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Burgess bounds for short mixed character sums
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∗
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Abstract

This paper proves nontrivial bounds for short mixed character sums by

introducing estimates for Vinogradov’s mean value theorem into a version

of the Burgess method.

1 Introduction

Let χ(n) be a non-principal character of modulus q, and consider the character
sum

S(N,H) =
∑

N<n≤N+H

χ(n). (1.1)

The classical Pólya-Vinogradov inequality provides the bound

|S(N,H)| ≪ q1/2 log q,

which is nontrivial only if the length H of the character sum is longer than
q1/2+ε. In a classic series of papers, Burgess [2], [3], [4], [5] introduced a
method for bounding short character sums that results in the following well-
known bound: for χ a primitive multiplicative character to a prime modulus q
one has

|S(N,H)| ≪ H1− 1
r q

r+1

4r2 log q, (1.2)

for any integer r ≥ 1; moreover this bound is uniform in N . This provides
a nontrivial estimate for S(N,H) as soon as H > q1/4+ε; more precisely if
H = q1/4+κ, then the Burgess bound is of size Hq−δ with δ ≈ κ2. Indeed
Burgess proved a similar bound for arbitrary moduli q when r ≤ 3, and for
general cube-free moduli for all r.

Burgess bounds have found valuable applications in a range of settings, and
it would be highly desirable to develop variations of the Burgess method for
mixed character sums of the form

∑

N<n≤N+H

eq(f1(n)f2(n))χ(f3(n)f4(n)),
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for appropriate polynomials f1, . . . , f4 and eq(t) = e2πit/q. However, it has
proved difficult to handle sums involving χ evaluated at anything other than a
linear function of n.

This paper will be concerned with the short mixed character sum

S(f ;N,H) =
∑

N<n≤N+H

e(f(n))χ(n), (1.3)

for prime moduli q, where f is a real-valued polynomial and e(t) = e2πit. Recall
that at its heart, the Burgess method involves breaking the range of the sum-
mand n into residue classes modulo an auxiliary prime p. One then averages
over a set of such primes p, and it is crucial that the argument of the characters
may be made independent of p (although the range of summation may still de-
pend on p). More explicitly, fix a prime p ∤ q and split the set of n ∈ (N,N +H ]
into residue classes modulo p by writing n = aq + pm with 0 ≤ a < p and
m ∈ (N ′, N ′ +H ′] with N ′ = (N − aq)/p, H ′ = H/p. Then, for example, the
multiplicative character sum (1.1) may be written as

S(N,H) =
∑

0≤a<p

∑

N ′<m≤N ′+H′

χ(aq + pm) = χ(p)
∑

0≤a<p

∑

N ′<m≤N ′+H′

χ(m),

so that after averaging over a set P of primes,

|S(N,H)| ≤ 1

|P|
∑

p∈P

∑

0≤a<p

∣

∣

∣

∣

∣

∣

∑

N ′<m≤N ′+H′

χ(m)

∣

∣

∣

∣

∣

∣

. (1.4)

The Burgess argument then proceeds by manipulating the intervals of summa-
tion in order to reach a complete character sum that may be bounded (in most
cases) by the Weil bound. This reveals a fundamental barrier quickly reached
by a naive application of the Burgess method to the mixed character sum (1.3):
it is not trivial to make the argument of the polynomial f independent of suffi-
ciently many primes p, and without this independence, averaging over auxiliary
primes as in (1.4) cannot proceed successfully.

For the case of f linear, Burgess [6] proved that for f(n) = an/q with
0 < a < q and q prime,

|S(f ;N,H)| ≪ H1− 1
r q

1
4(r−1) (log q)2, (1.5)

for any r ≥ 2 and 0 < N,H < q; this was later extended in [7] to the case
r = 3 and q an arbitrary positive integer. A similar result was also proved
by Friedlander and Iwaniec [11], as a consequence of more general bounds for
weighted multiplicative character sums.

In a 1995 paper, Enflo [10] reported a nontrivial bound for S(f ;N,H) for
f a real-valued polynomial of any degree d and H = q1/2, with q prime. His
proof introduced the idea of using Weyl differencing d times before applying the
Burgess method, thus stripping off the exponential factor e(f(n)) entirely. This

2



insight removes the problem of dependence on the auxiliary primes, and allows
the Burgess method to proceed. A careful analysis of Enflo’s method gives the
following result:

Theorem 1.1. Let f be a real-valued polynomial of degree d and χ a non-
principal character to a prime modulus q. Then for any r ≥ 1 and H < q

3
4+

1
4r

we have
∑

N<n≤N+H

e(f(n))χ(n) ≪r,d,ε H
1− 1

2dr q
r+1

2d+2r2
+ε,

uniformly in N .

