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Abstract. A Newton-Okounkov body is a convex body constructed from a polarized variety with

a valuation on its function field. Kaveh (resp., the first author and Naito) proved that the Newton-
Okounkov body of a Schubert variety associated with a specific valuation is identical to the Littelmann

string polytope (resp., the Nakashima-Zelevinsky polyhedral realization) of a Demazure crystal. These
specific valuations are defined algebraically to be the highest term valuations with respect to certain

local coordinate systems on a Bott-Samelson variety. Another class of valuations, which is geometrically

natural, arises from some sequence of subvarieties of a polarized variety. In this paper, we show that
the highest term valuation used by Kaveh (resp., by the first author and Naito) and the valuation

coming from a sequence of specific subvarieties of the Schubert variety are identical on a perfect basis

with some positivity properties. The existence of such a perfect basis follows from a categorification
of the negative part of the quantized enveloping algebra. As a corollary, we prove that the associated

Newton-Okounkov bodies coincide through an explicit affine transformation.
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1. Introduction

A Newton-Okounkov body ∆(X,L, v) is a convex body constructed from a polarized variety (X,L)
with a valuation v on its function field C(X); this generalizes the notion of Newton polytope for a toric
variety. The theory of Newton-Okounkov bodies was introduced by Okounkov [40, 41, 42] and afterward
developed independently by Kaveh-Khovanskii [22] and by Lazarsfeld-Mustata [30]. A remarkable fact
is that the theory of Newton-Okounkov bodies of Schubert varieties is deeply connected with represen-
tation theory [6, 7, 9, 21, 26]. For instance, Kaveh [21] (resp., the first author and Naito [9]) showed
that the Littelmann string polytope constructed from the Littelmann string parametrization for a De-
mazure crystal (resp., the Nakashima-Zelevinsky polyhedral realization constructed from the Kashiwara
embedding of a Demazure crystal) is identical to the Newton-Okounkov body of a Schubert variety
with respect to a specific valuation, which is defined algebraically to be the highest term valuation with
respect to a certain local coordinate system on a Bott-Samelson variety (cf. [8]). There are valuations
which arise naturally from geometric data of X, more precisely, some sequences of subvarieties of X.
The class of such valuations includes many interesting examples, and many people have been focused
on Newton-Okounkov bodies with respect to such valuations (see, for instance, [28] and [30]). In this
paper, we show that the valuation used by Kaveh (resp., by the first author and Naito) and the one
coming from a sequence of specific subvarieties of the Schubert variety are identical on a perfect basis
with some positivity properties.

To be more precise, let X be an irreducible normal projective variety over C of complex dimension
r, and L a very ample line bundle on X. We consider a sequence of irreducible closed subvarieties

X• : Xr ⊂ Xr−1 ⊂ · · · ⊂ X0 = X

2010 Mathematics Subject Classification. Primary 17B37; Secondary 05E10, 14M15, 14M25.
Key words and phrases. Newton-Okounkov body, Schubert variety, Crystal basis, Perfect basis.
The work of the first author was supported by Grant-in-Aid for JSPS Fellows (No. 16J00420). The work of the second

author was supported by Grant-in-Aid for JSPS Fellows (No. 15J09231) and the Program for Leading Graduate Schools,
MEXT, Japan.

1

ar
X

iv
:1

61
0.

08
78

3v
2 

 [
m

at
h.

A
G

] 
 2

4 
Ju

l 2
01

7



2 N. FUJITA AND H. OYA

such that dimC(Xk) = r − k for 0 ≤ k ≤ r, and assume that Xk is a normal subvariety of Xk−1 for
1 ≤ k ≤ r. By the normality assumption, there exists a collection u1, . . . , ur of rational functions on X
such that the restriction uk|Xk−1

is a not identically zero rational function on Xk−1 that has a zero of
first order on the hypersurface Xk for every k. Out of such a collection u1, . . . , ur of rational functions,
we construct a valuation vX• : C(X) \ {0} → Zr, f 7→ (a1, . . . , ar), as follows. The first coordinate a1 is
the order of vanishing of f on X1. Then we have (u−a11 f)|X1

∈ C(X1) \ {0}, and the second coordinate
a2 is the order of vanishing of (u−a11 f)|X1 on X2. Continuing in this way, we define all ak. This is
the definition of vX• . The Newton-Okounkov body ∆(X,L, vX•) inherits information about algebraic,
geometric, and combinatorial properties of X; for instance, the Newton-Okounkov body ∆(X,L, vX•)
encodes numerical equivalence information of the line bundle L (see [30]). In addition, by [1, Theorem
1], we can systematically construct a series of toric degenerations of X under the assumption that the
associated semigroup ΓX•(H

0(X,L)) (see [1, Sections 2 and 3] for the definition) is finitely generated.
In the case that X is a Schubert variety and X• is a sequence of specific subvarieties of the Schubert
variety, this semigroup ΓX•(H

0(X,L)) is identical to the semigroup S(X,L, vX• , τ) that we will define
in Definition 2.7. It is natural to ask whether the valuation used by Kaveh (resp., by the first author
and Naito) can be realized as a valuation of the form vX• . This question was suggested by Kaveh in
[21, Introduction (after Theorem 1)]. Our main result in this paper gives an answer to this question.

Let G be a connected, simply-connected semisimple algebraic group over C, g its Lie algebra, W the
Weyl group, and si ∈ W , i ∈ I, the simple reflections, where I denotes an index set for the vertices
of the Dynkin diagram. Choose a Borel subgroup B ⊂ G, and denote by X(w) ⊂ G/B the Schubert
variety corresponding to w ∈ W . A dominant integral weight λ gives a line bundle Lλ on G/B; by
restricting this bundle, we obtain a line bundle on X(w), which we denote by the same symbol Lλ. From
the Borel-Weil type theorem, we know that the space H0(X(w),Lλ) of global sections is a B-module
isomorphic to the dual module Vw(λ)∗ of the Demazure module Vw(λ) corresponding to λ and w. Let
i = (i1, . . . , ir) ∈ Ir be a reduced word for w, and set w≥k := siksik+1

· · · sir , w≤k := si1si2 · · · sik for
1 ≤ k ≤ r. Then we obtain two sequences of subvarieties of X(w) which satisfy the conditions above:

X(w≥•) : X(e) ⊂ X(w≥r) ⊂ X(w≥r−1) ⊂ · · · ⊂ X(w≥2) ⊂ X(w≥1) = X(w) and

X(w≤•) : X(e) ⊂ X(w≤1) ⊂ X(w≤2) ⊂ · · · ⊂ X(w≤r−1) ⊂ X(w≤r) = X(w),

where e ∈ W is the identity element. Consider the valuations vX(w≥•), vX(w≤•) associated with these
sequences.

Denote by ei, fi, hi ∈ g, i ∈ I, the Chevalley generators, by {αi | i ∈ I} the set of simple roots, and by
U− the unipotent radical of the opposite Borel subgroup. Let Bup = {Ξup(b) | b ∈ B(∞)} be a perfect
basis of C[U−] (see Definition 3.2), and assume that this basis has the following positivity properties:

(i) the element (−fi) · Ξup(b) belongs to
∑
b′∈B(∞) R≥0Ξup(b′) for all b ∈ B(∞) and i ∈ I;

(ii) the product Ξup(b) · Ξup(b′) belongs to
∑
b′′∈B(∞) R≥0Ξup(b′′) for all b, b′ ∈ B(∞) such that

wt(b) ∈ {−αi | i ∈ I}.
The existence of a perfect basis with the positivity properties (i) and (ii) follows from a categorification
of the negative part of the quantized enveloping algebra (see Proposition 4.2). Remark that this basis
induces a C-basis {Ξup

λ,w(b) | b ∈ Bw(λ)} of the space H0(X(w),Lλ) of global sections (see Section 3 and

Proposition 4.4). Let τλ ∈ H0(X(w),Lλ) be the restriction of the lowest weight vector in H0(G/B,Lλ).
Write aop := (ar, . . . , a1) for an element a = (a1, . . . , ar) ∈ Rr, and Hop := {aop | a ∈ H} for a subset
H ⊂ Rr. The following is the main result of this paper.

Theorem. Let λ be a dominant integral weight, i ∈ Ir a reduced word for w ∈W , and b ∈ Bw(λ).

(1) The value vX(w≥•)(Ξ
up
λ,w(b)/τλ)op is equal to the Kashiwara embedding of b.

(2) The value vX(w≤•)(Ξ
up
λ,w(b)/τλ)op is equal to the Littelmann string parametrization of b.

Corollary. Let λ be a dominant integral weight, and i ∈ Ir a reduced word for w ∈W .

(1) The Newton-Okounkov body ∆(X(w),Lλ, vX(w≥•))
op is identical to the Nakashima-Zelevinsky

polyhedral realization of Bw(λ).
(2) The Newton-Okounkov body ∆(X(w),Lλ, vX(w≤•))

op is identical to the Littelmann string poly-

tope for Bw(λ).

For simplicity, we deal with only finite type case, but our results (Theorem and Corollary above)
can be extended to symmetrizable Kac-Moody case without much difficulty. Note that in the case g
is infinite dimensional, there is no w ∈ W such that X(w) = G/B. Indeed, the full flag variety G/B
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is infinite dimensional while the Schubert variety X(w) is finite dimensional. Hence in this case, we
cannot replace X(w) in Corollary above with G/B. See [27] for the precise treatment.

Finally, we should mention some previous works. The computation of the Newton-Okounkov body
with respect to the valuation vX(w≤•) was partially done by Okounkov [41]. In the case that G = Sp2n(C)
and i is a specific reduced word for the longest element, he proved that the Newton-Okounkov body
with respect to vX(w≤•) is identical (after an explicit affine transformation) to the type C Gelfand-Zetlin

polytope, which coincides (after an explicit affine transformation) with the corresponding Littelmann
string polytope by [35, Corollary 7]. Since the collection u1, . . . , ur of rational functions used in [41] is
different from ours, the Newton-Okounkov body computed in [41] is not identical to ours, but they are
unimodular equivalent. Note that our approach in this paper is quite different from his.

In the paper [26], Kiritchenko considered the valuation associated with the sequence of translated
Schubert varieties:

wX(e) = w≤rX(e) ⊂ w≤r−1X(w≥r) ⊂ w≤r−2X(w≥r−1) ⊂ · · · ⊂ w≤1X(w≥2) ⊂ eX(w≥1) = X(w).

In the case that G = SLn(C) and i is a specific reduced word for the longest element, she proved
that the corresponding Newton-Okounkov body is identical to the Feigin-Fourier-Littelmann-Vinberg
polytope, which is defined by using Dyck paths (cf. [7]). Note that this Newton-Okounkov body is not
unimodularly equivalent to the ones with respect to the valuations vX(w≥•), vX(w≤•) in general.

This paper is organized as follows. In Section 2, we recall the definition of Newton-Okounkov bodies.
In Section 3, we recall some properties of perfect bases, and review the main results of [9] and [21].
Section 4 is devoted to explaining properties of perfect bases with the positivity properties (i) and (ii).
Finally, we prove Theorem above in Section 5.

