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Treat All Integrals as Volume
Integrals: A Unified, Parallel,
Grid-Based Method for
Evaluation of Volume, Surface,
and Path Integrals on Implicitly
Defined Domains
We present a unified method for numerical evaluation of volume, surface, and path inte-
grals of smooth, bounded functions on implicitly defined bounded domains. The method
avoids both the stochastic nature (and slow convergence) of Monte Carlo methods and
problem-specific domain decompositions required by most traditional numerical integra-
tion techniques. Our approach operates on a uniform grid over an axis-aligned box con-
taining the region of interest, so we refer to it as a grid-based method. All grid-based
integrals are computed as a sum of contributions from a stencil computation on the grid
points. Each class of integrals (path, surface, or volume) involves a different stencil for-
mulation, but grid-based integrals of a given class can be evaluated by applying the same
stencil on the same set of grid points; only the data on the grid points changes. When
functions are defined over the continuous domain so that grid refinement is possible,
grid-based integration is supported by a convergence proof based on wavelet analysis.
Given the foundation of function values on a uniform grid, grid-based integration meth-
ods apply directly to data produced by volumetric imaging (including computed tomogra-
phy and magnetic resonance), direct numerical simulation of fluid flow, or any other
method that produces data corresponding to values of a function sampled on a regular
grid. Every step of a grid-based integral computation (including evaluating a function on
a grid, application of stencils on a grid, and reduction of the contributions from the grid
points to a single sum) is well suited for parallelization. We present results from a paral-
lelized CUDA implementation of grid-based integrals that faithfully reproduces the out-
put of a serial implementation but with significant reductions in computing time. We also
present example grid-based integral results to quantify convergence rates associated
with grid refinement and dependence of the convergence rate on the specific choice of
difference stencil (corresponding to a particular genus of Daubechies wavelet).
[DOI: 10.1115/1.4039639]

1 Introduction

Evaluation of a definite surface integral is typically defined as
the sum of contributions from a finely divided polygonal approxi-
mation to the domain of integration [1], and the statement extends
to cover line and volume integrals if polygon is generalized to n-
dimensional polytope. Methods for evaluating integrals based on
such a definition require a finely divided set of polytopes custom-
ized to closely approximate the particular domain of integration.
In cases where the domain is specified in terms of polytopes, the
polytopes can be finely subdivided and such an approach is per-
fectly reasonable. In contrast, this paper focuses on the case when
the domain is defined by an implicit function (or by an approxima-
tion based on a sampling of function values) so that a finely
divided domain approximation is not available without further
computation.

In the field of engineering design, evaluation of definite inte-
grals is often associated with determining mass or surface proper-
ties of a solid model, and there is a considerable literature related

to this task dating back to Sarraga [2] and Lee and Requicha [3,4]
who nicely set the problem context. In part I of their work, Lee
and Requicha [3] noted that the existing literature on computa-
tional multiple integration focuses on problems with a compli-
cated integrand but a simple domain, and characterized mass
property computation as the converse problem with relatively sim-
ple integrands on complicated domains. They also identified key
issues: (1) the modeling scheme used to describe the solid domi-
nates the design of integration algorithms and (2) dominant errors
are typically associated with errors in representing the domain.
Their treatment starts with consideration of solids represented in
terms of their polyhedral boundaries, and states a method that
combines the Divergence Theorem with integration over the para-
metrized polygonal facets. While stating that integrals on regions
with curved boundaries can be approximated by obtaining polygo-
nal approximations of the curved surfaces or by applying Green’s
theorem on the trimmed patch boundaries in the parameter plane,
they are careful to note that that error estimates are not available
for such methods. They go on to discuss Monte Carlo methods
that employ computations at a large number N of sample points to

provide reliable but slow ðOð
ffiffiffiffiffiffiffiffi
ðNÞ

p
ÞÞ convergence and, in part II

[4], methods based on conversion to cellular approximations.
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From this early foundation, the literature goes on to explore a
variety of specialized methods using particular representation
schemes. One branch of exploration involves ray representations
(or “ray-reps” [5–7]) which Ellis et al. characterize as sampled
boundary representations, which support efficient integration but
with accuracy that is dependent on that of the ray–surface inter-
section algorithm. Another branch involves computing approxi-
mate contributions from surface patches [8–10] or cells [11] based
on optimized points in the parametric domain. It is worth noting
that integration has long been recognized as a challenging
problem that would benefit from parallel computing techniques
[5,8,10]. The common thread of the existing literature on comput-
ing integral properties of solid models is the existence of an
explicit model involving either parametric surface patches or a
spatial/cellular decomposition.

