compensation. From the cross
marked line to the dash line, we see that when the maximum allowable run is 2, the embedding capacity increases
significantly for up to 4dB-advantage in WNR after applying distortion compensation. We also observe that
when keeping all other conditions identical and only varying the maximum allowable run of LUT, the increase in
allowable run gives higher embedding capacity in low WNR when no compensation is used (the dot line to the
cross marked line), and a moderately smaller capacity when distortion compensation is applied (the solid line to
the dash line to the circle line). For example, at comparable capacity, distortion compensated LUT embedding
with maximum run of 2 requires about 1dB more in WNR than the compensated case with run of 1. The
intuition behind is as follows: the run constraint of 1 with distortion compensation, or equivalently the scalar
Costa’s embedding [11], gives near-optimal embedding capacity supported by information theoretical study [8],
which concerns maximizing the capacity under a specific WNR without other considerations such as the security
inherent in the embedding mechanism in Section 2. On the other hand, the case of run constraints of 2 provides
extra uncertainty in the embedding. As an expense, the error rate at the same WNR level is slightly higher, or
equivalently, the embedding capacity is lower than the run-1 case. This shows a tradeoff between capacity and
security; however, the above embedding capacity comparison alone concerns mainly the robustness and does not
include information about security.

To take into account both security and robustness issues, we define a combined measure J(H, C') as a function
of the entropy rate H of the embedding mapping and the embedding capacity C. One simple choice of J(-,-)
is a linear combination of the entropy rate and the embedding capacity under binary symmetric channel (BSC)
assumption for additive noise. That is,

J=wHryr+ (1 —w)-Crur, (15)

where Hpyr is the entropy rate of LUT table given by Eq. 4, Cryr is the BSC embedding capacity given by
Eq. 14, and w € [0, 1] is a weight factor to provide desirable emphasis to security and robustness issues. We plot
this combined measure at 0dB WNR for maximum LUT run of 1 and 2, respectively, with different weight w
and different compensation settings. We can see from Fig. 5 that distortion compensated embedding with run
constraint of 2 (cross marked line) gives the highest J over a wide range of weight values. It holds until the
weight w going below 0.15 or security is not much concerned, where the combined measure for the traditional
odd-even embedding with distortion compensation (dash line) becomes higher. The figure suggests that as long
as some level of security is desired, by slightly increasing the allowable LUT run from 1 to 2 and by applying
distortion compensation, we can provide joint improvement of security and robustness to quantization based
embedding.
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Figure 5. Joint evaluation of robustness and security for LUT embedding: (a) BSC embedding capacity under different
maximum allowable LUT runs and different compensation settings; (b) the linear security-capacity combined measure of
LUT embedding as a function of weight w at a WNR of 0dB.

4.3. Discussions

Variations of Distortion Compensation We explore a few variations of distortion compensation and com-
pare their performance with the linear compensation in Eq. 9. We shall focus on the case of maximum allowable
run of 2. As illustrated in Fig. 6, to embed a bit b, the linear compensation technique interpolates between
the enforced point X; (highlighted by a hexagonal icon) and the original feature point Xy (five-star icon). To
prevent the compensation step from introducing large deviation from the enforced point X; when T'(k) # b, we
propose two alternatives to Xy. One is a boundary point X, (diamond icon), and the other is a mirroring point
X3 (triangle icon).

Shown in Fig. 7(a) are the perfor- mirroring w.r.t. kq/o.
mances of boundary point based compen- SN
: A X X, x7 ‘x
sation (cross marks), mirroring based com- 2 A g : -
pensation (dot line), and the optimal linear
compensation (solid line). The probability Feature values  (k-1)¢/a kq/a (k+Dg/a
of detection error are comparable for these ¢
three compensation cases. The underlying LUT mapping 0 1 1

reason is because the larger distortion in-

troduced by embedding, such as in the op- Figure 6. Illustration of different distortion compensation strategies.
timal linear compensation, can also bring

larger guard zone hence resist stronger distortion. This leads to nearly identical robustness of the above three
compensation approaches when normalized in terms of WNR.

Robustness Against Uniformly Distributed Noise Primarily introduced by quantizing the watermarked
signals, uniformly distributed noise is common in data hiding applications. Due to the bounded nature of uniform
noise, detection is error free until the range of noise exceeds half of the quantization step size. The probability
of detection error under uniform noise for the odd-even embedding was analyzed in our previous work [16].
For embedding with larger LUT runs and distortion compensation, the robustness analysis against uniformly
distributed additive noise is similar to that for Gaussian noise presented earlier in this paper and will not be
elaborated here. We present the robustness comparison of LUT embedding against uniform noise versus white
Gaussian noise in Fig. 7(b), where the LUT embedding uses maximum allowable run of 2 and linear distortion
compensation. We see that the LUT embedding has similar robustness against uniform and Gaussian noise. The



quantization nature of LUT embedding, along with the bounded property of uniform noise, gives a zero-error
region at very high WNR; and the slightly higher error rate in medium WNR under uniform noise can be reduced
by soft detection [16].