Acknowledgements. The first author is greatly indebted to his supervisor Satoshi Naito for fruitful
discussions and helpful suggestions. The second author would like to thank his supervisor Yoshihisa
Saito for his support and encouragement. The authors wish to express their gratitude to Yoshiyuki
Kimura for pointing out some nontrivial gaps. They would like to thank Xin Fang, Megumi Harada,
Kiumars Kaveh, and Valentina Kiritchenko for many comments and suggestions. The second author
thanks the University of Caen Normandy, where a part of this paper was written, and Bernard Leclerc
for hospitality.

2. Newton-Okounkov polytopes of Schubert varieties

Here we recall the definition of Newton-Okounkov bodies of Schubert varieties, following [11], [21],
[22], and [23]. Let R be a C-algebra without nonzero zero-divisors, and fix a total order < on Zr,
r ∈ Z>0, respecting the addition.

Definition 2.1. A map v : R \ {0} → Zr is called a valuation on R if the following hold: for every
σ, τ ∈ R \ {0} and c ∈ C \ {0},

(i) v(σ · τ) = v(σ) + v(τ),
(ii) v(c · σ) = v(σ),
(iii) v(σ + τ) ≥ min{v(σ), v(τ)} unless σ + τ = 0.

The following is a fundamental property of valuations.

Proposition 2.2 (See, for instance, [21, Proposition 1.8 (2)]). Let v be a valuation on R. For
σ1, . . . , σs ∈ R \ {0}, assume that v(σ1), . . . , v(σs) are all distinct. Then for c1, . . . , cs ∈ C such that
σ := c1σ1 + · · ·+ csσs 6= 0, the following equality holds:

v(σ) = min{v(σt) | 1 ≤ t ≤ s, ct 6= 0}.

Let G be a connected, simply-connected semisimple algebraic group over C, g its Lie algebra, W the
Weyl group, and I an index set for the vertices of the Dynkin diagram. Choose a Borel subgroup B ⊂ G
and a maximal torus T ⊂ B. Denote by t the Lie algebra of T , by t∗ := HomC(t,C) its dual space, and
by 〈·, ·〉 : t∗×t→ C the canonical pairing. Let {αi | i ∈ I} ⊂ t∗ be the set of simple roots, {hi | i ∈ I} ⊂ t
the set of simple coroots, and ei, fi, hi ∈ g, i ∈ I, the Chevalley generators. For i ∈ I, denote by gi the
Lie subalgebra of g generated by ei, fi, hi, which is isomorphic to sl2(C) as a Lie algebra.

Definition 2.3. Let us denote by X(w) for w ∈W the Zariski closure of Bw̃B/B in G/B, where w̃ ∈ G
denotes a lift for w; note that the closed subvariety X(w) is independent of the choice of a lift w̃. The
X(w) is called the Schubert variety corresponding to w ∈W .



4 N. FUJITA AND H. OYA

It is well-known that the Schubert variety X(w) is a normal projective variety of complex dimension
`(w), where `(w) is the length of w. Given a dominant integral weight λ, we define a line bundle Lλ on
G/B by

Lλ := (G× C)/B,

where B acts on G× C on the right as follows:

(g, c) · b = (gb, λ(b)c)

for g ∈ G, c ∈ C, and b ∈ B. By restricting this bundle, we obtain a line bundle on X(w), which
we denote by the same symbol Lλ. Let V (λ) be the irreducible highest weight G-module with highest
weight λ, vλ ∈ V (λ) the highest weight vector, and vwλ ∈ V (λ) the extremal weight vector of weight
wλ for w ∈W . Then the Demazure module Vw(λ) corresponding to w ∈W is the B-submodule of V (λ)
given by

Vw(λ) :=
∑
b∈B

Cbvwλ.

From the Borel-Weil type theorem, we know that the spaceH0(G/B,Lλ) (resp., H0(X(w),Lλ)) of global
sections is a G-module (resp., a B-module) isomorphic to the dual module V (λ)∗ := HomC(V (λ),C)
(resp., Vw(λ)∗ := HomC(Vw(λ),C)).

Definition 2.4. Define two lexicographic orders < and ≺ on Zr, r ∈ Z>0, by (a1, . . . , ar) < (a′1, . . . , a
′
r)

(resp., (a1, . . . , ar) ≺ (a′1, . . . , a
′
r)) if and only if there exists 1 ≤ k ≤ r such that a1 = a′1, . . . , ak−1 =

a′k−1, ak < a′k (resp., ar = a′r, . . . , ak+1 = a′k+1, ak < a′k). Let C(t1, . . . , tr) denote the rational function
field in r variables. The lexicographic order < on Zr induces a total order (denoted by the same symbol

<) on the set of all monomials in the polynomial ring C[t1, . . . , tr] as follows: ta11 · · · tarr < t
a′1
1 · · · t

a′r
r if

and only if (a1, . . . , ar) < (a′1, . . . , a
′
r). Let us define two valuations vhigh, vlow : C(t1, . . . , tr) \ {0} → Zr

by vhigh(f/g) := vhigh(f)− vhigh(g), vlow(f/g) := vlow(f)− vlow(g) for f, g ∈ C[t1, . . . , tr] \ {0}, and by

vhigh(f) := −(a1, . . . , ar) for f = cta11 · · · tarr + (lower terms) ∈ C[t1, . . . , tr] \ {0},

vlow(f) := (a1, . . . , ar) for f = cta11 · · · tarr + (higher terms) ∈ C[t1, . . . , tr] \ {0},
respectively, where c ∈ C \ {0}, and by “lower terms” (resp., “higher terms”), we mean a linear com-
bination of monomials smaller (resp., bigger) than ta11 · · · tarr with respect to the total order <. Since
the total order < on the set of all monomials satisfies t1 > · · · > tr, we call the valuation vhigh (resp.,
vlow) on C(t1, . . . , tr) the highest term valuation (resp., the lowest term valuation) with respect to the
lexicographic order t1 > · · · > tr. Similarly, by using the lexicographic order ≺ on Zr, we define the
highest term valuation ṽhigh and the lowest term valuation ṽlow with respect to the lexicographic order
tr � · · · � t1 by

ṽhigh(f) := −(ar, . . . , a1) for f = cta11 · · · tarr + (lower terms) ∈ C[t1, . . . , tr] \ {0},

ṽlow(f) := (ar, . . . , a1) for f = cta11 · · · tarr + (higher terms) ∈ C[t1, . . . , tr] \ {0},
where c ∈ C \ {0}; note that the lexicographic order ≺ on Zr induces a total order ≺ on the set of all
monomials satisfying tr � · · · � t1.

lexicographic order highest term valuation lowest term valuation
t1 > · · · > tr vhigh vlow

tr � · · · � t1 ṽhigh ṽlow

Example 2.5. If r = 3 and f = t1t2 + t23 ∈ C[t1, t2, t3], then it follows that vhigh(f) = −(1, 1, 0),
vlow(f) = (0, 0, 2), ṽhigh(f) = −(2, 0, 0), and ṽlow(f) = (0, 1, 1).

Let U− denote the unipotent radical of the opposite Borel subgroup, U−i ⊂ U− the opposite root
subgroup corresponding to an index i ∈ I, and set u− := Lie(U−), u−i := Lie(U−i ) = Cfi. We regard
U− as an affine open subset of G/B by:

U− ↪→ G/B, u 7→ u mod B.

Consider the set-theoretic intersection U− ∩ X(w) in G/B. Since the intersection is an open subset
of X(w), it acquires an open subvariety structure from X(w). Remark that this is identical to the
closed subvariety structure on U− ∩ X(w) induced from U−, since a reduced subscheme structure on
the locally closed subset U− ∩ X(w) ⊂ G/B is unique. Let i = (i1, . . . , ir) ∈ Ir be a reduced word
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for w ∈ W . It is well-known that the product map U−i1 × · · · × U−ir → U− ∩ X(w), (u1, . . . , ur) 7→
u1 · · ·ur mod B, is a birational morphism (see, for instance, [12, Part II, Chapter 13]); therefore, the
function field C(X(w)) = C(U−∩X(w)) is identified with C(U−i1 ×· · ·×U

−
ir

). By using the isomorphism

Cr ∼−→ U−i1 × · · · × U
−
ir

of varieties given by (t1, . . . , tr) 7→ (exp(t1fi1), . . . , exp(trfir )), we identify the

function field C(X(w)) = C(U−i1 ×· · ·×U
−
ir

) with the rational function field C(t1, . . . , tr). Now we define

valuations vhighi , vlowi , ṽhighi , ṽlowi on C(X(w)) to be vhigh, vlow, ṽhigh, ṽlow on C(t1, . . . , tr), respectively.
If we set w≥k := siksik+1

· · · sir and w≤k := si1si2 · · · sik for 1 ≤ k ≤ r, then we obtain two sequences of
subvarieties of X(w):

X(w≥•) : X(e) ⊂ X(w≥r) ⊂ X(w≥r−1) ⊂ · · · ⊂ X(w≥2) ⊂ X(w≥1) = X(w) and

X(w≤•) : X(e) ⊂ X(w≤1) ⊂ X(w≤2) ⊂ · · · ⊂ X(w≤r−1) ⊂ X(w≤r) = X(w),

where e ∈W is the identity element. As discussed in Introduction, we construct two valuations vX(w≥•)

and vX(w≤•) out of these sequences; note that X(w≥k) (resp., X(w≤k)) is a normal subvariety of

X(w≥k−1) (resp., X(w≤k+1)) for each k. Now it follows immediately that

vlowi = vX(w≥•) and ṽlowi = vX(w≤•).

Consider the left action of U−i1 (resp., the right action of U−ir ) on U−i1 × · · · × U
−
ir

given by

u · (u1, . . . , ur) := (uu1, . . . , ur) (resp., (u1, . . . , ur) · u′ := (u1, . . . , uru
′))

for u1 ∈ U−i1 , . . . , ur ∈ U
−
ir

, and u ∈ U−i1 (resp., u′ ∈ U−ir ); this induces a left action of u−i1 (resp., a right

action of u−ir ) on C[t1, . . . , tr] = C[U−i1 × · · · × U
−
ir

], which is given by:

fi1 · f(t1, . . . , tr) = − ∂

∂t1
f(t1, . . . , tr)(2.1)

(resp., f(t1, . . . , tr) · fir = − ∂

∂tr
f(t1, . . . , tr))(2.2)

for f(t1, . . . , tr) ∈ C[t1, . . . , tr] (see [9, §§3.2] and [21, Proposition 2.2]).

Proposition 2.6 (See [9, Proposition 3.9] and [21, Proof of Theorem 4.1]). Let f(t1, . . . , tr) ∈ C[t1, . . . , tr]
be a nonzero polynomial.

(1) Write vhighi (f(t1, . . . , tr)) = −(a1, . . . , ar). Then the following equalities hold:

a1 = max{a ∈ Z≥0 | fai1 · f(t1, . . . , tr) 6= 0},
a2 = max{a ∈ Z≥0 | fai2 · (f

a1
i1
· f(t1, . . . , tr))|X(w≥2) 6= 0},

...

ar = max{a ∈ Z≥0 | fair · (· · · (f
a2
i2
· (fa1i1 · f(t1, . . . , tr))|X(w≥2)) · · · )|X(w≥r) 6= 0}.