Here, we focus on the alternative case of integrals for which the
domain is implicitly defined by the isosurface(s) of one or more
functions of the spatial coordinates. Problems of this type are
commonly generated by users of computer-aided math systems,
e.g., compute the area and/or moments of inertia of an ellipsoidal
shell or compute the path length of the seam on a tennis ball
described as the intersection between a sphere and a hyperbolic
paraboloid [12]. In the solid modeling context, function-based
representations or f-reps use these implicit domains to define
solids [13,14].

Monte Carlo methods can be applied directly to volumetric
integrals (on an implicit domain of co-dimension zero) but, due
to the previously mentioned issue of slow convergence, a signifi-
cant literature has developed around attempts at conversion to
alternative representations that support other methods. In the
best case scenario, a significant amount of additional computa-
tion is involved, for example applying a tessellation method
such as marching cubes [15] or a cell or ray decomposition. In
the worst case (like the Schwarz lantern surface approximation
of a cylindrical surface [16]), finely divided polytopes may be
obtained that do not provide good approximations of the
domain even though the vertices provide a dense sampling of
the domain, and in such cases, the integral estimates can be
unreliable. Edwards [1] points out that confusion between how
integrals are defined (as sums of contributions from finely
divided polytopes approximating the domain) and how integrals
are evaluated (using the fundamental theorem of calculus) forms
a significant obstacle to the proper application of calculus. Here,
we extend that advice to integration on implicit domains and
adopt an approach based on the fundamental theorem in its
various forms (including the divergence theorem and stokes
theorem).

Our approach is motivated by the one scenario where a fine
polytope subdivision can be readily and reliably obtained without
doing a significant amount of work. When the domain B is an
n-dimensional block defined by a finite interval along each of n
orthogonal coordinate directions, the domain can be finely divided
into sub-blocks defined by uniform subdivision of the coordinate
intervals. An integral over the block is then defined as the limit of
the sum of contributions equal to the product of the volume of
each sub-block with the value of the integrand at a representative
point in the sub-block.

This provides an approach to volume integrals based on a reli-
able partition into fine polytopes, and our approach will be to
always convert the integral to be computed into a volume integral
over the block B. The natural choice of taking the representative
point for each block to be its center brings us to the idea of work-
ing with values of a function on a uniform grid (arising as the col-
lection of the centers of the uniform array of sub-blocks). For a
grid with Nx, Ny, and Nz points with spacing Dx, Dy, and Dz along
the x, y, and z coordinate directions respectively, the generic
grid point is located at ri;j;k ¼ ðxi; yj; zkÞ ¼ ðx0 þ iDx; y0 þ jDy;
z0 þ kDzÞ. The sum of sub-block contributions can now be identi-
fied as a sum over voxel values gi;j;k ¼ gðxi; yj; zkÞ, and the inte-
gral takes the initial form

ð
B

gðrÞdv ¼ lim
Dx;Dy;Dz!0

XNx�1

i¼0

XNy�1

j¼0

XNz�1

k¼0

gijkDxDyDz (1)

and we present the volumetric (or “volumometric” [17]) formula-
tions for each class of integrals before getting into further details
of discretization.

The approach to integrating over a box can be extended to a
more interesting domain X by introducing the characteristic or
occupancy function XðrÞ defined by

XðrÞ ¼ 1 r 2 X
0 r 62 X

�
(2)

Here, we are especially interested in an implicitly defined region
X ¼ fðx; y; zÞ 2 R3jf ðx; y; zÞ < 0g in which case the occupancy
function becomes

Xðf ðrÞÞ ¼ 1 f < 0

0 f > 0

�
(3)

Including X as a factor in the integrand, the domain of integration
can be extended to the box B containing the region Xððð

X
gðrÞdv ¼

ððð
B

XðrÞgðrÞdv (4)

We have now obtained our first formula for an integral (in par-
ticular a volume integral) defined on an implicit domain in terms
of a volume integral over a box. We will produce similar formulas
for surface and path integrals before returning to present an alter-
native volume integral formulation. See Ref. [18] for further
details.