As this result is surpassed by new methods, we do not give a proof here.
Note that this recovers the original Burgess bound (1.2) in the case d = 0, and
for any d it proves a nontrivial bound as long as H > q1/4+ε. Note also that it
is clear that an upper bound on H is required as soon as d ≥ 1. For example,
if f(n) = n/q and H = mq for some m ≥ 1 then S(f ;N,H) = mGq(χ), where
Gq(χ) is the Gauss sum. Then |S(f ;N,H)| = Hq−1/2 precisely, so it is not
possible to attain a generic upper bound of the form Hαqβ with α < 1 for
arbitrary H .

More recently, Chang [9] introduced another idea that allows one to remove
the dependence of e(f(n)) on the auxiliary primes p. Roughly speaking, the
idea is to approximate S(f ;N,H) by S(f̃ ;N,H), where f̃ has real coefficients
that are sufficiently close to those of f but are independent of p. Chang’s result
improves on that of Enflo, proving that as soon as H > q1/4+κ,

∑

0<n≤H

e(f(n))χ(n) ≪ Hq−δ, (1.6)

where

δ =
κ2

4((d+ 1)2 + 2)(1 + 2κ)
. (1.7)

(In fact Chang’s results in [9] apply more generally to mixed character sums over
Fqn for any n ≥ 1.) Chang furthermore proved in [8] a result for square-free q

that is similar to (1.6), but with an additional factor τ(q)4(log d)d−2

.
A refinement of Chang’s argument improves the result to:

Theorem 1.2. Let f be a real-valued polynomial of degree d ≥ 0 and χ a
non-principal character to a prime modulus q. Set

D :=
d(d+ 1)

2
. (1.8)

Then if r ≥ 1 and H < q
1
2+

1
4r we have

∑

N<n≤N+H

e(f(n))χ(n) ≪r,d H1− 1
r q

r+1+D

4r2 (log q)2,

uniformly in N .
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We shall use the notation (1.8) throughout the paper.
We do not claim Theorem 1.2 as substantially new; the small improvement

is a consequence of approximating the coefficients of monomials in f more ac-
curately for higher degree monomials; Chang approximates the coefficients with
the same accuracy for every degree. Supposing that the result of Theorem 1.1
achieves its minimum at a value r0, we may compare it to the result of Theorem
1.2 for r = 2dr0, and see that Theorem 1.2 is as strong for d = 1, 2 and stronger
than Theorem 1.1 for d ≥ 3. Additionally, note that for H < q

1
2+

1
4r , the bound

of Theorem 1.2 is nontrivial only if r ≥ 1 +D.
If H = q

1
4+κ for some small κ > 0, then Theorem 1.2 yields a nontrivial

bound Hq−δ where δ behaves approximately like

δ =
κ2

D + 1
, (1.9)

for sufficiently small κ and sufficiently large d, and hence is approximately a
factor of 8 better than (1.7). (See Section 3.2 for details.)

The novelty of this paper appears in the following strategy: by choosing the
coefficients of f̃ according to a certain grid, we are able to introduce a nontrivial
auxiliary averaging that leads to a bound involving the number Jr,d(X) occuring
in Vinogradov’s mean value theorem. This is the number of solutions to the
system of Diophantine equations given by

xm
1 + · · ·+ xm

r = xm
r+1 + · · ·+ xm

2r, 1 ≤ m ≤ d,

where d is the degree of f and 1 ≤ x1, . . . , x2r ≤ X . The celebrated new results
of Wooley (most recently [15] [16]) on Vinogradov’s mean value theorem provide
exceptionally sharp bounds for Jr,d(X) and lead to a significant improvement
on Theorem 1.2.

Let us recall the main conjecture in the setting of Vinogradov’s mean value
theorem:

Conjecture 1.1. For every r ≥ 1, d ≥ 1 and ε > 0,

Jr,d(X) ≪r,d,ε X
ε(Xr +X2r−D). (1.10)

Conditional on this bound for Jr,d(X) we prove our main result:

Theorem 1.3. Let f be a real-valued polynomial of degree d ≥ 1 and χ a non-
principal character to a prime modulus q. Assume Conjecture 1.1 holds. Then

for integers r > D and H < q
1
2
+ 1

4(r−D) we have

∑

N<n≤N+H

e(f(n))χ(n) ≪r,ε H
1− 1

r q
r+1−D

4r(r−D)
+ε, (1.11)

uniformly in N , for any ε > 0.

The method of proof for Theorem 1.3 also yields character sum bounds
(conditional on Conjecture 1.1) in the range r ≤ D, but it turns out that these
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bounds are no better than trivial. Note that the d = 0 case of (1.11) would
recover the classical Burgess bound (1.2). For fixed d, in the limit as r → ∞,
the bound (1.11) is nontrivial for H ≥ q1/4+ε. A direct comparison shows that
(1.11) matches Theorem 1.2 when r = D + 1 (though the admissible range for
H is longer), and is sharper as soon as r > D + 1.

If H = q
1
4+κ for some small κ > 0, then Theorem 1.3 would yield a nontrivial

bound Hq−δ where δ behaves approximately like

δ =

(

2κ

1 +
√
1 + 4Dκ

)2

. (1.12)

(See Section 4.2 for details.) For any fixed d, as κ → 0, this behaves like

δ = κ2,

which we note is independent of d, and is in fact as strong as the original Burgess
bound for multiplicative character sums.