(2) Write ṽhighi (f(t1, . . . , tr)) = −(a′r, . . . , a
′
1). Then the following equalities hold:

a′r = max{a ∈ Z≥0 | f(t1, . . . , tr) · fair 6= 0},

a′r−1 = max{a ∈ Z≥0 | (f(t1, . . . , tr) · f
a′r
ir

)|X(w≤r−1) · f
a
ir−1
6= 0},

...

a′1 = max{a ∈ Z≥0 | (· · · ((f(t1, . . . , tr) · f
a′r
ir

)|X(w≤r−1) · f
a′r−1

ir−1
) · · · )|X(w≤1) · f

a
i1 6= 0}.

Definition 2.7. For a dominant integral weight λ and a reduced word i = (i1, . . . , ir) ∈ Ir for w ∈W ,

take vi ∈ {vhighi , vlowi , ṽhighi , ṽlowi } and τ ∈ H0(X(w),Lλ) \ {0}. Define a subset S(X(w),Lλ, vi, τ) ⊂
Z>0 × Zr by

S(X(w),Lλ, vi, τ) :=
⋃
k>0

{(k, vi(σ/τk)) | σ ∈ H0(X(w),L⊗kλ ) \ {0}},

and denote by C(X(w),Lλ, vi, τ) ⊂ R≥0×Rr the smallest real closed cone containing S(X(w),Lλ, vi, τ).
Since vi is a valuation, it follows that the subset S(X(w),Lλ, vi, τ) is a semigroup, and that the real
closed cone C(X(w),Lλ, vi, τ) is convex. Let us define a subset ∆(X(w),Lλ, vi, τ) ⊂ Rr by

∆(X(w),Lλ, vi, τ) := {a ∈ Rr | (1,a) ∈ C(X(w),Lλ, vi, τ)};
this is called the Newton-Okounkov body of X(w) associated with Lλ, vi, and τ .
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As we will see in Sections 3 and 5, the Newton-Okounkov body ∆(X(w),Lλ, vi, τ) is indeed a rational
convex polytope. Hence it is also called a Newton-Okounkov polytope.

Remark 2.8. If we take another section τ ′ ∈ H0(X(w),Lλ) \ {0}, then S(X(w),Lλ, vi, τ ′) is the shift
of S(X(w),Lλ, vi, τ) by kvi(τ/τ

′) in {k} × Zr for k ∈ Z>0, that is,

S(X(w),Lλ, vi, τ ′) ∩ ({k} × Zr) = S(X(w),Lλ, vi, τ) ∩ ({k} × Zr) + (0, kvi(τ/τ
′)).

Hence it follows that ∆(X(w),Lλ, vi, τ ′) = ∆(X(w),Lλ, vi, τ) + vi(τ/τ
′). Thus, the Newton-Okounkov

body ∆(X(w),Lλ, vi, τ) does not essentially depend on the choice of τ ∈ H0(X(w),Lλ) \ {0}; hence it
is also denoted simply by ∆(X(w),Lλ, vi).

Example 2.9. Let G = SL3(C) (of type A2), I = {1, 2}, i = (1, 2, 1) a reduced word for the longest
element w0 of W , and λ = α1 + α2. Then the Schubert variety X(w0) is identical to the full flag
variety G/B. Recall that the coordinate ring C[U−] is regarded as a C-subalgebra of the polynomial
ring C[t1, t2, t3] by using the birational morphism

C3 → U−, (t1, t2, t3) 7→ exp(t1f1) exp(t2f2) exp(t3f1).

Since we have

exp(t1f1) exp(t2f2) exp(t3f1) =

 1 0 0
t1 + t3 1 0
t2t3 t2 1

 ,

the coordinate ring C[U−] is identical to the C-subalgebra C[t1 + t3, t2, t2t3] of C[t1, t2, t3]. In addition,
by standard monomial theory (see, for instance, [45, Section 2]), we deduce that for a specific section
τλ ∈ H0(G/B,Lλ), the C-subspace {σ/τλ | σ ∈ H0(G/B,Lλ)} of C(U−) is spanned by

{1, t1 + t3, t2, t1t2, t2t3, t1t2(t1 + t3), t22t3, t1t
2
2t3}.

Now we obtain the following list.

Valuation 1 t1 + t3 t2 t1t2 t2t3 t1t2(t1 + t3) t22t3 t1t
2
2t3

vhighi (0, 0, 0) −(1, 0, 0) −(0, 1, 0) −(1, 1, 0) −(0, 1, 1) −(2, 1, 0) −(0, 2, 1) −(1, 2, 1)
vlowi (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 1, 0) (0, 1, 1) (1, 1, 1) (0, 2, 1) (1, 2, 1)

ṽhighi (0, 0, 0) −(1, 0, 0) −(0, 1, 0) −(0, 1, 1) −(1, 1, 0) −(1, 1, 1) −(1, 2, 0) −(1, 2, 1)
ṽlowi (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 1, 0) (0, 1, 2) (1, 2, 0) (1, 2, 1)

For vi ∈ {vhighi , vlowi , ṽhighi , ṽlowi }, the Newton-Okounkov body ∆(G/B,Lλ, vi, τλ) is identical to the
convex hull of the corresponding eight points in the list above; see the figures 1–4.

Figure 1. −∆(G/B,Lλ, vhighi , τλ) Figure 2. ∆(G/B,Lλ, vlowi , τλ)

Figure 3. −∆(G/B,Lλ, ṽhighi , τλ) Figure 4. ∆(G/B,Lλ, ṽlowi , τλ)

Hence we deduce that

∆(G/B,Lλ, vlowi , τλ) = −∆(G/B,Lλ, ṽhighi , τλ)op, and

∆(G/B,Lλ, ṽlowi , τλ) = −∆(G/B,Lλ, vhighi , τλ)op,
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where we write Hop := {(a3, a2, a1) | (a1, a2, a3) ∈ H} for a subset H ⊂ R3. Our main result (Corollary
5.3) states that these coincidences of Newton-Okounkov bodies hold also for arbitrary G, i, and λ; only
restriction is that we need to take a specific section τλ.

3. Kashiwara crystal bases and perfect bases

In this section, we first review the definitions and properties of perfect bases of the spaceH0(G/B,Lλ) '
V (λ)∗ of global sections and the coordinate ring C[U−]. They are convenient tools for calculating the
Newton-Okounkov bodies of Schubert varieties. Next we review the main results of [9] and [21].

Let P ⊂ t∗ be the weight lattice of g, and P+ ⊂ P the set of dominant integral weights. For λ ∈ P+

and µ ∈ P , set

V (λ)µ := {v ∈ V (λ) | h · v = 〈µ, h〉v for all h ∈ t}.
The action of g on the dual space V (λ)∗, λ ∈ P+, is given by 〈x ·f, v〉 := −〈f, x ·v〉 for f ∈ V (λ)∗, x ∈ g,
and v ∈ V (λ), where 〈·, ·〉 : V (λ)∗ × V (λ)→ C is the canonical pairing. Since V (λ) =

⊕
µ∈P V (λ)µ, the

dual space V (λ)∗µ := (V (λ)µ)∗ is regarded as a subspace of V (λ)∗. For i ∈ I and f ∈ V (λ)∗ \ {0}, set

εi(f) := max{k ∈ Z≥0 | fki · f 6= 0}.

Let εi(f) := −∞ for f = 0 ∈ V (λ)∗. For i ∈ I and k ∈ Z≥0, set

(V (λ)∗)<k,i := {f ∈ V (λ)∗ | εi(f) < k}.

Definition 3.1 (See [3, Definition 5.30] and [14, Definition 2.5]). Let λ ∈ P+. A C-basis Bup(λ) ⊂ V (λ)∗

is said to be perfect if the following conditions hold:

(i) Bup(λ) =
∐
µ∈P Bup(λ)µ, where Bup(λ)µ := Bup(λ) ∩ V (λ)∗µ,

(ii) Bup(λ)λ = {τλ}, where 〈τλ, vλ〉 = 1,
(iii) for i ∈ I and τ ∈ Bup(λ) with fi · τ 6= 0, there exists a unique element ẽi(τ) ∈ Bup(λ) such that

fi · τ ∈ C×ẽi(τ) + (V (λ)∗)<εi(τ)−1,i,

where C× := C \ {0},
(iv) if ẽi(τ) = ẽi(τ

′) for τ, τ ′ ∈ Bup(λ) and some i ∈ I, then we have τ = τ ′.

Next we review the definition of a perfect basis of C[U−]. Let U(u−) be the universal enveloping
algebra of u−. The algebra U(u−) has a Hopf algebra structure given by the following coproduct ∆,
counit ε, and antipode S:

∆(fi) = fi ⊗ 1 + 1⊗ fi, ε(fi) = 0, and S(fi) = −fi
for i ∈ I. We can regard U(u−) as a multigraded C-algebra:

U(u−) =
⊕

d∈ZI≥0

U(u−)d,

where the homogeneous component U(u−)d for d = (di)i∈I ∈ ZI≥0 is defined to be the C-subspace of

U(u−) spanned by elements fj1 · · · fj|d| for which the cardinality of {1 ≤ k ≤ |d| | jk = i} is equal to di
for all i ∈ I; here we set |d| :=

∑
i∈I di. Let

U(u−)∗gr =
⊕

d∈ZI≥0

U(u−)∗gr,d :=
⊕

d∈ZI≥0

HomC(U(u−)d,C)

be the graded dual of U(u−) endowed with the dual Hopf algebra structure. Note that the coordinate
ring C[U−] also has a Hopf algebra structure given by the following coproduct ∆, counit ε, and antipode
S:

∆(f)((u1, u2)) = f(u1u2), ε(f) = f(e), and S(f)(u) = f(u−1)

for f ∈ C[U−] and u, u1, u2 ∈ U−, where e ∈ U− is the identity element. It is well-known that this Hopf
algebra C[U−] is isomorphic to the dual Hopf algebra U(u−)∗gr (see, for instance, [10, Proposition 5.1]).

Let 〈·, ·〉 : U(u−)∗gr × U(u−) → C denote the canonical pairing. Define a U(u−)-bimodule structure on

U(u−)∗gr by

〈x · ρ, y〉 := −〈ρ, x · y〉, and

〈ρ · x, y〉 := −〈ρ, y · x〉
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for x ∈ u−, ρ ∈ U(u−)∗gr, and y ∈ U(u−). Also, the coordinate ring C[U−] has a natural U−-bimodule
structure, which is given by

(u1 · f)(u2) := f(u−11 u2), and

(f · u1)(u2) := f(u2u
−1
1 )

for u1, u2 ∈ U− and f ∈ C[U−]. This induces a U(u−)-bimodule structure on C[U−]. Note that the
isomorphism of Hopf algebras U(u−)∗gr ' C[U−] is compatible with the U(u−)-bimodule structures.