2 Surface Integral Formulation

Now, we consider integrating a scalar function over an implic-
itly defined surface, where we previously considered the integral
over a volume X; here, we consider the surface integral IS over
the boundary @X of such a volume

IS ¼
ðð

@X
gðrÞds where @X ¼ fr 2 R3jf ðrÞ ¼ 0g (5)

We convert the surface integral to a volume integral over a box
following earlier treatments by Resnikoff et al. [19] and Storti
[20]. After introducing the outward normal unit vector n̂ ¼
rf=jrf j (for which n̂ � n̂ ¼ 1 wherever rf exists), the surface
integral becomes

IS ¼
ðð

@X
gðrÞds ¼

ðð
@X

gðrÞn̂ � n̂ds (6)

allowing application of the Divergence theorem, which produces
the volume integral

IS ¼
ððð

X
r � ðgðrÞn̂Þdv (7)

The domain of this integral can also be extended to R3 by
introducing the occupancy function, giving

IS ¼
ððð

R3
Xðf ðrÞÞr � ðgðrÞn̂Þdv (8)

Integration by parts yields

IS ¼ �
ððð

R3
gðrÞrXðf ðrÞÞ � n̂dvþ

ðð
@R3
Xðf ðrÞÞgðrÞds (9)
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Because X and rX vanish outside X, the second integral van-
ishes and the domain of the remaining volume integral term can
be restricted to the box B containing X

IS ¼
ðð

@X
gðrÞds ¼ �

ððð
B

gðrÞrXðf Þ � rf=jrf jdv (10)

which provides the desired formula for an integral over an implicit
surface in terms of a volume integral over a box.

3 Path Integral Formulation

Here, we consider the case of an integral along a path deter-
mined by the intersection of two surfaces. Current approaches
involve attempts to create a parametrized path by (1) creating a
spline to approximate the intersection of the surfaces (which may
not be feasible especially for digitized functions) or (2) polygoniz-
ing each implicit surface and attempting to compute the intersec-
tion of the surface polygonizations. Alternatively, to evaluate the
path integral IP of a function g(r) over the path P corresponding
to the intersection of the implicit surfaces dX1 and dX2 (where
f1(r)¼ 0 and f2(r)¼ 0, respectively), we begin by substituting in

the unit tangent vector identity t̂ � t̂ ¼ 1 (where t̂ ¼ n̂1 � n̂2;
n̂1 ¼ rf1=jrf1j, and n̂2 ¼ rf2=jrf2j)

IP ¼
ð
@X1\@X2

gðrÞdl ¼
ð
@X1\@X2

gðrÞðt̂ � t̂Þdl (11)

and apply Stokes’ theorem on Eq. (11) to obtain the surface
integral

IP ¼
ð ð

@X1\X2

ðr � gðrÞt̂Þ � n̂1ds (12)

Introducing the occupancy functions Xðf1Þ for the volume X1

and Xðf2Þ for the volume X2 and following equations (8)–(10) of
the surface integral formulation in Sec. 3 produces the formula for
an integral over the path corresponding to the intersection of two
implicitly defined surfaces

IP ¼ �
ððð

B

gðrÞrXðf1Þ � ðXðf2Þr � t̂Þdv (13)

The occupancy functions Xðf1Þ and Xðf2Þ in this volume
integral can be exchanged by symmetry. However, exchanging
f1 and f2 results in a sign change of the tangent vector t̂ due to
the antisymmetry of the cross product, reversing the sign of the
result.