Note that for d = 1, 2, the bound of Conjecture 1.1 holds true trivially, for
all r ≥ 1. Thus the following are immediate corollaries of Theorem 1.3:

Theorem 1.4. Let f be a linear real-valued polynomial and χ a non-principal

character to a prime modulus q. Then for r ≥ 2 and H < q
1
2+

1
4(r−1) we have

∑

N<n≤N+H

e(f(n))χ(n) ≪r,ε H
1− 1

r q
1

4(r−1)
+ε,

uniformly in N , for any ε > 0.

Note that this generalizes the result (1.5) since f may now be any real-valued
linear polynomial.

Theorem 1.5. Let f be a quadratic real-valued polynomial and χ a non-principal

character to a prime modulus q. Then for r ≥ 4 and H < q
1
2+

1
4(r−3) we have

∑

N<n≤N+H

e(f(n))χ(n) ≪ H1− 1
r q

r−2
4r(r−3)

+ε,

uniformly in N , for any ε > 0.

Recent breakthroughs of Wooley have provided very strong results toward
Conjecture 1.1. At the time of writing, the conjecture is now known to hold for
all r if d = 3 and for r ≥ d(d − 1) when d ≥ 4 (see [16]), and for 100% of the
critical interval 1 ≤ r ≤ D (see [15]). In our application, the results of Wooley
for large r make the following cases of Theorem 1.3 unconditional.

Theorem 1.6. Let f be a real-valued polynomial of degree 3 and χ a non-

principal character to a prime modulus q. Then for r ≥ 7 and H < q
1
2+

1
4(r−6)

we have
∑

N<n≤N+H

e(f(n))χ(n) ≪r,ε H
1− 1

r q
r−5

4r(r−6)
+ε,

uniformly in N , for any ε > 0.
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For d ≥ 4, we have:

Theorem 1.7. Let f be a real-valued polynomial of degree d ≥ 4 and χ a
non-principal character to a prime modulus q. Then for r ≥ d(d − 1) and

H < q
1
2+

1
4(r−D) we have

∑

N<n≤N+H

e(f(n))χ(n) ≪r,ε H
1− 1

r q
r+1−D
4r(r−D)

+ε,

uniformly in N , for any ε > 0.

Finally, in the intermediate range D < r < d(d − 1), we apply the so-called
approximate main conjecture of [15], which states that for all d ≥ 4,

Jr,d(X) ≪ X∆r,d(Xr +X2r−D)

where ∆r,d = O(d) (see Theorem 1.5 of [15]). This results in the following:

Theorem 1.8. Let f be a real-valued polynomial of degree d ≥ 4 and χ a non-
principal character to a prime modulus q. Then for D < r < d(d − 1) and

H < q
1
2+

1
4(r−D+∆) we have

∑

N<n≤N+H

e(f(n))χ(n) ≪r,ε H
1−1/rq

r+1−D+2∆
4r(r−D+∆)

+ε,

where
∆ = ∆r,d = O(d)

is as specified in [15].

We have stated these results in terms of polynomials f(n). However it is
clear in principle that one can prove estimates for suitable general real-valued
functions f(n) by approximating them by appropriate polynomials. Moreover,
these methods can be extended to certain multi-variable sums. We intend to
return to this issue in the near future.

Although in this paper we shall confine ourselves to prime moduli q, most
of our results can be modified to apply to general square-free moduli. In some
cases however we cannot handle the full range r > D occuring in Theorem 1.3.
We leave the details to the reader.

For our proofs it will be convenient to assume that d ≥ 1. This enables us
to replace the use of the Menchov-Rademacher device (originating in [13], [14])
by the simpler “partial summation by Fourier series” of Bombieri and Iwaniec
[1]. Of course Theorem 1.2 remains true for d = 0, since it reduces to Burgess’s
bound (1.2).
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2 The Burgess method with coefficient approx-

imation

To begin the proof of Theorems 1.2 and 1.3, we consider

Td(N,H, χ) = T (N,H) = sup
deg(f)=d

sup
K≤H

∣

∣

∣

∣

∣

∣

∑

N<n≤N+K

e(f(n))χ(n)

∣

∣

∣

∣

∣

∣

,

where f runs over real-valued polynomials and χ is a non-principal multiplicative
character to a prime modulus q. We first note that T (N,H) has period q with
respect to N , so that we can assume from now on that 0 ≤ N < q.

Fix a set of primes P = {P < p ≤ 2P} for some parameter P ≤ H that we
will choose later. SinceH = o(q) in all our theorems we will have p ∤ q for p ∈ P.
Hence we can split n ∈ (N,N + K] into residue classes modulo p by writing
n = aq+pm with 0 ≤ a < p. This produces values m ∈ (Na,p, Na,p+Ka,p] with
Na,p = (N − aq)/p and Ka,p = K/p ≤ H/P . Then

∑

N<n≤N+K

e(f(n))χ(n) =
∑

0≤a<p

∑

Na,p<m≤Na,p+Ka,p

e(f(aq + pm))χ(aq + pm),

and as a result
T (N,H) ≤

∑

0≤a<p

T (Na,p, H/P ).