Henceforth we will identify U(u−)∗gr with C[U−]. Define a C-algebra anti-involution ∗ on U(u−) by
f∗i := fi for all i ∈ I. This map is a C-coalgebra involution; hence it induces a C-algebra involution on
U(u−)∗gr = C[U−] (also denoted by ∗). For i ∈ I and f ∈ C[U−] \ {0}, set

εi(f) := max{k ∈ Z≥0 | fki · f 6= 0}.

Let εi(f) := −∞ for f = 0 ∈ C[U−]. For i ∈ I and k ∈ Z≥0, set

C[U−]<k,i := {f ∈ C[U−] | εi(f) < k}.

Definition 3.2 (See [3, Definition 5.30] and [15, Definition 4.5]). A C-basis Bup ⊂ C[U−] = U(u−)∗gr
is said to be perfect if the following conditions hold:

(i) Bup =
∐

d∈ZI≥0
Bup

d , where Bup
d := Bup ∩ U(u−)∗gr,d,

(ii) Bup
(0,...,0) = {τ∞}, where 〈τ∞, 1〉 = 1,

(iii) for i ∈ I and τ ∈ Bup with fi · τ 6= 0, there exists a unique element ẽi(τ) ∈ Bup such that

fi · τ ∈ C×ẽi(τ) + C[U−]<εi(τ)−1,i,

(iv) if ẽi(τ) = ẽi(τ
′) for τ, τ ′ ∈ Bup and some i ∈ I, then we have τ = τ ′.

Moreover, in this paper, we always impose the following ∗-stable condition on a perfect basis:

(v) (Bup)∗ = Bup.

We list some examples of perfect bases here. In particular, Example 3.5 is extremely important in
this paper. See also Proposition 4.2.

Example 3.3. The upper global bases (= the dual canonical bases) of V (λ)∗, λ ∈ P+, and C[U−] =
U(u−)∗gr are typical examples of perfect bases. They are the dual bases of the lower global bases (= the
canonical bases), introduced by Lusztig [31, 32, 33] and Kashiwara [16, 17] via quantized enveloping
algebras associated with g. See [18, Proposition 5.3.1], [19, Theorem 2.1.1] (and also [9, Proposition
2.8]) for the perfectness. The upper global bases are denoted by {Gup

λ (b) | b ∈ B(λ)} ⊂ V (λ)∗ and
{Gup(b) | b ∈ B(∞)} ⊂ C[U−], respectively.

Example 3.4. When g is simply-laced, Lusztig [34] constructed a specific C-basis of U(u−), called the
semicanonical basis. The dual basis of the semicanonical basis, called the dual semicanonical basis, is a
perfect basis by [34, Proof of Lemma 2.4 and Section 3].

Example 3.5. Khovanov-Lauda [24, 25] and Rouquier [43] introduced the family {Rd | d ∈ ZI≥0}
of Z-graded algebras, called Khovanov-Lauda-Rouquier algebras or quiver Hecke algebras, which cate-
gorifies the negative half Uq(u

−) of the quantized enveloping algebra. To be precise, the direct sum⊕
d∈ZI≥0

G0(Rd-gmod) of the Grothendieck groups of finite dimensional graded Rd-modules has the

algebra structure which comes from the induction functor [24, Proposition 3.1]. Moreover the resulting
Z[q±1]-algebra (the action of q is induced from the grading shift functor) is isomorphic to a certain
Z[q±1]-form Uq,Z(u−) of Uq(u

−), which is isomorphic to C[U−] if we apply the functor C⊗Z[q±1] − with
q 7→ 1 to it (this process is called the specialization at q = 1) [24, Proposition 3.4 and Theorem 3.17]
(see also the diagram written before [15, Lemma 5.3]). The free Z[q±1]-module

⊕
d∈ZI≥0

G0(Rd-gmod)

has the basis consisting of the classes of self-dual graded simple modules. Here we call this basis the
KLR-basis. Then the specialization of the KLR-basis at q = 1 is known to be a perfect basis [15, Lem-
mas 3.13 and 5.3] (cf. [29, §§2.5.1]). The property (v) holds because the involution ∗ is induced from the
twist of Rd-modules by the involutive automorphism σ of Rd in [24, §§2.1] (see also [36, Section 12]).
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The index set B(λ) (resp., B(∞)) of the upper global basis in Example 3.3 has the following additional
structure, called a crystal structure [19, Section 1]: maps εi, ϕi : B(λ) → Z (resp., B(∞) → Z) and

ẽi, f̃i : B(λ) → B(λ) ∪ {0} (resp., B(∞) → B(∞) ∪ {0}) for i ∈ I. We do not review here the precise
definitions of these crystals (see [20] for a survey on this topic). Instead, we explain the definition of
the crystals associated with perfect bases. In fact, it is known that they are isomorphic to B(λ) and
B(∞) as crystals (Proposition 3.6). Let Bup(λ) (resp., Bup) be a perfect basis of V (λ)∗, λ ∈ P+ (resp.,
C[U−]). For i ∈ I and τ ∈ Bup(λ)µ (resp., τ ∈ Bup

d ), set

wt(τ) := µ (resp., −
∑

i∈I
diαi), ϕi(τ) := εi(τ) + 〈wt(τ), hi〉, f̃i(τ) :=

{
τ ′ if ẽi(τ

′) = τ,

0 otherwise.

Then the sextuple (Bup(λ); wt, {εi}i, {ϕi}i, {ẽi}i, {f̃i}i) (resp., (Bup; wt, {εi}i, {ϕi}i, {ẽi}i, {f̃i}i)) sat-
isfies the axioms of crystal.

Proposition 3.6 ([3, Main Theorem 5.37]). The following hold:

(1) For λ ∈ P+, the crystal (Bup(λ); wt, {εi}i, {ϕi}i, {ẽi}i, {f̃i}i) is canonically isomorphic to the

crystal (B(λ); wt, {εi}i, {ϕi}i, {ẽi}i, {f̃i}i), that is, there exists a unique bijection Bup(λ)
∼−→

B(λ) that commutes with the maps {ẽi | i ∈ I}, {f̃i | i ∈ I}, and preserves the values of wt,
{εi | i ∈ I}, {ϕi | i ∈ I}.

(2) The crystal (Bup; wt, {εi}i, {ϕi}i, {ẽi}i, {f̃i}i) is canonically isomorphic to the crystal (B(∞); wt,

{εi}i, {ϕi}i, {ẽi}i, {f̃i}i).

Remark that

εi(b) = max{k ∈ Z≥0 | ẽki b 6= 0} for b ∈ B(∞), and

εi(b) = max{k ∈ Z≥0 | ẽki b 6= 0}, ϕi(b) = max{k ∈ Z≥0 | f̃ki b 6= 0} for b ∈ B(λ).

From now on, by Proposition 3.6, we write perfect bases of V (λ)∗ and C[U−] as {Ξup
λ (b) | b ∈ B(λ)} and

{Ξup(b) | b ∈ B(∞)}. The unique element b of B(λ) (resp., B(∞)) with wt(b) = λ (resp., wt(b) = 0) is
denoted by bλ (resp., b∞).

Remark 3.7. Let ei ∈ ZI≥0 denote the unit vector corresponding to i ∈ I. Since U(u−)kei = Cfki for

k ≥ 0, we have U(u−)∗gr,kei = CΞup(f̃ki b∞).

Now the condition (iii) in Definition 3.2 is equivalent to the following condition:

(iii)′ for all i ∈ I, b ∈ B(∞), and k ∈ Z≥0,

fki · Ξup(b) ∈ C×Ξup(ẽki b) +
∑

b′∈B(∞); wt(b′)=wt(ẽki b),

εi(b
′)<εi(ẽ

k
i b)

CΞup(b′).

Moreover we have

f
εi(b)
i · Ξup(b) ∈ C×Ξup(ẽ

εi(b)
i b),(3.1)

fki · Ξup(b) = 0 for k > εi(b).(3.2)

A perfect basis Bup(λ) also has the similar properties, but we do not need them in this paper. The
following lemma follows by using (3.1) and (3.2) repeatedly.

Lemma 3.8. Let Bup
k = {Ξup

k (b) | b ∈ B(∞)} be perfect bases of C[U−] (k = 1, 2). Write

Ξup
1 (b) =

∑
b′∈B(∞)

cb,b′Ξ
up
2 (b′) (cb,b′ ∈ C).

Then cb,b ∈ C×. Moreover cb,b′ = 0 unless Φi(b
′) ≤ Φi(b) (see Definition 2.4 for the definition of

the order <), where Φi : B(∞) → ZN≥0 is the Littelmann string parametrization map associated with a

reduced word i ∈ IN for the longest element w0 of W (see Definition 3.22 (1)).

Remark 3.9. This lemma holds for perfect bases which do not necessarily have the property (v).
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In the following, the dual basis of a perfect basis Bup(λ) (resp., Bup) is also an important object,
which is called a lower perfect basis, and denoted by Blow(λ) = {Ξlow

λ (b) | b ∈ B(λ)} ⊂ V (λ) (resp.,
Blow = {Ξlow(b) | b ∈ B(∞)} ⊂ U(u−)). Then the condition (iii)′ above is replaced by the following
condition (see the proof of [9, Lemma 4.6]):

(iii)
′
l for all i ∈ I, b ∈ B(∞), and k ∈ Z≥0,

fki · Ξlow(b) ∈ C×Ξlow(f̃ki b) +
∑

b′∈B(∞); wt(b′)=wt(f̃ki b),

εi(b
′)>εi(f̃

k
i b)

CΞlow(b′).

Remark 3.10. Baumann introduced the notion of bases of canonical type in [2]. The axioms of bases of
canonical type are slightly stronger than our conditions on the lower perfect bases because they impose
an additional condition on the coefficient of Ξlow(f̃ki b) in our condition (iii)

′
l.

The dual bases of {Gup
λ (b) | b ∈ B(λ)} and {Gup(b) | b ∈ B(∞)} (that is, the lower global bases of

V (λ) and U(u−)) are denoted by {Glow
λ (b) | b ∈ B(λ)} and {Glow(b) | b ∈ B(∞)}, respectively.

Recall the involution ∗ : U(u−)→ U(u−). We see from [19, Theorem 2.1.1] that, for b ∈ B(∞), there
exists an element b∗ ∈ B(∞) such that Glow(b)∗ = Glow(b∗) (see, for instance, [9, Proposition 2.8 (1)]).
The involution ∗ : B(∞)→ B(∞) is called Kashiwara’s involution. Set

ẽ∗i := ∗ ◦ ẽi ◦ ∗, f̃∗i := ∗ ◦ f̃i ◦ ∗, ε∗i := εi ◦ ∗, and ϕ∗i := ϕi ◦ ∗

for i ∈ I. Note that Gup(b)∗ = Gup(b∗) for b ∈ B(∞). In fact all perfect bases have such a property as
follows.

Proposition 3.11. Let {Ξup(b) | b ∈ B(∞)} be a perfect basis of C[U−]. Then Ξup(b)∗ = Ξup(b∗) for
all b ∈ B(∞); hence the equality Ξlow(b)∗ = Ξlow(b∗) also holds for all b ∈ B(∞).