Simulation: pe vs. WNR under Gaussian noise and run < 2 Simulation: Pe vs. WNR for LUT embedding with run < 2 and distortion compensation
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Figure 7. Comparison of probability of error for distortion compensated LUT embedding with maximum allowable run of
2: (a) using three different compensation techniques; (b) under uniform versus white Gaussian noise for linear distortion
compensation.
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Figure 8. A zoomed-in view of the original Lenna image (a) and the watermarked version (b) using distortion compensated
LUT embedding with run constraint of 2, along with a 512 x 512-bit pattern (c) embedded in the Lenna image.

5. EXPERIMENTAL RESULTS WITH IMAGES

As a proof-of-concept, we apply our proposed distortion compensated LUT embedding with run constraint of 2
to the 512 x 512 Lenna image. One bit is embedded in each pixel, and the embedded raw data forms a 512 x 512
pattern shown in Fig. 8(c). For comparison, we have also implemented a embedding scheme using the same
LUT but without compensation T, as well as the popular odd-even embedding with and without compensation.
The base quantization step ¢ is 3 and the PSNRs of watermarked images are about 42dB. Fig. 8(b) shows a
zoomed-in version of watermarked Lenna by the proposed embedding with LUT run constraint of 2 and linear
distortion compensation.

tThis non-compensated scheme is similar to [2] but applied in quantized pixels. For simplicity, we omit an error
diffusion step that can further improve the perceptual quality of watermarked images.
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Figure 9. Visualization of raw error pattern by LUT embedding with different settings under WNR = 0dB.

Next, we add white Gaussian noise to watermarked images and tailor its strength to give a WNR of 0dB
in all tests. The detection errors on 512 x 512-bit raw data are visualized in Fig. 9, from which we can see an
improvement by distortion compensation (Fig. 9(c) and (d)) on reducing the raw bit error rate by 10%. We
also note that when distortion compensation is applied, the error rate for run constraint of 1 (Fig. 9(d)) is
slightly lower than that for run constraint of 2 (Fig.9(c)). These all confirm our analysis presented in Fig. 5(a)
of Section 4.

To overcome the bit errors in data extraction, channel coding can be applied to provide reliable communication
at targeted WNRs. Here we visualize the effect of simple repetition coding followed by majority voting in
decoding. As can be seen from Fig. 10(a)(b), the 16-time repetition coding of a 128 x 128-bit pattern can allow
most bits extracted correctly, and the 64-time repetition will deliver a 64 x 64-bit pattern free of error. The
result under uniform noise at WNR 0dB, shown in Fig. 10(c), is similar to that under white Gaussian noise. This
is expected based on our study in Section 4.3. Additional results on the effects of attacks other than additive
white noise, such as the JPEG compression, can be found in [15].

As a final note, the proposed LUT embedding with distortion compensation can be combined with advanced
coding such as those in [11] to improve the coding efficiency. It can also be applied in transform domains such
as the DCT and the Wavelet domain for improved tradeoffs between imperceptibility, payload, and robustness
against common processing.

6. CONCLUSIONS

In summary, this paper studies the joint enhancement of security and robustness for quantization based data
embedding. We start with a general embedding approach that employs a look-up table mapping quantized
multimedia features to binary data. The security strength of LUT embedding, quantified in terms of entropy
rate, is shown to improve significantly with a slight increase of the allowable LUT run from 1 to 2. We present
analysis showing that LUT embedding with larger run constraints can have smaller probability of detection
error for up to 4dB-advantage in WNR. We then explore distortion compensation on LUT embedding to further
enhance its robustness and provide an additional advantage of up to 4dB in WNR. Finally, through a combined
security and capacity measure, our proposed distortion compensated LUT embedding with maximum allowable
run of 2 demonstrates joint enhancement of security and robustness over the traditional quantization embedding
that has an equivalent run of 1. This joint enhancement makes the proposed embedding scheme an attractive
building block for multimedia authentication applications.
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Figure 10. Visualization of extracted data after applying repetition coding and majority voting under WNR=0dB. The
effective payloads are 64 x 64 bits for (a), and 128 x 128 bits for (b) and (c).
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