We proceed to average over P, producing

T (N,H) ≤ |P|−1
∑

p∈P

∑

0≤a<p

T (Na,p, H/P ). (2.1)

We now use the following lemma.

Lemma 2.1. For any real number L ≥ 1 we have

T (U,L) ≤ 4L−1
∑

U−L<m≤U

T (m, 2L). (2.2)

To see this, note that

T (U,L) =

∣

∣

∣

∣

∣

∣

∑

U<n≤U+K

e(f(n))χ(n)

∣

∣

∣

∣

∣

∣

for some polynomial f and some positive real number K ≤ L. Moreover if
U − L < m ≤ U then

∑

U<n≤U+K

e(f(n))χ(n) =
∑

m<n≤U+K

e(f(n))χ(n)−
∑

m<n≤U

e(f(n))χ(n),

7



whence
∣

∣

∣

∣

∣

∣

∑

U<n≤U+K

e(f(n))χ(n)

∣

∣

∣

∣

∣

∣

≤ 2T (m, 2L),

since U + K ≤ m + 2L. The result then follows since the interval (U − L,U ]
contains at least L/2 integers m.

Applying (2.2) to (2.1) with U = Na,p and L = H/P , we may conclude that

T (N,H) ≪ |P|−1(H/P )−1
∑

p∈P

∑

0≤a<p

∑

Na,p−H/P<m≤Na,p

T (m, 2H/P )

≪ H−1(log q)
∑

p∈P

∑

0≤a<p

∑

Na,p−H/P<m≤Na,p

T (m, 2H/P ),

on noting that |P| ≫ P (logP )−1 ≫ P (log q)−1. We now define

A(m) = #

{

(a, p) :
N − aq

p
− H

P
< m ≤ N − aq

p

}

,

which allows us to write

T (N,H) ≪ H−1(log q)
∑

m∈Z

A(m)T (m, 2H/P ). (2.3)

We then set
S1 =

∑

m

A(m)

and
S2 =

∑

m

A(m)2,

and we note the following facts, which we will prove in Section 5.

Lemma 2.2. We have A(m) = 0 unless |m| ≤ 2q. Moreover if HP < q then
S1 ≤ S2 ≪ HP .

From a repeated application of Hölder’s inequality, it then follows from (2.3)
that

T (N,H) ≪ H−1(log q)S
1− 1

r

1 S
1
2r
2







∑

|m|≤2q

T (m, 2H/P )2r







1
2r

≪ H− 1
2r P 1− 1

2r (log q)







∑

|m|≤2q

T (m, 2H/P )2r







1
2r

.

As previously noted, the function T (m,K) is periodic in m, with period q, so
that in fact we have

T (N,H) ≪ H− 1
2r P 1− 1

2r (log q)

{

q
∑

m=1

T (m, 2H/P )2r

}
1
2r

. (2.4)
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For any M and K > 0 we now define

T0(M,K) = sup
deg(f)=d

∣

∣

∣

∣

∣

∣

∑

M<n≤M+K

e(f(n))χ(n)

∣

∣

∣

∣

∣

∣

.

We can relate T (M,K) to T0(M,K) using the following lemma, which is an
immediate consequence of Lemma 2.2 of Bombieri and Iwaniec [1].

Lemma 2.3. Let an be a sequence of complex numbers supported on the integers
n ∈ (A,A+B], and let I be any subinterval of (A,A+B]. Then

∑

n∈I

an ≪
(

log(B + 2)
)

sup
θ∈R

∣

∣

∣

∣

∣

∣

∑

A<n≤A+B

ane(θn)

∣

∣

∣

∣

∣

∣

.

Thus if d ≥ 1 and K ≤ q then

T (M,K) ≪ T0(M,K) log(K + 2) ≪ T0(M,K) log q.

This is the only place in the argument where the condition d ≥ 1 is used. We
now see that (2.4) becomes

T (N,H) ≪ H− 1
2r P 1− 1

2r (log q)2S3(2H/P )
1
2r , (2.5)

where we have set

S3(K) =

q
∑

m=1

T0(m,K)2r.

We proceed to develop a bound for S3(K), under the assumption thatK ≤ q.
Having removed the maximum over the length of our intervals we now handle
the maximum over the polynomials f . In effect we do this by replacing the
maximum by a sum over all “distinct” polynomials modulo 1. The principle
here is that two polynomials will be effectively equivalent if their coefficients are
sufficiently close.