Proof. For b ∈ B(∞), there exists b? ∈ B(∞) such that Ξup(b)∗ = Ξup(b?) by the property (v). Suppose
that there exists b ∈ B(∞) such that (b∗)? 6= b. Let i be a reduced word for the longest element w0, and
b0 an element such that (b∗0)? 6= b0 and such that Φi(b0) ≥ Φi(b) for all b ∈ B(∞)wt(b0) with (b∗)? 6= b.
Then

〈Ξup((b∗0)?), Glow(b0)〉 = 〈Ξup(b∗0)∗, Glow(b0)〉 = 〈Ξup(b∗0), Glow(b∗0)〉 6= 0

by Lemma 3.8. Hence, by Lemma 3.8 again, Φi(b0) < Φi((b
∗
0)?). Hence, by the assumption on b0, we

have the equality (b∗0)? = (((b∗0)?)∗)?, which is equivalent to b0 = (b∗0)?. This contradicts the choice of
b0. Hence (b∗)? = b for all b ∈ B(∞). �

By condition (iii)
′
l and Proposition 3.11, we obtain the following (see, for instance, the proof of [9,

Proposition 2.8]).

Proposition 3.12. For all i ∈ I, b ∈ B(∞), and k ∈ Z≥0,

Ξlow(b) · fki ∈ C×Ξlow((f̃∗i )kb) +
∑

b′∈B(∞); wt(b′)=wt((f̃∗i )
kb),

ε∗i (b
′)>ε∗i ((f̃

∗
i )
kb)

CΞlow(b′).

We will prove that a perfect basis Bup of C[U−] induces a perfect basis Bup(λ) of V (λ)∗. To do this,
we here recall the remarkable properties of the lower global bases.

Proposition 3.13 ([17, Theorem 5]). For λ ∈ P+, let πλ : U(u−) � V (λ) denote the surjective U(u−)-
module homomorphism given by u 7→ uvλ.

(1) For b ∈ B(∞), there exists πλ(b) ∈ B(λ) ∪ {0} such that πλ(Glow(b)) = Glow
λ (πλ(b)), where

Glow
λ (0) := 0; in addition, for

B̃(λ) := {b ∈ B(∞) | πλ(b) 6= 0},

the map πλ : B̃(λ)→ B(λ), b 7→ πλ(b), is bijective.

(2) f̃iπλ(b) = πλ(f̃ib) for all i ∈ I and b ∈ B(∞).

(3) ẽiπλ(b) = πλ(ẽib) for all i ∈ I and b ∈ B̃(λ).

(4) εi(πλ(b)) = εi(b) and ϕi(πλ(b)) = ϕi(b) + 〈λ, hi〉 for all i ∈ I and b ∈ B̃(λ).
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Proposition 3.14 ([17, Theorem 7]). Let k ∈ Z≥0, and i ∈ I. Then∑
k′≥k

fk
′

i U(u−) =
⊕

b∈B(∞); εi(b)≥k

CGlow(b), and

∑
k′≥k

U(u−)fk
′

i =
⊕

b∈B(∞); ε∗i (b)≥k

CGlow(b).

Remark 3.15. It is known that the kernel of the map πλ : U(u−) � V (λ) is equal to
∑
i∈I U(u−)f

〈λ,hi〉+1
i .

Hence, by Proposition 3.14, the subset B̃(λ) is described in terms of the crystal, that is,

B̃(λ) = {b ∈ B(∞) | ε∗i (b) ≤ 〈λ, hi〉 for all i ∈ I}.

A lower perfect basis is compatible with irreducible highest weight U(g)-modules V (λ), λ ∈ P+, and
their U(gi)-submodules as follows.

Proposition 3.16. Let λ ∈ P+, and w ∈W . Then the following hold.

(1) For b ∈ B(∞), we have πλ(Ξlow(b)) 6= 0 if and only if b ∈ B̃(λ). Thus the set {Ξlow
λ (πλ(b)) :=

πλ(Ξlow(b)) | b ∈ B̃(λ)} forms a C-basis of V (λ).
(2) Fix i ∈ I and ` ∈ Z≥0. Let I`i (V (λ)) be the sum of (` + 1)-dimensional irreducible U(gi)-

submodules of V (λ), W `
i (V (λ)) :=

⊕
`′≥` I

`′

i (V (λ)), I`i (B(λ)) := {b ∈ B(λ) | εi(b) + ϕi(b) = `},
and W `

i (B(λ)) := {b ∈ B(λ) | εi(b) + ϕi(b) ≥ `}. Then

W `
i (V (λ)) =

∑
b∈W `

i (B(λ))

CΞlow
λ (b),

and, for b ∈ I`i (B(λ)),

fki · Ξlow
λ (b) ∈ C×Ξlow

λ (f̃ki b) +W `+1
i (V (λ)),

eki · Ξlow
λ (b) ∈ C×Ξlow

λ (ẽki b) +W `+1
i (V (λ)).

Proof. We first prove the assertion that the set {Ξlow(b) | b ∈ B(∞), ε∗i (b) ≥ k} forms a C-basis

of U(u−)fki , which implies part (1) by Remark 3.15. Set Ũi,k :=
∑
b∈B(∞); ε∗i (b)≥k

CΞlow(b). Then

we have U(u−)fki ⊂ Ũi,k, by Proposition 3.12. On the other hand, Proposition 3.14 implies that
dimC(U(u−)fki ∩ U(u−)d) = #{b ∈ B(∞)d | ε∗i (b) ≥ k} for all d = (di)i∈I ∈ ZI≥0, where B(∞)d := {b ∈
B(∞) | wt(b) = −

∑
i∈I diαi}. This completes a proof of our assertion. By Proposition 3.13 and the

condition (iii)
′
l for lower perfect bases, we have

fki · Ξlow
λ (b) ∈ C×Ξlow

λ (f̃ki b) +
∑

b′∈B(λ); wt(b′)=wt(f̃ki b),

εi(b
′)>εi(f̃

k
i b)

CΞlow
λ (b′)(3.3)

for all i ∈ I, b ∈ B(λ), and k ∈ Z≥0. Fix i ∈ I and let `0 be the maximal integer ` such that
W `
i (V (λ)) 6= 0. Then

W `0
i (V (λ)) = I`0i (V (λ)).

Thus εi(b) = 0 for all b ∈ B(λ) with 〈wt(b), hi〉 = `0. Hence (3.3) implies that fki · Ξlow
λ (b) ∈

C×Ξlow
λ (f̃ki b) for all k ∈ Z≥0 and b ∈ B(λ) with 〈wt(b), hi〉 = `0. Therefore W `0

i (V (λ)) is spanned

by the elements {Ξlow
λ (b) | b ∈ W `0

i (B(λ))}. By using descending induction on ` and replacing V (λ)

with V (λ)/W `+1
i (V (λ)) in the argument above, we prove that W `

i (V (λ)) is spanned by the elements
{Ξlow

λ (b) | b ∈ W `
i (B(λ))} for all `. This proves the first half of part (2). The latter half of part (2)

follows from (3.3), the first half of (2), and the representation theory of sl2(C). �

From now on, we review the main results of [9] and [21].

Proposition 3.17 (See [19, Propositions 3.2.3 and 3.2.5]). Let i = (i1, . . . , ir) be a reduced word for
w ∈W , and λ ∈ P+.

(1) The subset

Bw(λ) := {f̃a1i1 · · · f̃
ar
ir
bλ | a1, . . . , ar ∈ Z≥0} \ {0} ⊂ B(λ)

is independent of the choice of a reduced word i.
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(2) The subset

Bw(∞) := {f̃a1i1 · · · f̃
ar
ir
b∞ | a1, . . . , ar ∈ Z≥0} ⊂ B(∞)

is independent of the choice of a reduced word i.

(3) The equality πλ(Bw(∞)) = Bw(λ) ∪ {0} holds; hence πλ induces a bijective map πλ : B̃w(λ) →
Bw(λ), where B̃w(λ) := Bw(∞) ∩ B̃(λ).

The subsets Bw(λ),Bw(∞) are called Demazure crystals.
Since

B(∞) =
⋃
λ∈P+

B̃(λ)(3.4)

by [17, Corollary 4.4.5], we deduce that

(3.5)

Bw(∞) =
⋃
λ∈P+

Bw(∞) ∩ B̃(λ)

=
⋃
λ∈P+

B̃w(λ).

Let {Ξup
λ (b) | b ∈ B(λ)} ⊂ H0(G/B,Lλ) = V (λ)∗ denote the dual basis of {Ξlow

λ (b) | b ∈ B(λ)} ⊂ V (λ).

Proposition 3.18. Let λ ∈ P+.

(1) The C-basis Bup(λ) = {Ξup
λ (b) | b ∈ B(λ)} ⊂ V (λ)∗ is a perfect basis.

(2) Set τλ := Ξup
λ (bλ) ∈ H0(G/B,Lλ). Then the section τλ does not vanish on U− (↪→ G/B); in

particular, the restriction (τ/τλ)|U− belongs to C[U−] for all τ ∈ H0(G/B,Lλ).
(3) A map ιλ : H0(G/B,Lλ) → C[U−] defined by ιλ(τ) := (τ/τλ)|U− for τ ∈ H0(G/B,Lλ) is

injective.

(4) The element Ξup(b) is identical to ιλ(Ξup
λ (πλ(b))) for all b ∈ B̃(λ).

(5) The following equalities hold:

{Ξup(b) | b ∈ B(∞)} =
⋃
λ∈P+

{ιλ(Ξup
λ (b)) | b ∈ B(λ)}, and

C[U−] =
⋃
λ∈P+

ιλ(H0(G/B,Lλ)).

Proof. Part (1) is an immediate consequence of the definition of Bup(λ) and (3.3). Parts (2), (4) are
proved in a way similar to the proof of [9, Lemma 4.5]. Since U− is regarded as an open subvariety of
G/B, we have (τ/τλ)|U− 6= 0 for all nonzero sections τ ∈ H0(G/B,Lλ), which implies part (3). Since
{Ξup(b) | b ∈ B(∞)} is a C-basis of C[U−], part (5) follows by part (4) and equation (3.4). �

We consider the following property (D) for a lower perfect basis {Ξlow(b) | b ∈ B(∞)} (see also
Proposition 3.16 (1)):

(D) the set {Ξlow
λ (b) | b ∈ Bw(λ)} forms a C-basis of the Demazure module Vw(λ).

A perfect basis of C[U−] will be said to have the property (D) if its dual basis has the property (D).

Remark 3.19. The upper global basis and the dual semicanonical basis have the property (D) ([19,
Proposition 3.2.3] and [44, Theorem 7.1], respectively). We show in Section 4 (Proposition 4.4) that the
specialization of the KLR-basis at q = 1 also has the property (D).