4 Volume Integral Formulation

Rather than directly evaluating a volume integral based on
Eqs. (8) and (9), for a broad class of integrands, it is possible to
rewrite a volume integral in a more easily evaluated alternative
formulation. In particular, for any integrand g(r) that can be ana-
lytically integrated with respect to one or more of the coordinates,
a vector potential U can be obtained such that gðrÞ ¼ r � U and
the volume integral becomes

IV ¼
ððð

X
gðrÞdv ¼

ððð
X
ðr � UÞdv (14)

Introducing the occupancy function as in Secs. 2 and 3, we can
extend the domain to the box B containing X. Applying the prod-
uct rule, this becomes

IV ¼
ððð

B

Xðr � UÞdv ¼ �
ððð

B

U � rXdvþ
ððð

B

r � ðXUÞdv

(15)

Noting that X vanishes on @B, application of the Divergence
Theorem causes the last term to vanish and produces the formula

IV ¼ �
ð ð

B

U � rXdv (16)

Since rX corresponds to a generalized delta function on @X,
the contributions to this integral come not only from the entire
domain but also from the neighborhood of the boundary of the
domain, which can significantly reduce the operations necessary
to compute the value of the integral.

5 Discretization

Now that we have obtained formulas for each class of integral,
the remaining step toward a numerical method is discretization.
As discussed in the introduction, we do this in a straightforward,
reliable manner by dividing the box uniformly into sub-boxes and
choosing the center of each sub-box as the representative point at
which to estimate the contribution from the sub-box. The center
points of the sub-boxes form a regular three-dimensional grid
over the box, and the sampled function values correspond to a
voxel set.

Note that after each class of integrals is converted to a volume
integral over the box, the integrand involves gradients so a numer-
ical derivative estimator needs to be applied. (To simplify the
discussion, we focus on equal grid spacing D along each coordi-
nate direction. However, the method generalizes directly for
coordinate-specific spacing by inclusion of appropriate scale fac-
tors in the sub-block volume and the derivative estimates.) To
gain access to reliable theoretical underpinnings, we can think of
the data on the grid to be sampled values of a function approxi-
mated by a tensor product of Daubechies wavelets [19] (i.e., we
treat each coordinate direction in turn using conventional one-
dimensional Daubechies wavelet analysis). This provides two dis-
tinct benefits: (1) There are known approaches to computing the
vector of connection coefficients that serves as the stencil for
computing sampled values of the derivative of a wavelet function
from sampled values of the function itself [21,22]. (2) If informa-
tion is available to compute function values on dyadic refinements
of the grid, we can invoke key convergence theorems from
Resnikoff et al. [19]:

11.7 Suppose X is a bounded set of finite perimeter and that
the function F is twice differentiable, then Lj(@X) converges to
the length of @X as j!þ1.
11.8 Assume that @X is Lipschitz and piecewise smooth with
a finite number of nonsmooth points. Then, as j! þ1, Lj(@X)
converges to L(@X), the length of @X.

Here, we follow the notation of Resnikoff and Wells in which j
indicates the level of wavelet analysis (elsewhere j is the grid
index along the y direction). These theorems are stated specifically
for computing path length of implicitly defined planar curves, and
Lj(@X) refers to the level j estimate of the length of the boundary
@X, which corresponds to our Eq. (18). As noted in Ref. [19], the
theorems generalize to higher dimensions and more general
integrands.

The analysis leading to the theorems applies in general for each
member of the Daubechies family of wavelets, so there is freedom
to employ a particular genus G of Daubechies wavelets for inte-
gral computations. Genus G¼ 0 corresponds to Haar wavelets,
which are piecewise constant and have jump discontinuities, so
they are not of great interest for applications where derivative
expressions are important. Daubechies wavelets with G> 0 are
continuous and have a well-defined connection coefficient vector
of finite length that can be used as a stencil to compute derivative
estimates on a grid from values of a function sampled on the grid
[23,24]. Larger values of G provide smoother wavelet approxim-
ants at the cost of longer connection coefficient vectors (and
associated increases in stencil size and computational cost). The
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Daubechies connection coefficient vectors are not always easy to
find (and some published tables contain typographical errors), so
we provide the connection coefficient vectors for genus 1 � G �
4 in Table 1. Note that for G< 3, the connection coefficients coin-
cide exactly with standard symmetric finite difference derivative
approximations. The connection coefficients are obtained by solv-
ing systems of polynomial equations, and exact rational values are
only available only for small values of G that lead to low degree
polynomials.