Let Q ≥ K be an integer parameter to be chosen in due course. We par-
tition [0, 1]d+1 into boxes Bα of side-length Q−j in the j-th coordinate, for
j = 0, . . . , d. Note that the total number of boxes is QD. For each box Bα,
fix θα = (θα,0, . . . , θα,d) to be the vertex of Bα with the least value in each
coordinate. Thus each θα takes the form

(c0Q
−0, c1Q

−1, . . . , cdQ
−d)

for some integers 0 ≤ cj ≤ Qj − 1, 0 ≤ j ≤ d. (Chang’s original argument [9]
chooses the boxes to be of side-length Q−d in all coordinates, and allows θα to
be any point in the box Bα.) Define for any θ ∈ [0, 1]d+1 the polynomial

θ(X) :=

d
∑

j=0

θjX
j.

9



For any integer m, positive real number t, and index α, set

T (α;m, t) :=

∣

∣

∣

∣

∣

∣

∑

0<n≤t

e(θα(n))χ(n+m)

∣

∣

∣

∣

∣

∣

.

We use these sums to approximate T0(m,K) as follows.

Lemma 2.4. Given an integer m and real numbers Q ≥ K > 0, there is an
index α such that

T0(m,K) ≪d T (α;m,K) +K−1

∫ K

0

T (α;m, t)dt.

To prove this we observe that for integral m we have

T0(m,K) = sup
deg(f)=d

∣

∣

∣

∣

∣

∣

∑

m<n≤m+K

e(f(n))χ(n)

∣

∣

∣

∣

∣

∣

= sup
deg(f)=d

∣

∣

∣

∣

∣

∣

∑

0<n≤K

e(f(n))χ(n+m)

∣

∣

∣

∣

∣

∣

.

Suppose then that

T0(m,K) =

∣

∣

∣

∣

∣

∣

∑

0<n≤K

e(f(n))χ(n+m)

∣

∣

∣

∣

∣

∣

for some polynomial f of degree d, and write f(X) = fdX
d + . . .+ f0. Clearly

we may assume that 0 ≤ fj ≤ 1 for 0 ≤ j ≤ d. We then choose α so that
|fj − θα,j | ≤ Q−j for each index j and temporarily write δj = fj − θα,j for
notational convenience. Then, by summation by parts, we have

∑

0<n≤K

e(f(n))χ(n+m)

=
∑

n≤K

e





d
∑

j=0

δjn
j



 e(θα(n))χ(n+m)

= e





d
∑

j=0

δjK
j





∑

n≤K

e(θα(n))χ(n+m)

−
∫ K

0







∑

n≤t

e(θα(n))χ(n+m)







d

dt
e





d
∑

j=0

δjt
j



 dt.
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Since |δj| ≤ Q−j we have
∣

∣

∣

∣

∣

∣

d

dt
e





d
∑

j=0

δjt
j





∣

∣

∣

∣

∣

∣

≤ 2π
d
∑

j=1

j|δj |tj−1 ≤ 2π
d
∑

j=1

jQ−jKj−1,

for 0 ≤ t ≤ K. Thus if Q ≫ K we have
∣

∣

∣

∣

∣

∣

d

dt
e





d
∑

j=0

δjt
j





∣

∣

∣

∣

∣

∣

≪d K−1

and hence

∑

n≤K

e(f(n))χ(n+m) ≪d T (α;N,K) +K−1

∫ K

0

T (α;N, t)dt,

which proves the lemma.
An application of Hölder’s now allows us to deduce from Lemma 2.4 that

T0(m,K)2r ≪d T (α;m,K)2r +K−1

∫ K

0

T (α;m, t)2rdt

for some index α depending on m and K. This dependence is rather awkward,
and we circumvent it in the most trivial way by summing over all available
indices α, giving

T0(m,K)2r ≪d

∑

α

T (α;m,K)2r +K−1
∑

α

∫ K

0

T (α;m, t)2rdt.

Thus

S3(K) ≪d S4(K) +K−1

∫ K

0

S4(t)dt (2.6)

if 0 < K ≪ Q, where we have defined

S4(τ) =
∑

α

q
∑

m=1

T (α;m, τ)2r.

Thus we now turn our attention to bounding the sum S4(τ). Recall the
definition of the boxes Bα, and in particular the definition of the vertices θα. If
x = (x1, . . . , x2r) we write

ΣA(x; q) =
∑

α

e

(

2r
∑

i=1

ε(i)θα(xi)

)

,

where ε(i) = (−1)i. We also set

ΣB(x;χ, q) =

q
∑

m=1

χ(Fx(m))

11



where the polynomial Fx(X) is defined by

Fx(X) =

2r
∏

i=1

(X + xi)
δq(i). (2.7)

Here δq(i) = 1 if i is even and = ∆(q)− 1 if i is odd, where ∆(q) is the order of
the character χ modulo q.