Since U− ∩ X(w) is a closed subvariety of U−, the restriction map ηw : C[U−] � C[U− ∩ X(w)]
is surjective. For b ∈ B(∞), let Ξup

w (b) ∈ C[U− ∩ X(w)] denote the image of Ξup(b) ∈ C[U−] under
the restriction map ηw. By abuse of notation, we denote by τλ ∈ H0(X(w),Lλ) the restriction of τλ ∈
H0(G/B,Lλ). By Proposition 3.18 (2), the section τλ does not vanish on U−∩X(w) (↪→ X(w)); hence a
map H0(X(w),Lλ)→ C[U−∩X(w)], τ 7→ (τ/τλ)|(U−∩X(w)), is well-defined, which we also denote by ιλ.

Since U−∩X(w) is an open subvariety of X(w), we see that the map ιλ : H0(X(w),Lλ)→ C[U−∩X(w)]
is injective. For a perfect basis {Ξup(b) | b ∈ B(∞)} with the property (D), let {Ξup

λ,w(b) | b ∈ Bw(λ)} ⊂
H0(X(w),Lλ) = Vw(λ)∗ be the dual basis of {Ξlow

λ (b) | b ∈ Bw(λ)} ⊂ Vw(λ). It is obvious that
τλ = Ξup

λ,w(bλ) in H0(X(w),Lλ).

Corollary 3.20. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis with the property (D).
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(1) The following equality holds:

C[U− ∩X(w)] =
⋃
λ∈P+

ιλ(H0(X(w),Lλ)).

(2) The element Ξup
w (b) is identical to ιλ(Ξup

λ,w(πλ(b))) for all b ∈ B̃w(λ).

(3) The set {Ξup
w (b) | b ∈ Bw(∞)} forms a C-basis of C[U− ∩X(w)].

(4) The element Ξup
w (b) is identical to 0 unless b ∈ Bw(∞).

Proof. Consider the following diagram of subvarieties:

U− �
� // G/B

U− ∩X(w)
?�

OO

� � // X(w).
?�

OO

From this, we see that the following diagram is commutative:

C[U−]

ηw
����

H0(G/B,Lλ)? _
ιλ

oo

ηw
����

C[U− ∩X(w)] H0(X(w),Lλ),? _
ιλ
oo

where we denote by ηw : H0(G/B,Lλ) � H0(X(w),Lλ) the restriction map. Hence part (2) is an
immediate consequence of Proposition 3.18 (4) and of the equality ηw(Ξup

λ (πλ(b))) = Ξup
λ,w(πλ(b)) for

b ∈ B̃w(λ). Also, we see that

C[U− ∩X(w)] = ηw(C[U−])

=
⋃
λ∈P+

ηw(ιλ(H0(G/B,Lλ))) (by Proposition 3.18 (5))

=
⋃
λ∈P+

ιλ(ηw(H0(G/B,Lλ)))

=
⋃
λ∈P+

ιλ(H0(X(w),Lλ)).

This proves part (1). Since {Ξup
λ,w(πλ(b)) | b ∈ B̃w(λ)} forms a C-basis of H0(X(w),Lλ), we deduce by

parts (1), (2) and equation (3.5) that {Ξup
w (b) | Bw(∞)} spans C[U−∩X(w)]. For an arbitrary finite sub-

set {b1, . . . , bk} ⊂ Bw(∞), take λ ∈ P+ such that b1, . . . , bk ∈ B̃(λ). Since {Ξup
λ,w(πλ(b1)), . . . ,Ξup

λ,w(πλ(bk))}
is linearly independent, it follows by part (2) that {Ξup

w (b1), . . . ,Ξup
w (bk)} is also linearly independent.

From these, we obtain part (3). For b ∈ B(∞) \ Bw(∞), we take λ ∈ P+ such that b ∈ B̃(λ). Since

πλ : B̃(λ)
∼−→ B(λ) is bijective and πλ(B̃w(λ)) = Bw(λ) by Proposition 3.17 (3), we have πλ(b) /∈ Bw(λ),

which implies that ηw(Ξup
λ (πλ(b))) = 0 by (D). Hence it holds that

Ξup
w (b) = ηw(Ξup(b))

= ηw(ιλ(Ξup
λ (πλ(b)))) (by Proposition 3.18 (4))

= ιλ(ηw(Ξup
λ (πλ(b))))

= ιλ(0) = 0,

which implies part (4). This proves the corollary. �

Remark 3.21. Some formulas with respect to the character of C[U− ∩X(w)] are given by [27, §§12.1].
By Corollary 3.20 (3), these formulas can be regarded as those with respect to the character of Bw(∞)
(see [13, §§4.7]).

Definition 3.22. Let i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈W .
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(1) For b ∈ Bw(∞), define Φi(b) = (a1, . . . , ar) ∈ Zr≥0 by

a1 := max{a ∈ Z≥0 | ẽai1b 6= 0},
a2 := max{a ∈ Z≥0 | ẽai2 ẽ

a1
i1
b 6= 0},

...

ar := max{a ∈ Z≥0 | ẽair ẽ
ar−1

ir−1
· · · ẽa1i1 b 6= 0}.

The Φi(b) is called the Littelmann string parametrization of b with respect to i (see [35, Section
1]). The map Φi : Bw(∞)→ Zr≥0 is indeed an injection.

(2) For b ∈ Bw(∞), define Ψi(b) = (a′r, . . . , a
′
1) ∈ Zr≥0 by

a′r := max{a ∈ Z≥0 | (ẽ∗ir )
ab 6= 0},

a′r−1 := max{a ∈ Z≥0 | (ẽ∗ir−1
)a(ẽ∗ir )

a′rb 6= 0},
...

a′1 := max{a ∈ Z≥0 | (ẽ∗i1)a(ẽ∗i2)a
′
2 · · · (ẽ∗ir )

a′rb 6= 0}.
The map Ψi is called the Kashiwara embedding of Bw(∞). The map Ψi : Bw(∞) → Zr≥0 is

indeed an injection (see [19, Sections 2 and 3]).

Remark 3.23. Through the bijective map πλ : B̃w(λ)
∼−→ Bw(λ) in Proposition 3.17 (3), the maps Φi

and Ψi induce the Littelmann string parametrization for Bw(λ) and the Kashiwara embedding of Bw(λ).

Definition 3.24. Let i ∈ Ir be a reduced word for w ∈W , and λ ∈ P+.

(1) Define a subset S(λ,w)
i ⊂ Z>0 × Zr by

S(λ,w)
i :=

⋃
k>0

{(k,Φi(b)) | b ∈ B̃w(kλ)},

and denote by C(λ,w)
i ⊂ R≥0 ×Rr the smallest real closed cone containing S(λ,w)

i . Let us define

a subset ∆
(λ,w)
i ⊂ Rr by

∆
(λ,w)
i := {a ∈ Rr | (1,a) ∈ C(λ,w)

i }.

This subset ∆
(λ,w)
i is called the Littelmann string polytope for Bw(λ) with respect to i (see [21,

Definition 3.5] and [35, Section 1]).

(2) Define a subset S̃(λ,w)
i ⊂ Z>0 × Zr by

S̃(λ,w)
i :=

⋃
k>0

{(k,Ψi(b)) | b ∈ B̃w(kλ)},

and denote by C̃(λ,w)
i ⊂ R≥0 ×Rr the smallest real closed cone containing S̃(λ,w)

i . Let us define

a subset ∆̃
(λ,w)
i ⊂ Rr by

∆̃
(λ,w)
i := {a ∈ Rr | (1,a) ∈ C̃(λ,w)

i }.

This subset ∆̃
(λ,w)
i is called the Nakashima-Zelevinsky polyhedral realization of Bw(λ) associated

with i (see [9, §§2.3], [37, Sections 3 and 4], [38, §§3.1], and [39, Section 3]).

Proposition 3.25 (See [4, §§3.2 and Theorem 3.10] and [35, Section 1]). The following hold.

(1) The real closed cone C(λ,w)
i is a rational convex polyhedral cone, that is, there exists a finite

number of rational points a1, . . . ,al ∈ Q≥0 × Qr such that C(λ,w)
i = R≥0a1 + · · · + R≥0al.

Moreover the equality S(λ,w)
i = C(λ,w)

i ∩ (Z>0 × Zr) holds.

(2) The set ∆
(λ,w)
i is a rational convex polytope, and the equality Φi(B̃w(λ)) = ∆

(λ,w)
i ∩ Zr holds.

Proposition 3.26 (See [9, Corollary 4.3]). The following hold.

(1) The real closed cone C̃(λ,w)
i is a rational convex polyhedral cone, and the equality S̃(λ,w)

i =

C̃(λ,w)
i ∩ (Z>0 × Zr) holds.
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(2) The set ∆̃
(λ,w)
i is a rational convex polytope, and the equality Ψi(B̃w(λ)) = ∆̃

(λ,w)
i ∩ Zr holds.

Remark 3.27. By [4, Theorem 3.10] and [35, Section 1], we obtain a system of explicit linear inequalities

defining the string polytope ∆
(λ,w)
i . In addition, under a certain positivity assumption on i, a system

of explicit linear inequalities defining the Nakashima-Zelevinsky polyhedral realization ∆̃
(λ,w)
i is given

by [37, Theorem 4.1] and [38, Proposition 3.1] (see also [9, Corollary 5.3]).

Define a linear automorphism ω : R×Rr ∼−→ R×Rr by ω(k,a) := (k,−a). Recall that τλ = Ξup
λ,w(bλ) ∈

H0(X(w),Lλ). By [21, Section 4], we obtain the following.

Proposition 3.28. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis, i ∈ Ir a reduced word
for w ∈W , and λ ∈ P+.

(1) The Littelmann string parametrization Φi(b) is equal to −vhighi (Ξup
w (b)) for all b ∈ Bw(∞).

(2) The equalities S(λ,w)
i = ω(S(X(w),Lλ, vhighi , τλ)), C(λ,w)

i = ω(C(X(w),Lλ, vhighi , τλ)), and ∆
(λ,w)
i =

−∆(X(w),Lλ, vhighi , τλ) hold.

By [9, Section 4], we obtain the following.

Proposition 3.29. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis, i ∈ Ir a reduced word
for w ∈W , and λ ∈ P+.

(1) The Kashiwara embedding Ψi(b) is equal to −ṽhighi (Ξup
w (b)) for all b ∈ Bw(∞).

(2) The equalities S̃(λ,w)
i = ω(S(X(w),Lλ, ṽhighi , τλ)), C̃(λ,w)

i = ω(C(X(w),Lλ, ṽhighi , τλ)), and ∆̃
(λ,w)
i =

−∆(X(w),Lλ, ṽhighi , τλ) hold.

Remark 3.30. In Propositions 3.28 and 3.29, we need not assume the property (D) for a perfect basis
(see the proof of [9, Theorem 4.1]).

4. Perfect bases with positivity properties

In order to relate the lowest term valuations vlowi , ṽlowi with the highest term valuations vhighi , ṽhighi ,
we use a perfect basis Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] that has the following positivity properties:

(i) the element (−fi) · Ξup(b) belongs to
∑
b′∈B(∞) R≥0Ξup(b′) for all b ∈ B(∞) and i ∈ I;

(ii) the product Ξup(f̃ib∞) · Ξup(b) belongs to
∑
b′∈B(∞) R≥0Ξup(b′) for all b ∈ B(∞) and i ∈ I.