Given values of the relevant functions (the integrand or its
potential function and the functions that implicitly define the
domain), numerical evaluation of any integral is a sum of contri-
butions from the grid points. Using i, j, and k to index grid points
along the coordinate directions, the general formula for an integral
on an n � 1, 2, 3-dimensional domain is simply

In ¼ D3 �
X
ðCnÞi;j;k (17)

where the relevant functions and the contributions (Cn)i,j,k are
given in Table 2.

Subscripts x, y, z indicate derivative estimates obtained by a
derivative stencil centered at the grid point. For example, if we
choose Daubechies genus 1 with connection coefficient vector
{�1/2, 0, 1/2}, then the derivative of the grid point with indices i,
j, k is ½fx�ijk ¼ ð1=DÞ � ðð1=2Þfiþ1;j;k � ð1=2Þfi�1;j;kÞ.

Note that an optional clipping function h has been included to
implicitly restrict the domain of integration, e.g., to compute an
integral over the portion of an implicit surface or implicit path
that lies within an implicit volume. By default, h(x, y, z)¼�1 so
that XðhÞ � 1 when no domain clipping is desired. Where a

signum function is available, Xðf Þ may be replaced with the
equivalent ½1� sgnðf ðrÞÞ�=2.

In contrast to a conventional stencil computation involving
sampled values of a single function [25], the stencil formulas in
Table 2 are generalized to include contributions from neighboring
values of the defining function(s), the occupancy function(s), the
integrand, and the clipping function. For a surface integral with
integrand g(r), for example, the resulting discrete formula is

I @Xð Þ ¼ �D3
X
i;j;k

g

@

@x
X fð Þ @f

@x
þ @

@y
X fð Þ @f

@y
þ @

@z
X fð Þ @f

@zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f

@x

2

þ @f

@y

2

þ @f

@z

2
s

2
66664

3
77775

i;j;k

(18)

6 Implementation

The computations specified in Table 2 and in sample pseudo-
code in algorithms 1, 2, and 3 all fit into well-known patterns of
parallel computation [26]. Evaluation of a function on a grid cor-
responds to mapping, the most readily parallelized pattern of com-
putation. The remainder of the computation from each grid point
involves evaluation of a stencil formula that is also readily paral-
lelized, and summation of the contributions from the grid points
corresponds to the reduction pattern. We created a parallel imple-
mentation of the grid-based integration formulas using CUDA, a
well-known system for GPU-based parallelism based on the
single-instruction multiple-thread model of parallel computation
[27]. See Ref. [25] for the basics of CUDA including the shared
memory techniques that enhance the efficiency of the stencil and
reduction patterns.

Table 1 Daubechies first derivative connection coefficient vectors for genus 1–4. Coefficients for genus 5–7 are available in Ref.
[18].

Genus D* first derivative connection coefficient vector

1 � 1

2
; 0;

1

2

2 1

12
;� 2

3
; 0;

2

3
;� 1

12

3 � 1

2920
;� 16

1095
;

53

365
;� 272

365
; 0;

272

365
;� 53

365
;

16

1095
;

1

2920

4 � 1

1189272
;

128

743295
;

2645

1189272
;� 1664

49553
;

76113

396424
;� 39296

49553
; 0;

39296

49553
;� 76113

396424
;

1664

49553
;� 2645

1189272
;� 128

743295
;

1

1189272

Table 2 Contributions from each grid point

Integral class Grid functions Contribution formula

Volume Integrand, g C3 ¼ XðhÞgXðf Þ
Geometry, f
Clipping, h

Alternate volume Potential, U C3 ¼ �XðhÞU � rðXðf ÞÞ
Geometry, f
Clipping, h

Surface Integrand, g Ifrðf Þ � rðf Þ ¼¼ 0; C2 ¼ 0;

else C2 ¼ �XðhÞrXðf Þ � rðf Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðf Þ � rðf Þ

pGeometry, f
Clipping, h

Path Integrand, g Ifrðf1Þ � rðf2Þ ¼¼ 0;C1 ¼ 0

else

n̂1 ¼ rðf1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðf1Þ:rðf1Þ

p
n̂2 ¼ rðf2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðf2Þ:rðf2Þ

p
t̂ ¼ n̂1 � n̂2

C1 ¼ �XðhÞ � rXðf1Þ � ðXðf2Þr � t̂Þg

Geometry, f1, f2
Clipping, h
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Fig. 1 Data from convergence study for grid-based evaluation of surface area of a torus. (a) Raw data and best fit log–log plots
of relative error versus grid refinement are shown for genus 1 and 2. The genus 2 stencil (with radius 2) produces a significant
reduction in relative error across the full range of refinement. (b) Best-fit lines for log–log plots of relative error versus refine-
ment for genus 1–7. Increasing genus beyond G 5 2 does not consistently provide decreases in relative error to make up for
increased computational cost associated longer stencils.