With this notation we then see upon expanding the sum that

S4(τ) =
∑

α

q
∑

m=1

T (α;m, τ)2r =
∑

x

0<xi≤τ

ΣA(x; q)ΣB(x;χ, q). (2.8)

We will first prove Theorem 1.2 by averaging trivially over the boxes Bα and
running the Weil bound argument that is typically found in applications of the
Burgess method. The key proposition for Theorem 1.2 is:

Proposition 2.1. Suppose q is prime. Then for any τ ≤ q we have

S4(τ) =
∑

α

q
∑

m=1

T (α;m, τ)2r ≪r QD(τrq + τ2rq1/2). (2.9)

Second, we will improve on this by averaging nontrivially over the boxes Bα,
resulting in the key proposition for Theorem 1.3:

Proposition 2.2. Suppose q is prime. Then for any τ ≤ q we have

S4(τ) =
∑

α

q
∑

m=1

T (α;m, τ)2r ≪r QD
(

τrq + Jr,d(τ)q
1/2
)

. (2.10)

The propositions will be proved and the resulting theorems deduced in Sec-
tions 3 and 4, respectively. Although Proposition 2.1 is an immediate conse-
quence of Proposition 2.2 we have chosen to state and prove Proposition 2.1
separately, in order to highlight the different aspects of our treatment.

3 The multiplicative component

We first consider the multiplicative character sum ΣB(x;χ, q). The well-known
Weil bound implies the following:

Lemma 3.1. Let χ be a character of order ∆(q) > 1 modulo a prime q. Suppose
that F (X) is a polynomial which is not a perfect ∆(q)-th power over Fq[X ]. Then

∣

∣

∣

∣

∣

q
∑

m=1

χ(F (m))

∣

∣

∣

∣

∣

≤ (deg(F )− 1)
√
q.
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We can apply Lemma 3.1 to show that ΣB(x;χ, q) is bounded by Or(q
1/2),

unless the polynomial Fx(X) is a perfect ∆(q)-th power over Fq. We define
x = (x1, . . . , x2r) to be bad if for all i = 1 . . . , 2r, there exists j 6= i such that
xj = xi, and x to be good otherwise. We take B(τ) to be the collection of
bad x with 0 < xi ≤ τ and similarly G(τ) to be the collection of good x with
0 < xi ≤ τ . The following is immediate:

Lemma 3.2. There are at most r2r+1τr bad x with 0 < xi ≤ τ , so that

#B(τ) ≪r τr . (3.1)

For the proof of the lemma we write the set {x1, . . . , x2r} without repetitions
as {y1, . . . , yt}, say, where t ≤ r since x is bad. We may suppose that the yi
are arranged in ascending order. There are at most rKr choices for such a set
{y1, . . . , yt}, and at most r2r choices for x which correspond to each such set.
This suffices for the lemma.

Furthermore:

Lemma 3.3. Fix x with 0 < xi ≤ τ for each i = 1, . . . , 2r and fix a prime q.
If τ ≤ q and Fx(X) is a perfect ∆(q)-th power modulo q, then x is bad.

This is obvious since if there were only one index i for which xi takes a given
value y say, then the factor X + y occurs in Fx(X) with multiplicity either 1 or
∆(q)− 1, neither of which is divisible by ∆(q).

If x is bad, we will apply the trivial bound O(q) to ΣB(x;χ, q); we may
conclude from (3.1) that

∑

x∈B(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣

≪r τrq. (3.2)

For good x we may apply Lemmas 3.1 and 3.3 to obtain the following stan-
dard result.

Lemma 3.4. If q is prime and τ ≤ q then

∑

x∈G(τ)

|
q
∑

m=1

χ(Fx(m))| ≪r τ2rq1/2. (3.3)

3.1 Proof of Theorem 1.2

At this point we may prove Proposition 2.1. Using the trivial bound

|ΣA(x; q)| ≤ QD

in (2.8), we observe that

∑

α

q
∑

m=1

T (α;m, τ)2r

≤ QD





∑

x∈G(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣

+
∑

x∈B(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣



 .
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We substitute the bounds (3.3) and (3.2) to complete the proof of Proposition
2.1. Applying Proposition 2.1 to S4(K) and S4(t) in (2.6), we may conclude
that for any K ≤ q we have

S3(K) ≪r,d QD(K2rq1/2 +Krq)

so long as the integer Q is at least K. We apply this in (2.5) with K = 2H/P
and Q = ⌈2H/P ⌉, obtaining

T (N,H) ≪r,d H− 1
2r P 1− 1

2r (log q)2(H/P )
D
2r

(

(H/P )2rq1/2 + (H/P )rq
)

1
2r

.

We then extract the best result by choosing P such that

1

2
Hq−1/(2r) ≤ P ≤ Hq−1/(2r).

The restriction HP < q of Lemma 2.2 is then satisfied when H < q
1
2+

1
4r , and

we will also have 2H/P ≤ q for sufficiently large q. We therefore obtain the
result of Theorem 1.2 in the form

T (N,H) ≪r,d H1− 1
r q

r+1+D

4r2 (log q)2.

3.2 Optimal choice of r

Recall that we have set

D =
1

2
d(d+ 1).

We observe that if H = q
1
4+κ for small κ > 0, then the bound of Theorem 1.2

is of the form Hq−δ where

δ =
κr − 1

4 (D + 1)

r2
.

As a function of r, this attains a maximum at the real value

r(κ, d) :=
1
2 (D + 1)

κ
.