Proposition 4.1. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis. The positivity properties
(i), (ii) are equivalent to the following positivity properties (i)′, (ii)′, respectively:

(i)′ the elements (−1)kfki · Ξup(b) and (−1)kΞup(b) · fki belong to
∑
b′∈B(∞) R≥0Ξup(b′) for all b ∈

B(∞), i ∈ I, and k ≥ 0;

(ii)′ the product Ξup(f̃ki b∞) · Ξup(b) belongs to
∑
b′∈B(∞) R≥0Ξup(b′) for all b ∈ B(∞), i ∈ I, and

k ≥ 0.

Proof. It follows immediately that the property (i) is equivalent to (i)′; hence it suffices to prove that

the property (ii) implies (ii)′. Since U(u−)∗gr,kei = CΞup(f̃ki b∞) for i ∈ I and k ≥ 0 (see Remark 3.7),

we have Ξup(f̃ib∞)k ∈ C×Ξup(f̃ki b∞). Then the positivity condition (ii) implies that Ξup(f̃ib∞)k ∈
R>0Ξup(f̃ki b∞); hence we deduce the positivity property (ii)′ by (ii). �

In the case that g is of simply-laced type, Lusztig proved that the upper global basis has the positivity
properties (i) and (ii), by the geometric construction of the lower global basis [32, Theorem 11.5]. A
desired example for general g is given by the specialization of the KLR-basis at q = 1 (see Example
3.5), that is, the following holds (although this proposition is an immediate consequence of [24, 25], we
explain a proof for the convenience of the reader).

Proposition 4.2 ([24, 25]). The specialization of the KLR-basis at q = 1 satisfies the positivity
properties (i) and (ii).
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Proof. As mentioned in Example 3.5, the KLR-basis {[S(b)] | b ∈ B(∞)} comes from the set {S(b) |
b ∈ B(∞)} consisting of self-dual graded simple modules. The map (−fi)· : U(u−)∗gr,d → U(u−)∗gr,d−ei
(resp., [S(f̃ib∞)]q=1· : U(u−)∗gr,d → U(u−)∗gr,d+ei

) is the specialization at q = 1 of the map induced

from a certain restriction functor Res : Rd-gmod → Rd−ei-gmod (resp., a certain induction functor
Ind: Rd-gmod → Rd+ei-gmod) [24, §§2.6 and §§3.1] (see also [15, §§5.1]). Then, in the Grothendieck
group G0(Rd∓ei-gmod), we have

[Res(S(b))] =
∑

b′∈B(∞),m∈Z

c
(m),b′

i,b [S(b′)[m]], and

[Ind(S(b))] =
∑

b′∈B(∞),m∈Z

d
(m),b′

i,b [S(b′)[m]]

for b ∈ B(∞) and i ∈ I. Here S(b′)[m] denotes the grade shift of S(b′) by m, and c
(m),b′

i,b , d
(m),b′

i,b are the

multiplicities of the corresponding simple modules in the composition series of Res(S(b)) and Ind(S(b)),

respectively. In particular, c
(m),b′

i,b and d
(m),b′

i,b are nonnegative integers. Since the specialization at q = 1
corresponds to the neglect of grade shifts, we have

(−fi) · [S(b)]q=1 =
∑

b′∈B(∞)
(
∑

m∈Z
c
(m),b′

i,b )[S(b′)]q=1, and

[S(f̃ib∞)]q=1 · [S(b)]q=1 =
∑

b′∈B(∞)
(
∑

m∈Z
d
(m),b′

i,b )[S(b′)]q=1

in U(u−)∗gr (= C[U−]). Hence the structure constants
∑
m∈Z c

(m),b′

i,b and
∑
m∈Z d

(m),b′

i,b are nonnegative.
�

In the following, we will show the property (D) in Section 3 for a perfect basis Bup with the positivity
property (i). By the definition of the U(u−)-bimodule structure on U(u−)∗gr, we have

(−1)k〈fki · Ξup(b),Ξlow(b′)〉 = 〈Ξup(b), fki · Ξlow(b′)〉, and

(−1)k〈Ξup(b) · fki ,Ξlow(b′)〉 = 〈Ξup(b),Ξlow(b′) · fki 〉

for all b, b′ ∈ B(∞); hence we obtain the following.

Lemma 4.3. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis with the positivity property (i),
and Blow = {Ξlow(b) | b ∈ B(∞)} ⊂ U(u−) its dual basis. Then the elements fki ·Ξlow(b) and Ξlow(b) ·fki
belong to

∑
b′∈B(∞) R≥0Ξlow(b′) for all b ∈ B(∞), i ∈ I, and k ≥ 0.

Proposition 4.4. A perfect basis Bup with the positivity property (i) satisfies the property (D) in
Section 3.

Remark 4.5. For the property (D), we do not need the positivity property (ii).

Proof of Proposition 4.4. Our proof is similar to the one in [19, §§3.1 and §§3.2]. We have Vw(λ) =
U(gi)Vsiw(λ) if `(siw) < `(w) (see [19, Lemma 3.2.1]). Hence it suffices to prove the following claim:

Claim. If a U(u+i )-submodule N (u+i := Cei) of V (λ) is spanned by {Ξlow
λ (b) | b ∈ BN} for some subset

BN ⊂ B(λ), then U(gi)N =
∑
b∈B̃(i)

N

CΞlow
λ (b), where B̃(i)N :=

⋃
k∈Z≥0

f̃ki BN \ {0}.

For a C-subspace M ⊂ V (λ) (resp., a subset S ⊂ B(λ)), write W `
i (M) := W `

i (V (λ))∩M and I`i (M) :=
I`i (V (λ))∩M (resp., W `

i (S) := W `
i (B(λ))∩S) (see Proposition 3.16). By Proposition 3.16 (2), W `

i (N) =∑
b∈W `

i (BN ) CΞlow
λ (b), and

BN = BN ∩
(⋃

k∈Z≥0

f̃ki {b ∈ BN | εi(b) = 0}
)
.

Let `0 be the maximum integer ` such that W `
i (U(gi)N) 6= 0. Then

W `0
i (U(gi)N) = I`0i (U(gi)N), W `0

i (U(gi)N) ∩Ker ei = W `0
i (N) ∩Ker ei.

Therefore

W `0
i (U(gi)N) ∩Ker ei =

∑
b∈BN ; 〈wt(b),hi〉=`0

CΞlow
λ (b).
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Moreover εi(b) = 0 for all b ∈ BN with 〈wt(b), hi〉 = `0. By the way, for v =
∑
b∈B(λ) cbΞ

low
λ (b) ∈ V (λ)

with cb ∈ R≥0,

fki · v 6= 0 for k ≤ max{ϕi(b) | cb 6= 0}

by (3.3) and Lemma 4.3. Hence we can deduce that fki · Ξlow
λ (b) ∈ C×Ξlow

λ (f̃ki b) for all b ∈ BN with

〈wt(b), hi〉 = `0 by (3.3). Therefore W `0
i (U(gi)N) =

∑
b∈W `0

i (B̃(i)
N )

CΞlow
λ (b). By using descending

induction on ` and replacing U(gi)N by U(gi)N/W
`+1
i (U(gi)N) = U(gi)N/U(gi)W

`+1
i (N) (see [19,

Lemma 3.1.4]) in the argument above, we obtain the assertion. �

For w ∈ W , take i ∈ I (resp., i′ ∈ I) such that `(siw) < `(w) (resp., `(wsi′) < `(w)). Then the left
action of u−i (resp., the right action of u−i′ ) on C[U−] induces a left action of u−i (resp., a right action

of u−i′ ) on C[U− ∩ X(w)] by the restriction map ηw : C[U−] � C[U− ∩ X(w)]. The following is an
immediate consequence of Corollary 3.20 (4) (see also Proposition 4.4) and the positivity properties (i)′,
(ii)′.

Corollary 4.6. For w ∈W , the following hold.

(1) The elements (−1)kfki · Ξup
w (b) and (−1)kΞup

w (b) · fki′ belong to
∑
b′∈Bw(∞) R≥0Ξup

w (b′) for all

b ∈ Bw(∞), i, i′ ∈ I, and k ≥ 0 such that `(siw) < `(w), `(wsi′) < `(w).

(2) The product Ξup
w (f̃ki b∞) ·Ξup

w (b) belongs to
∑
b′∈Bw(∞) R≥0Ξup

w (b′) for all b ∈ Bw(∞), i ∈ I, and

k ≥ 0.

Let i = (i1, . . . , ir) be a reduced word for w ∈W , and regard the coordinate ring C[U− ∩X(w)] as a
C-subalgebra of C[U−i1 × · · · × U

−
ir

] = C[t1, . . . , tr].

Proposition 4.7. The coefficient of ta11 · · · tarr in Ξup
w (b) is a nonnegative real number for every b ∈

Bw(∞) and a1, . . . , ar ∈ Z≥0.

Proof. For b ∈ Bw(∞) and a1, . . . , ar ∈ Z≥0, denote by A
(a1,...,ar)
b ∈ C the coefficient of ta11 · · · tarr in

Ξup
w (b). Then we know from the equality (2.1) in Section 2 that A

(a1,...,ar)
b is equal to the value

(−1)a1+···+ar

a1! · · · ar!
(farir · (· · · (f

a2
i2
· (fa1i1 · Ξ

up
w (b))|t1=0)|t2=0 · · · )|tr−1=0)|tr=0.

If we write w≥k := siksik+1
· · · sir for 1 ≤ k ≤ r and w≥r+1 := e, the identity element of W , then the

restriction map ηk,k+1 : C[U− ∩X(w≥k)] � C[U− ∩X(w≥k+1)] is given by tk 7→ 0; hence we obtain the
equality

A
(a1,...,ar)
b =

(−1)a1+···+ar

a1! · · · ar!
ηr,r+1(farir · (ηr−1,r(· · · (η2,3(fa2i2 · (η1,2(fa1i1 · Ξ

up
w (b))))) · · · ))),

where we identify the coordinate ring C[U−∩X(w≥r+1)] = C[U−∩X(e)] with C by Ξup
e (b∞) 7→ 1 (note

the equality Be(∞) = {b∞}). Now by using Corollaries 3.20 (4) and 4.6 (1) repeatedly, we conclude

that A
(a1,...,ar)
b is a nonnegative real number. This proves the proposition. �

5. Main result

We write aop := (ar, . . . , a1) for an element a = (a1, . . . , ar) ∈ Rr, and Hop := {aop | a ∈ H} for a
subset H ⊂ Rr. The following is the main result of this paper.

Theorem 5.1. Let i ∈ Ir be a reduced word for w ∈ W , and Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] a
perfect basis with the positivity properties (i), (ii) in Section 4. Then the following equalities hold:

vlowi (Ξup
w (b)) = −ṽhighi (Ξup

w (b))op and

ṽlowi (Ξup
w (b)) = −vhighi (Ξup

w (b))op

for all b ∈ Bw(∞).

