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DICHOTOMY THEOREMS FOR RANDOM MATRICES AND CLOSED

IDEALS OF OPERATORS ON
(
⊕∞

n=1 ℓ
n
1

)

c0

N. J. LAUSTSEN, E. ODELL, TH. SCHLUMPRECHT AND A. ZSÁK

Abstract. We prove two dichotomy theorems about sequences of operators into L1 given
by random matrices. In the second theorem we assume that the entries of each random ma-

trix form a sequence of independent, symmetric random variables. Then the corresponding
sequence of operators either uniformly factor the identity operators on ℓk

1
(k ∈ N) or uni-

formly approximately factor through c0. The first theorem has a slightly weaker conclusion
still related to factorization properties but makes no assumption on the random matrices.
Indeed, it applies to operators defined on an arbitrary sequence of Banach spaces. These re-
sults provide information on the closed ideal structure of the Banach algebra of all operators
on the space

(
⊕

∞

n=1
ℓn
1

)

c0
.

Introduction

In this paper we study closed ideals of operators on the space
(
⊕∞

n=1 ℓ
n
1

)

c0
with the ultimate

goal of classifying all of them. When studying operators on this space one is quickly reduced
to considering sequences of operators T (m) : ℓm∞(ℓm1 ) → ℓm1 (m ∈ N), where ℓm∞(ℓm1 ) is the
ℓ∞-sum of m copies of ℓm1 . Often it will be more convenient to use a different normalization

and view T (m) as an operator into L1 = L1[0, 1]. We shall denote by ei,j = e
(m)
i,j the unit

vector basis of ℓm∞(ℓm1 ), where the norm of
∑

i,j ai,jei,j is given by maxi
∑

j |ai,j |. We then let

T
(m)
i,j = T

(m)
(ei,j), so T (m) can be identified with the m × m matrix

(

T
(m)
i,j

)

with entries in
L1. Our main results concern such random matrices. The first one is general with no extra

assumptions on the random variables T
(m)
i,j .

Theorem A. Let T (m) : ℓm∞(ℓm1 ) → L1 (m ∈ N) be a uniformly bounded sequence of operators.
Then

(i) either the identity operators Idℓk1 : ℓ
k
1 → ℓk1 (k ∈ N) uniformly factor through the T (m),

(ii) or the operators T (m) have uniform approximate lattice bounds, i.e.,

∀ ε > 0 ∃C > 0 ∀m ∈ N ∃ gm ∈ L1 such that ‖gm‖L1 ≤ C and

T (m)
(

Bℓm∞(ℓm1 )

)

⊂
{

f ∈ L1 : |f | ≤ gm
}

+ εBL1 .

Here and throughout the paper we denote by BX the closed unit ball of a Banach space
X . It turns out that this result does not depend on the domain spaces of the T (m) which
can be replaced by an arbitrary sequence of Banach spaces (c.f. Theorem 2.1). One of the
consequences of this theorem is that the Banach algebra B(X) of all bounded operators on
X =

(
⊕∞

n=1 ℓ
n
1

)

c0
has a unique maximal ideal. We thus obtain the following picture of the

lattice of closed ideals of B(X). Here K is the ideal of compact operators while Gc0 denotes the
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ideal of operators factoring through c0. For an operator ideal J we let J be the norm closure
of J and we denote by J (sur) the surjective hull of J (defined in Section 3).

Theorem B. Let X =
(
⊕∞

n=1 ℓ
n
1

)

c0
. We have the following closed ideals in B(X):

{0} ( K(X) ( Gc0(X) ⊆ G(sur)

c0 (X) ( B(X) .

Moreover, if there is another closed ideal J of B(X), then it must lie between Gc0(X) and its

surjective hull. In particular, G(sur)

c0 (X) is the unique maximal ideal of B(X).

We do not know whether the inclusion Gc0(X) ⊆ G(sur)

c0 (X) is proper. If it is in fact an

equality, then K(X) and Gc0(X) are the only non-trivial (i.e., non-zero), proper closed ideals
of B(X) and we have a full description of the lattice of closed ideals of B(X). Otherwise

G(sur)

c0 (X) may be the only non-trivial, proper closed ideal of B(X) besides K(X) and Gc0(X)

or there may also be other new closed ideals strictly between Gc0(X) and G(sur)

c0 (X). Classifying
the closed ideals of B(X), one is lead to the following problem.

Problem. Let T (m) : ℓm∞(ℓm1 ) → L1 (m ∈ N) be a uniformly bounded sequence of operators. Is
it true that

(i) either the identity operators Idℓk1 (k ∈ N) uniformly factor through the T (m),

(ii) or the T (m) uniformly approximately factor through ℓk∞ (k ∈ N)?

Our final result gives a positive answer to this problem in the case when the entries of the
matrix associated to T (m) are independent, symmetric random variables.

Theorem C. For each m ∈ N let T (m) : ℓm∞(ℓm1 ) → L1 be an operator such that the entries of

the corresponding random matrix
(

T
(m)
i,j

)

form a sequence of independent, symmetric random
variables with

∥

∥T (m)
∥

∥ = max

{

E

∣

∣

∣

m
∑

i=1

T
(m)
i,ji

∣

∣

∣
: j1, . . . , jm ∈ {1, . . . ,m}

}

≤ 1 .