Algorithm 1 Gradients

@f

@x
¼ 1

2D
ðf ½iþ 1; j; k� � f ½i� 1; j; k�Þ @X

@x
¼ 1

2D
ðXðf ½iþ 1; j; k�Þ � Xðf ½i� 1; j; k�ÞÞ

@f

@y
¼ 1

2D
ðf ½i; jþ 1; k� � f ½i; j� 1; k�Þ @X

@y
¼ 1

2D
ðXðf ½i; jþ 1; k�Þ � Xðf ½i; j� 1; k�ÞÞ

@f

@z
¼ 1

2D
ðf ½i; j; k þ 1� � f ½i; j; k � 1�Þ @X

@z
¼ 1

2D
ðXðf ½i; j; k þ 1�Þ � Xðf ½i; j; k � 1�ÞÞ

Algorithm 2 Surface Integral: contribution at grid point i, j, k

denominator ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f

@x

� �
@f

@x

� �
þ @f

@y

� �
@f

@y

� �
þ @f

@z

� �
@f

@z

� �s

if denominator< e 	 0 then

C2[i, j, k]¼ 0

else

numerator ¼ @f

@x

� �
@X
@x

� �
þ @f

@y

� �
@X
@y

� �
þ @f

@z

� �
@X
@z

� �

C2½i; j; k� ¼ �g½i; j; k� � numerator

denominator

end if

Algorithm 3 Volume Integral using potential zk̂: contribution at grid point i, j, k

C3½i; j; k� ¼ �g½i; j; k� � @X
@z

7 Examples and Results

We now present results from sample computations for each class of
integrals, verify convergence as the grid is refined, and quantify conver-
gence rates including dependence of the choice of differencing stencil.
We study differencing stencils corresponding to Daubechies wavelet
connection coefficients for genus in the range 1� G� 7, and compare
results with data from problems solved with alternative methods.

We apply the grid-based surface integral formulation to calcu-
late the surface area of a torus, a problem with a well-known solu-
tion. The torus of major radius R and minor radius r can be
implicitly defined by the function

ftorusðx; y; zÞ ¼ ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ2 þ z2 � r2 (19)

and has surface area A¼ 4p2Rr.

We sampled the function ftorus of Eq. (19) on grids over a wide
range of refinement quantified by R=D and computed the surface
area of a torus of major radius R¼ 10 and minor radius r¼ 2 using
the implementation described in Sec. 6 of the formula derived in
Sec. 2. Figure 1 shows a log–log plot of relative error in the com-
puted value as a function of the grid refinement. Figure 1(a) shows
the data points and the best-fit line for derivative estimates of
genus 1 and genus 2. Figure 1(b) shows the best fit lines for genus
1 through genus 7, and the slopes, which quantify convergence
rates, are given in Table 3.

Figure 1(a) illustrates that, for this example, increasing genus
(and stencil radius) from 1 to 2 produces an increase in the magni-
tude of the convergence exponent from 1.99 to 2.18 and a signifi-
cant reduction of relative error over a broad range of grid
refinement. Figure 1(b) shows that the relative error plots are
tightly bunched for genus 2 through genus 7. Note that achieving
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a further 10% change in the convergence exponent from genus 2
requires using genus 6, increasing the stencil radius from 2 to 10,
and accounting for function values at five times as many neigh-
boring points.