Upon choosing the closest integer r = r(κ, d) + θ where −1/2 < θ ≤ 1/2, we
compute that for this choice of r we have

δ = κ2

( 1
4 (D + 1) + κθ

1
4 (D + 1)2 + (d+ 1)κθ + κ2θ2

)

.

For sufficiently small κ this behaves like

δ =
κ2

D + 1
.
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4 Introduction of the Vinogradov bounds

We improve on the strategy of Theorem 1.2 by treating the additive character
sum ΣA(x; q) in (2.8) nontrivially. Recalling the definition of the vector θα =
(θα,1, θα,2, . . . , θα,d), we see that

∑

α

e

(

2r
∑

i=1

ε(i)θα(xi)

)

=
∑

α

e

(

θα,1

2r
∑

i=1

ε(i)xi + · · ·+ θα,d

2r
∑

i=1

ε(i)xd
i

)

=

d
∏

s=1

(

Qs

∑

c=1

e

(

c
∑2r

i=1 ε(i)x
s
i

Qs

))

= QDΞQ(x),

say, where ΞQ(x) is the indicator function for the set

{x = (x1, . . . , x2r) ∈ N2r ∩ (0, τ ]2r :

2r
∑

i=1

ε(i)xs
i ≡ 0 (mod Qs), ∀s ≤ d}.

Our application has 0 ≤ τ ≤ K in (2.6), and Q ≥ K in Lemma 2.4. Moreover
we will be taking K = 2H/P in (2.5). Any integer Q ≥ 2H/P is therefore
acceptable. In the definition of ΞQ(x) we will have

∣

∣

∣

∣

∣

2r
∑

i=1

ε(i)xs
i

∣

∣

∣

∣

∣

< 2rτs ≤ 2rKs ≤ (2rK)s = (4rH/P )s.

Thus, by taking Q = ⌈4rH/P ⌉, the congruences in the set above can hold only
if they are actually equalities in Z. We may then replace ΞQ(x) by the indicator
function Ξ(x) of the set

Vr,d(τ) := {x = (x1, . . . , x2r) ∈ N2r ∩ (0, τ ]2r :

2r
∑

i=1

ε(i)xs
i = 0, ∀s ≤ d}.

Then we see that (2.8) may be bounded by

∑

α

q
∑

m=1

T (α;m, τ)2r ≤ QD{Σ(G) + Σ(B)},

where

Σ(G) =
∑

x∈G(τ)∩Vr,d(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣

and

Σ(B) =
∑

x∈B(τ)∩Vr,d(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣

.

15



We now prove Proposition 2.2. Lemma 3.3 shows that Fx(X) is not a perfect
∆(q)-th power modulo q for x ∈ G(τ) and τ ≤ q, and then Lemma 3.1 yields

q
∑

m=1

χ(Fx(m)) ≪r q1/2.

We expect x to be good generically, so we will apply the upper bound

#(G(τ) ∩ Vr,d(τ)) ≤ #Vr,d(τ) = Jr,d(τ),

whence

Σ(G) =
∑

x∈G(τ)∩Vr,d(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣

≪r Jr,d(τ)q
1/2. (4.1)

For x ∈ B(K) we use (3.2) to deduce that

Σ(B) =
∑

x∈B(τ)∩Vr,d(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣

≤
∑

x∈B(τ)

∣

∣

∣

∣

∣

q
∑

m=1

χ(Fx(m))

∣

∣

∣

∣

∣

≪r τrq.

Proposition 2.2 then follows.

4.1 Proof of Theorem 1.3

We proceed to prove Theorem 1.3. Assuming that Conjecture 1.1 holds, we see
from Proposition 2.2 that

S4(τ) ≪r,d,ε Q
D
{

(τr + τ2r−D)q1/2 + τrq
}

qε. (4.2)

If r ≤ D, the contribution of bad x dominates, and we cannot obtain a nontrivial
bound. Thus from now on we only consider r > D. Since d is then bounded
in terms of r, the implied constant in the ≪r,d,ε notation may be bounded as a
function of r and ε alone. We now apply (4.2) to (2.6) to conclude that for any
1 ≤ K ≤ q we have

S3(K) ≪r,ε Q
D(K2r−Dq1/2 +Krq)qε.

We apply this to (2.5) to obtain

T (N,H) ≪r,ε H
− 1

2r P 1− 1
2rQ

D
2r

(

K2r−Dq1/2 +Krq
)

1
2r

qε.

As before we take K = 2H/P and Q = ⌈4rH/P ⌉. It is optimal to choose P to
balance the last two terms by taking

1

2
Hq−

1
2(r−D) ≤ P < Hq−

1
2(r−D) . (4.3)
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We may then satisfy the requirement HP < q of Lemma 2.2 by restricting

H < q
1
2+

1
4(r−D) ; the requirement 2H/P ≤ q holds for sufficiently large q. Then

T (N,H) ≪r,ε H
1−1/rq

r+1−D

4r(r−D)
+ε.