Then

(i) either the identity operators Idℓk1 (k ∈ N) uniformly factor through the T (m),

(ii) or the T (m) uniformly approximately factor through ℓk∞ (k ∈ N).

The problem of classifying the closed ideals of operators on a Banach space goes back to
Calkin who in 1941 proved that the compact operators are the only non-trivial, proper closed
ideal in B(ℓ2) [1]. The same result was later proved for all ℓp spaces (p finite) and for c0 by
Gohberg, Markus, and Feldman in 1960 [5]. Remarkably, very little is known about the closed
ideals of B(ℓp⊕ ℓq), and it is not even known if there are infinitely many of them. For the most
recent results on the spaces ℓp ⊕ ℓq the reader is invited to consult [15].

In the late 1960’s Gramsch [6] and Luft [12] independently extended Calkin’s theorem in
a different direction by classifying all the closed ideals of B(H) for each Hilbert space H
(not necessarily separable). In particular, they showed that these ideals are well-ordered by
inclusion.

It was not until fairly recently that new examples were added to the list of Banach spaces
for which all of the closed ideals of operators can be determined. In 2004 Laustsen, Loy, and
Read [9] proved that for the Banach space E =

(
⊕∞

n=1 ℓ
n
2

)

c0
there are exactly four closed ideals

of B(E), namely {0}, the compact operators K(E), the closure Gc0(E) of the set of operators
factoring through c0, and B(E) itself. A similar result was subsequently obtained by Laustsen,
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Schlumprecht and Zsák for the dual space F =
(
⊕∞

n=1 ℓ
n
2

)

ℓ1
[10]. In 2006 Daws [2] extended

Gramsch and Luft’s result to the Gohberg–Markus–Feldman case by classifying the closed
ideals of B(ℓp(I)) (for p finite) and B(c0(I)) where I is an index set of arbitrary cardinality.
Again, these ideals are well-ordered by inclusion. Recently Argyros and Haydon constructed a
space that solves the famous compact-plus-scalar problem: every operator on their space is a
compact perturbation of a scalar multiple of the identity operator. This remarkable space has
many interesting properties. In particular, as this space also has a basis, the compact operators
are the only non-trivial, proper closed ideal of the algebra of all operators.

Our paper is organized as follows. In Section 1 we sketch the proofs of the more straight-
forward parts of Theorem B. We also reduce the ideal classification problem to the problem
stated above (preceding the statement of Theorem C), and we introduce the notions of uni-
form factorization and uniform approximate factorization. In Section 2 we define the notions
of uniform lattice bounds and uniform approximate lattice bounds, and we prove Theorem A.
In Section 3 we complete the proof of Theorem B. The general dichotomy theorem, Theo-
rem A, gives rise to a very natural conjecture that would solve the ideal classification problem
completely. In Section 4 we present a counterexample to this conjecture. Section 5 contains a
proof of Theorem C.

We use standard Banach space terminology throughout. For convenience we shall work with
real scalars. All our results extend without difficulty to the complex case. The sign |·| will
be used for absolute value (of a number or a function) as well as for the size of a finite set.
Finally, we denote by 1A the indicator function of a set A, and use the probabilistic notation
P for Lebesgue measure on [0, 1].

1. Preliminary results

Throughout this paper we fix X to be the Banach space
(
⊕∞

n=1 ℓ
n
1

)

c0
. In this section we

first prove those parts of Theorem B that follow easily from standard basis arguments. We then
reduce the problem of finding the closed ideal structure of B(X) to a question about sequences
of operators defined on finite ℓ∞-direct sums of ℓ1-spaces with values in L1 (this reduction will
also follow easily from standard basis arguments). We shall also be introducing definitions and
notations to be used throughout the paper.

We shall only give sketch proofs. The results in this section extend without difficulty to more
general unconditional sums of finite-dimensional spaces. For detailed proofs in the general case,
we refer the reader to [9].

Proposition 1.1. We have the following closed ideals in B(X):

{0} ( K(X) ( Gc0(X) ( B(X) .

Moreover, if T is a non-compact operator on X, then the closed ideal generated by T contains
Gc0(X). It follows that any closed ideal of B(X) not in the above list must lie strictly between
Gc0(X) and B(X).

Proof. Since X has a basis, the compact operators are the smallest non-trivial closed ideal
of B(X), and the inclusion K(X) ⊂ Gc0(X) follows. (Note, however, that not every compact
operator on X factors through c0.) This inclusion is strict, since c0 is complemented in X and
a projection onto a copy of c0 is a non-compact operator in Gc0(X).

We next show that Gc0(X) 6= B(X). Recall that if an idempotent element of a Banach
algebra belongs to the closure of an ideal I, then in fact it belongs to I. Thus, if Gc0(X) = B(X),
then the identity operator on X factors through c0, i.e., X is complemented in c0, and thus
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isomorphic to it. It is well known, however, that X is not isomorphic to c0 (e.g., because ℓ1
has cotype 2).