The calculation of surface area involves the trivial integrand
g(r)¼ 1. However, the same method can be applied with an
arbitrary integrand. For example, the moment of inertia of a thin
toroidal shell about the z-axis can be calculated with the integrand
g(r)¼ x2þ y2 and the same function ftorus. Assuming unit mass
per area, the exact solution for a torus centered around the z-axis
is

Iz ¼
1

2
m 2R2 þ 3r2ð Þ ¼ 2p2rR 2R2 þ 3r2ð Þ (20)

Data from the convergence study for the genus 1 moment of
inertia calculation are shown in Fig. 2. The convergence rate
found as the magnitude of the slope of the best linear fit to the
log–log data is 1.49. This convergence rate is somewhat slower
than the convergence for the surface area calculation, and is likely
associated with an integrand that is less well behaved (compared
to area computation where the integrand g¼ 1 has a trivial
Lipschitz bound).

The analogous quantities, volume and moment of inertia, are
also known for the solid torus [28]

V ¼ 2p2r2R (21)

Iz ¼
1

4
m 4R2 þ 3r2ð Þ ¼ 1

2
p2r2R 4R2 þ 3r2ð Þ (22)

We choose the following nonunique potential function U
(where r�U)¼ 1) to calculate the volume:

U ¼ xî þ yĵ þ zk̂

3
(23)

Using this potential function, we obtain the convergence results
for grid-based evaluation of the volume of the torus defined by
ftorus shown in Fig. 3. Raw data and best fit line are shown for the
log–log plot of relative error versus grid refinement. The fit indi-
cates a convergence exponent of 1.907.

To compute the moment of inertia of the solid torus using the
method outlined in Sec. 4, we chose the potential function

U ¼ x3 î þ y3 ĵ

3
(24)

Table 3 Summary of convergence results for grid-based com-
putation of the surface area of a torus with R 5 10 and r 5 2
using difference stencils of genus 1 £ G £ 7. The convergence
exponent is the slope of the best fit log–log plot for fixed genus
and varying grid resolution. Note that increasing genus does
steadily increase the magnitude of the convergence exponent,
but that increase comes with increased computational cost
associated with longer difference stencils.

Genus Convergence exponent Intercept

1 �1.99 5.54
2 �2.18 4.40
3 �2.23 4.51
4 �2.29 4.88
5 �2.36 5.09
6 �2.42 5.39
7 �2.46 5.59

Fig. 2 Results of convergence study for genus 1 grid-based
evaluation of moment of inertia of a toroidal shell

Fig. 3 Results of convergence study for genus 1 grid-based
evaluation of the volume of a solid torus. Log–log plot of rela-
tive error versus grid refinement shows raw data and best-fit
line.

Fig. 4 Results of convergence study for genus 1 grid-based
evaluation of the moment of inertia of a solid torus. Log–log
plot of relative error versus grid refinement shows raw data and
best-fit line.
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so that r�U corresponds with the desired integrand g¼ x2þ y2.
Figure 4 shows the log–log plot of relative error as a function of
grid refinement. The best-fit line indicates a convergence expo-
nent of 1.51.

Direct integration can also be applied to path integral calcula-
tions. A simple case is the length of the intersection between two
intersecting spheres. We take the example of two spheres of radius
15 and 13 centered at r1 ¼ �7; 0; 0 and r2 ¼ 7; 0; 0, respectively.
This construction gives a circular intersection of radius 12 and an
intersection arc length of 24p. Results using a genus 1 stencil are
plotted in Fig. 5, with a convergence exponent of 1.71.

The previous examples all have known exact results, which
make them useful for establishing and quantifying convergence.
We now present a practical application to a current research prob-
lem. The data set consists of a grid of fuel to oxidizer mixture
fractions resulting from direct numerical simulation of nonpre-
mixed turbulent combustion [29,30]. An important aspect of
this research involves characterizing the flame surface that is
implicitly defined as an isosurface of the mixture fraction whose
sampled values are produced by the numerical simulation.

Previous efforts to compute properties of the flame surface such
as area or area density involved use of a marching cubes algorithm
[15,31] to obtain a surface triangulation on which to compute
desired properties. By applying the grid-based integration method to
a direct numerical simulation data set whose flame surface is shown
in Fig. 6, we obtained a flame surface area value within 0.8% of the
value obtained using triangulation, but without having to compute a
triangulation. Moreover, flame surface area density corresponds
directly to the contributions from the grid points (i.e., area density is
obtained by performing the stencil computation but omitting the
steps of multiplying by the voxel volume and summing).