This completes the proof of Theorem 1.3.
As already noted, Theorems 1.4 through 1.6 hold because Conjecture 1.1

is trivially true for d = 1, 2 and is now known to be true for d = 3 by recent
results of Wooley [16]. For d ≥ 4 Wooley [16], [15] has proved the following
results towards Conjecture 1.1:

Proposition 4.1. For d ≥ 4 and r ≥ d(d− 1),

Jr,d(X) ≪r,ε X
ε(Xr +X2r−D). (4.4)

For d ≥ 4 and D < r < d(d− 1) then

Jr,d(X) ≪r X2r−D+∆, (4.5)

where the order of magnitude of ∆ = ∆(r, d) is O(d), as specified in [15].

The result (4.4) immediately implies Theorem 1.7. Theorem 1.8 follows from
applying (4.5) in Proposition 2.2 to deduce that

∑

α

q
∑

m=1

T (α;m, τ)2r ≪r,ε Q
D
(

τ2r−D+∆q1/2 + τrq
)

qε.

The argument then proceeds as before, after choosing P such that

1

2
Hq−

1
2(r−D+∆) ≤ P < Hq−

1
2(r−D+∆)

in place of (4.3).

4.2 A note on δ

We remark that if H = q1/4+κ for some small κ > 0 then Theorem 1.3 would
give a nontrivial bound Hq−δ where

δ =
4κ(r −D)− 1

4r(r −D)
.

As a function of r this attains a maximum at the real value

rκ,d := D +
1 +

√
4Dκ+ 1

4κ
.

We choose r to be an integer r = rκ,d + θ with −1/2 < θ ≤ 1/2, and for this
choice, δ is approximately

δ =

(

2κ

1 +
√
1 + 4Dκ

)2

.
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For any fixed d, as κ → 0, this behaves like

δ = κ2,

which we note is independent of d.

5 Proof of Lemma 2.2

This is merely a generalization of the proof in Section 4 of [12]. The first
property in Lemma 2.2 is a direct result of the definition of A(m), on using our
assumption that 0 ≤ N ≤ q.

For the second property we first note that A(m) ≤ A(m)2 since A(m) is a
non-negative integer. It follows that S1 ≤ S2.

We now observe that A(m)2 counts quadruples (p, p′, a, a′) for which

m ≤ N − aq

p
< m+H/P, m ≤ N − a′q

p′
< m+H/P.

For such a quadruple we must have

∣

∣

∣

∣

N − aq

p
− N − a′q

p′

∣

∣

∣

∣

≤ H/P.

Under this condition there are O(H/P ) corresponding values of m. It follows
that

∑

m

A(m)2 ≪ HP−1#{p, p′, a, a′ : 0 ≤
∣

∣

∣

∣

N − aq

p
− N − a′q

p′

∣

∣

∣

∣

≤ H/P}

≪ HP−1
∑

p,p′∈P

M(p, p′), (5.1)

where

M(p, p′) = #{a (mod p), a′ (mod p′) : 0 ≤
∣

∣

∣

∣

N − aq

p
− N − a′q

p′

∣

∣

∣

∣

≤ H/P}.

First consider the case p = p′. Then

|a− a′| ≤ Hp

Pq
≤ 2H

q
< 1,

since H = o(q) in all our theorems. Thus a = a′ so that M(p, p) ≪ P and hence
∑

p=p′∈P
M(p, p′) ≪ P 2, which makes an satisfactory contribution to (5.1).

Next, consider the case p 6= p′. We choose (by Bertrand’s postulate) a prime
l such that

q

H
< l ≤ 2q

H
.
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(Here we use the fact that H < q for large enough q.) Let M =
[

Nl
q

]

or 1+
[

Nl
q

]

be chosen so that l ∤ M . Then |Nl/q −M | ≤ 1 implies that |N − qM/l| ≤ q/l,
so that

∣

∣

∣

∣

qM/l− aq

p
− qM/l− a′q

p′

∣

∣

∣

∣

≤ H

P
+

q

lp
+

q

lp′

for every pair a, a′ counted by M(p, p′). Thus

|M(p′ − p)− (ap′ − a′p)l| ≤ pp′Hl

qP
+ p′ + p ≤ 2pp′

P
+ p′ + p ≤ 12P.

For a given δ there is at most one way to choose a, a′ with 0 ≤ a < p and
0 ≤ a′ < p′ which satisfy ap′ − a′p = δ. Thus

∑

p6=p′∈P

M(p, p′) ≪ #{p 6= p′ ∈ P, |m| ≤ 12P : M(p′ − p) ≡ m (mod l)}.

We chose M so that l ∤ M , and hence the condition M(p′ − p) ≡ m (mod l)
determines p′ − p uniquely modulo l. Since by hypothesis P < q/H < l this
suffices to determine at most two values for p′ − p in Z. So we may choose
p freely and there are then at most two possibilities for p′. As a result, after
counting up the possible choices for m, we conclude that

∑

p6=p′∈P

M(p, p′) ≪ P 2.

Applying this in (5.1), we conclude that

∑

m

A(m)2 ≪ HP,

as required.
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