Before proving Theorem 5.1, we give some corollaries. The following corollary (Corollary 5.2) is an
immediate consequence of Corollary 3.20 (2) and Theorem 5.1.
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Corollary 5.2. Let i ∈ Ir be a reduced word for w ∈ W , λ ∈ P+, and Bup = {Ξup(b) | b ∈ B(∞)} ⊂
C[U−] a perfect basis with the positivity properties (i), (ii) in Section 4. Then the following equalities
hold:

vlowi (Ξup
λ,w(b)/τλ) = −ṽhighi (Ξup

λ,w(b)/τλ)op and

ṽlowi (Ξup
λ,w(b)/τλ) = −vhighi (Ξup

λ,w(b)/τλ)op

for all b ∈ Bw(λ).

Corollary 5.3. Let i ∈ Ir be a reduced word for w ∈ W , and λ ∈ P+. Then the following equalities
hold:

∆(X(w),Lλ, vlowi , τλ) = −∆(X(w),Lλ, ṽhighi , τλ)op and

∆(X(w),Lλ, ṽlowi , τλ) = −∆(X(w),Lλ, vhighi , τλ)op.

Proof. We prove only the assertion for vlowi and ṽhighi ; a proof of the assertion for ṽlowi and vhighi is
similar. Let {Ξup(b) | b ∈ B(∞)} be a perfect basis with the positivity properties (i), (ii); the existence
of such a perfect basis is guaranteed by Proposition 4.2. We see by Corollary 5.2 and Proposition 3.29
(1) that

vlowi (Ξup
λ,w(πλ(b))/τλ) = −ṽhighi (Ξup

λ,w(πλ(b))/τλ)op = Ψi(b)
op

for all b ∈ B̃w(λ). Remark that {Ξup
λ,w(b) | b ∈ Bw(λ)} is a C-basis of H0(X(w),Lλ), and that

−ṽhighi (Ξup
λ,w(πλ(b))/τλ) = Ψi(b), b ∈ B̃w(λ), are all distinct. Hence we see by Proposition 2.2 that

{vlowi (σ/τλ) | σ ∈ H0(X(w),Lλ) \ {0}} = {−ṽhighi (σ/τλ)op | σ ∈ H0(X(w),Lλ) \ {0}}.
This implies the assertion by the definition of Newton-Okounkov bodies (see also the proof of [9, Corol-
lary 4.2]). �

Since vlowi = vX(w≥•) and ṽlowi = vX(w≤•), we see that Theorem and Corollary in Introduction follow

immediately by Propositions 3.28, 3.29 and Corollaries 3.20 (2), 5.2, 5.3 (see also Remark 3.23).
The following corollaries (Corollaries 5.4 and 5.5) are immediate consequences of Propositions 3.25

(2), 3.26 (2), 3.28, 3.29, Theorem 5.1, and Corollary 5.3.

Corollary 5.4. The Newton-Okounkov bodies ∆(X(w),Lλ, vlowi , τλ) and ∆(X(w),Lλ, ṽlowi , τλ) are both
rational convex polytopes.

Corollary 5.5. Let {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis with the positivity properties (i),
(ii). Then the following equalities hold:

∆(X(w),Lλ, vlowi , τλ) ∩ Zr = {vlowi (Ξup
w (b)) | b ∈ B̃w(λ)} and

∆(X(w),Lλ, ṽlowi , τλ) ∩ Zr = {ṽlowi (Ξup
w (b)) | b ∈ B̃w(λ)}.

In a way similar to our proof of Corollary 5.3, we see that the following equalities hold:

S(X(w),Lλ, vlowi , τλ) = {(k,−aop) | (k,a) ∈ S(X(w),Lλ, ṽhighi , τλ)} and

S(X(w),Lλ, ṽlowi , τλ) = {(k,−aop) | (k,a) ∈ S(X(w),Lλ, vhighi , τλ)}.
Hence we obtain the following by Propositions 3.25 (1), 3.26 (1), 3.28 (2), 3.29 (2) and Gordan’s lemma
(see, for instance, [5, Proposition 1.2.17]).

Corollary 5.6. The semigroups S(X(w),Lλ, vlowi , τλ) and S(X(w),Lλ, ṽlowi , τλ) are both finitely gen-
erated.

Proof of Theorem 5.1. We prove only the assertion for the valuations ṽlowi and vhighi ; a proof of the other
claim is similar. Write i = (i1, . . . , ir) and Φi(b) = (a1, . . . , ar) for b ∈ Bw(∞). We first consider the

case b ∈ Bsi1 (∞). In this case, there exists a ∈ Z≥0 such that b = f̃ai1b∞. Then we deduce from the
definition of Φi that

−vhighi (Ξup
w (b)) = Φi(b) (by Proposition 3.28 (1))

= (a, 0, . . . , 0).
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Hence it follows from the definition of vhighi that Ξup
w (b) = cta1 + (other terms) for some c 6= 0, where

“other terms” means a linear combination of monomials that are not equal to ta1 . Since Ξup(f̃ai1b∞) ∈
U(u−)∗gr,aei1 , it follows that all monomials in “other terms” are of degree a, and hence that they contain

tk for some 2 ≤ k ≤ r as variables. By the definition of ṽlowi , this implies that

ṽlowi (Ξup
w (b)) = (0, . . . , 0, a)

= (a, 0, . . . , 0)op

= −vhighi (Ξup
w (b))op.

Next we proceed by induction on r = `(w). The case r = 1 is already included in the special case above.
Assume that r ≥ 2. Let us consider the special case a1 = 0. Then b is an element of Bw≥2

(∞), where

w≥2 := si2 · · · sir ; furthermore, by the definition of vhighi , the equality a1 = 0 implies that t1 does not
appear in Ξup

w (b) ∈ C[t1, . . . , tr]. Hence we deduce that

ṽlowi (Ξup
w (b)) = (ṽlowi≥2

(Ξup
w≥2

(b)), 0)

= −(vhighi≥2
(Ξup
w≥2

(b))op, 0) (by induction hypothesis)

= −(0, vhighi≥2
(Ξup
w≥2

(b)))op

= −vhighi (Ξup
w (b))op,

where i≥2 := (i2, . . . , ir), a reduced word for w≥2.
Now we consider a total order � on Bw(∞) defined as follows:

b′ � b′′ if and only if

{
|b′| < |b′′|, or

|b′| = |b′′| and Φi(b
′) < Φi(b

′′) with respect to the lexicographic order <;

here |b′′′| :=
∑
i∈I di for b′′′ ∈ Bw(∞) with wt(b′′′) = −

∑
i∈I diαi. We prove the assertion by induction

on b with respect to the total order �. We only have to consider the case that b does not belong to
the two special cases above. Namely, assume that b /∈ Bsi1 (∞) and a1 > 0. Set b1 := f̃a1i1 b∞ and

b2 := f̃a2i2 · · · f̃
ar
ir
b∞. Then we have Φi(b1) = (a1, 0, . . . , 0) and Φi(b2) = (0, a2, . . . , ar). Hence it follows

that

(5.1)

vhighi (Ξup
w (b)) = −(a1, . . . , ar)

= −Φi(b1)− Φi(b2)

= vhighi (Ξup
w (b1)) + vhighi (Ξup

w (b2)) (by Proposition 3.28 (1)).

Now we deduce from the results for the two special cases that

(5.2)
vhighi (Ξup

w (b1)) + vhighi (Ξup
w (b2)) = −(ṽlowi (Ξup

w (b1))op + ṽlowi (Ξup
w (b2))op)

= −ṽlowi (Ξup
w (b1) · Ξup

w (b2))op (by Definition 2.1).

From these, it suffices to prove the equality ṽlowi (Ξup
w (b1) · Ξup

w (b2)) = ṽlowi (Ξup
w (b)). Now we know from

Corollary 4.6 (2) that

(5.3) Ξup
w (b1) · Ξup

w (b2) =
∑

b3∈Bw(∞)

C
(b3)
b1,b2
· Ξup

w (b3)

for some C
(b3)
b1,b2

∈ R≥0, b3 ∈ Bw(∞). Since C
(b3)
b1,b2

is nonnegative for all b3 ∈ Bw(∞), Proposition 4.7

implies that any cancellation of monomials does not occur in the right hand side of (5.3). From this,
we deduce by the definition of ṽlowi that

ṽlowi (Ξup
w (b1) · Ξup

w (b2)) = min{ṽlowi (Ξup
w (b3)) | b3 ∈ Bw(∞), C

(b3)
b1,b2

6= 0},

where “min” means the minimum with respect to the lexicographic order <. Similarly, we see that

(5.4) −vhighi (Ξup
w (b1) · Ξup

w (b2)) = max{−vhighi (Ξup
w (b3)) | b3 ∈ Bw(∞), C

(b3)
b1,b2

6= 0},

where “max” means the maximum with respect to the lexicographic order<. Recall that−vhighi (Ξup
w (b3)) =

Φi(b3), b3 ∈ Bw(∞), are all distinct. Hence equations (5.1) and (5.4) imply that C
(b)
b1,b2

6= 0, and that



20 N. FUJITA AND H. OYA

if C
(b3)
b1,b2

6= 0 and b3 6= b, then wt(b) = wt(b3) and −vhighi (Ξup
w (b3)) < −vhighi (Ξup

w (b)); in particular, it
holds that

ṽlowi (Ξup
w (b1) · Ξup

w (b2))op = −vhighi (Ξup
w (b)) (by equations (5.1) and (5.2))

> −vhighi (Ξup
w (b3))

= ṽlowi (Ξup
w (b3))op (by induction hypothesis concerning b).

From these, we obtain that ṽlowi (Ξup
w (b1) · Ξup

w (b2)) = ṽlowi (Ξup
w (b)). This proves the theorem. �

Remark 5.7. Since Corollary 5.3 follows from Corollary 5.2, it is natural to ask why we consider not
only {Ξup

λ,w(b) | b ∈ Bw(λ)} but also {Ξup
w (b) | b ∈ Bw(∞)}. The reason is that in order to prove the

assertion of Corollary 5.2 for {Ξup
λ,w(b) | b ∈ Bw(λ)} ⊂ H0(X(w),Lλ), we have to consider an element

of C[U− ∩X(w)] that does not belong to ιλ(H0(X(w),Lλ)). In our proof of Theorem 5.1, we use the
elements b1, b2 ∈ Bw(∞) determined from b ∈ Bw(∞) with b /∈ Bsi1 (∞) and a1 > 0. An important point

is that, even if b ∈ B̃w(λ) for some λ ∈ P+, the element b1 is not necessarily an element of B̃w(λ). Let

us see this with a specific example. Take G, i, λ as in Example 2.9. Then the set Φi(B(λ)) = Φi(B̃(λ))
of string parametrizations is identical to

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 1, 1), (2, 1, 0), (0, 2, 1), (1, 2, 1)}.

For b ∈ B̃(λ) such that Φi(b) = (2, 1, 0), the element b1 ∈ B(∞) satisfies Φi(b1) = (2, 0, 0), which implies

that b1 /∈ B̃(λ).
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