Finally, we compare the accuracy of our results with a common
alternative method. A Monte Carlo approach is typical for volu-
metric integration with a smooth integrand [32]. We implemented
a Monte Carlo integration for the solid torus and, since Monte
Carlo methods do not involve a grid resolution parameter, we
compared convergence rates based on the number of points where
the relevant functions are evaluated. The grid-based comparison
result is based on the alternative volume integral formulation with

potential Uðx; y; zÞ ¼ zk̂ corresponding to the desired integrand
g¼ 1.

Figure 7 compares the results of the convergence study of com-
putational error as a function of the number of evaluation points.
In contrast to the Monte Carlo method, which is known to be
probabilistic and relatively slow to converge, the grid-based

method is deterministic and converges to the exact value to more
than four decimal places of accuracy based on fewer than 1 mil-
lion sample points, while the Monte Carlo results can still show
noticeable errors with more than 2 million evaluation points.

While timing is not the primary focus of this paper (and would
require comparisons among execution times from different algo-
rithms running on different hardware), it is appropriate to present
a representative timing result. Figure 8 shows execution time as a
function of number of points in the grid for computing the volume
of the torus. The easy comparison to make (because the results are
identical) is between the serial and parallel implementations of
grid-based integration. Even with a relatively simple implicit
defining function, serial execution takes on the order of 50� lon-
ger than the parallel implementation running on a modern GPU.
Comparisons with Monte Carlo methods are somewhat less
straightforward, but two results can be clearly stated. For a fixed
number of evaluation points, the parallel grid-based computation
runs about 10� faster than the Monte Carlo computation. For
comparisons involving a specified accuracy, the number of Monte
Carlo points considered in the comparison may need to be
increased significantly. For example, computing the torus volume
to within 0.1% requires about 200,000 Monte Carlo evaluation
points and 50,000 direct integral grid evaluation points, and the
resulting speed advantage offered by the grid-based method is a
factor of approximately 9�.

8 Conclusions

We have presented a unified approach to evaluation of volume,
surface, and path integrals on implicitly defined domains. We
present formulas for converting each type of integral to a volume
integral over a box that can be readily subdivided leading to com-
putations on a regular grid of points. The contribution from each
grid point involves gradients of implicit functions and/or occu-
pancy functions, and we compute the gradients in Cartesian coor-
dinates using differencing stencils corresponding to Daubechies
wavelet connection coefficients (which, for small genus, coincide
with traditional central difference formulas).

We presented the results obtained by applying a CUDA imple-
mentation that leverages GPU-parallelism to enhance computa-
tional throughput to the point where interactive systems with
real-time integral computation have been achieved. Results are
presented for examples of known volume integrals (volume and
moment of inertia of a solid torus), surface integrals (surface area

Fig. 6 Visualization of stoichiometric surface implicitly
defined by a 512 3 512 grid of direct numerical simulation data.
Area and area density were successfully computed using the
grid-based surface integral method [30].

Fig. 5 Results of convergence study for genus 1 grid-based
evaluation of the path length of a sphere-sphere intersection
curve. Log–log plot of relative error versus grid refinement
shows raw data and best-fit line.
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of a torus and moment of inertia of a thin toroidal shell), and path
integrals (length of the intersection curves between two spheres).
We also present, as a point of comparison to other techniques,
results for the area of a flame surface based on direct numerical
simulation data and Monte Carlo results for the volume calcula-
tion of a solid torus.

Wherever possible, results are confirmed to agree with avail-
able analytical values and results of a serial implementation. In all
cases where data can be obtained for refined grids, grid refinement
leads to convergence. Convergence exponents are observed in the
range of 1.49–2.46 and, with higher genus differencing stencils
producing faster convergence. For the examples presented,
increasing genus from 1 to 2 generally produced significant reduc-
tion in relative error and seemed worth the computational cost of
increasing the stencil radius from 1 to 2. The examples presented
do not provide an example where further increase in genus (and
stencil size) is obviously worthwhile. Our early experience with
these methods suggests great potential for applications and for sig-
nificant enhancement of integral property evaluation tools for
computer-aided math systems.
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