Finally, let T be a non-compact operator on X . To complete the proof it is enough to show
that the identity on c0 factors through T . Let (xn) be a bounded sequence in X such that
(Txn) has no convergent subsequence. After passing to a subsequence we can assume that both
(xn) and (Txn) converge coordinatewise (with respect to the obvious basis of X). We then
extract a further subsequence for which the difference sequence (Txn−Txn+1) is bounded away
from zero. This way we obtain a sequence (yn) in X such that both (yn) and (Tyn) converge
to zero coordinatewise and (Tyn) is bounded away from zero. We can then pass to a further
subsequence such that (yn) and (Tyn) are basic sequences equivalent to the unit vector basis
of c0 and such that their closed linear spans are complemented in X . It is now straightforward
that Idc0 factors through T . �

For n ∈ N we let Jn : ℓ
n
1 → X be the canonical embedding given by Jnx = (yi) where yn = x

and yi = 0 for i 6= n. For each m ∈ N the map Qm : X → ℓm1 denotes the canonical quotient
map defined by Qm(y) = ym for y = (yi) ∈ X . We introduce projections Pn = JnQn ∈ B(X)
for n ∈ N, and PA(x) =

∑

n∈A Pnx for A ⊂ N and x ∈ X .
For an operator T : X → X we let Tm,n = QmTJn : ℓ

n
1 → ℓm1 . We can identify T with the

infinite matrix
(

Tm,n

)

: if Tx = y, then ym =
∑

n Tm,nxn. We say that T is locally finite if the
sets {j ∈ N : Tm,j = 0} and {i ∈ N : Ti,n} are finite for all m,n ∈ N, i.e., if T has finitely
supported rows and columns.

Lemma 1.2. For any T ∈ B(X) and ε > 0 there is a compact operator K ∈ B(X) such that
‖K‖ < ε and T +K is locally finite.

Proof. Fix a sequence (εi) in (0, 1) with
∑

i εi < ε. Let n ∈ N. For each x ∈ ℓn1 there exists
N(n, x) ∈ N such that ‖(I − P{1,...,N})TJnx‖ < εn/2 for all N ≥ N(n, x). By compactness
of Bℓn1

, there exists Nn ∈ N such that ‖(I − P{1,...,Nn})TJn‖ < εn. Then the operator K =
∑

n(I − P{1,...,Nn})TJn is compact, ‖K‖ < ε and T −K has finite columns.
Next fix m ∈ N. Since the unit vector basis of c0 is shrinking, for each f ∈ ℓm∞ there exists

M(m, f) ∈ N such that ‖fQmT (I−P{1,...,M})‖ < εm/2 for all M ≥ M(m, f). By compactness
of Bℓm∞ , there exists Mm ∈ N such that ‖fQmT (I − P{1,...,Mm})‖ < εm‖f‖ for all f ∈ ℓm∞ and
hence, by Hahn–Banach, ‖QmT (I − P{1,...,Mm})‖ ≤ εm. As before, we now obtain a compact
operator K such that ‖K‖ < ε and T −K has finite rows. �

Definition. Given families
(

Ui : Ei → Fi

)

i∈I
and

(

Vj : Gj → Hj

)

j∈J
of operators between

Banach spaces, we say the Ui uniformly factor through the Vj (or that the Vj uniformly factor
the Ui) if

∃C > 0 ∀ i ∈ I ∃ ji ∈ J , Ai : Ei → Gji , Bi : Hji → Fi

such that Ui = BiVjiAi and ‖Ai‖ · ‖Bi‖ ≤ C .

We say the Ui uniformly approximately factor through the Vj (or that the Vj uniformly approx-
imately factor the Ui) if

∀ ε > 0 ∃C > 0 ∀ i ∈ I ∃ ji ∈ J , Ai : Ei → Gji , Bi : Hji → Fi

such that ‖Ui −BiVjiAi‖ < ε and ‖Ai‖ · ‖Bi‖ ≤ C .

If Gj = Hj and Vj is the identity operator IdGj
on Gj for all j ∈ J , then we will also use

the term factoring through the Gj instead of factoring through the IdGj
, etc.

For a family
(

Ui : Ei → Fi

)

i∈I
of operators with supi∈I‖Ui‖ < ∞ we write diag(Ui)i∈I for

the diagonal operator
(
⊕

i∈I Ei

)

c0
→

(
⊕

i∈I Fi

)

c0
given by (xi)i∈I 7→ (Uixi)i∈I .
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Now let T ∈ B(X) be a locally finite operator. For m ∈ N we let Rm be the support of the

mth row of T : this is the finite set Rm = {j ∈ N : Tm,j 6= 0}. We set Xm =
(
⊕

j∈Rm
ℓj1
)

ℓ∞

and let J (m) : Xm → X and Q(m) : X → Xm be the canonical embedding and quotient maps
given by J (m)

(

(xj)j∈Rm

)

=
∑

j∈Rm
Jj(xj) and Q(m)(x) =

(

Qj(x)
)

j∈Rm
, respectively. We

define T (m) : Xm → ℓm1 to be the mth row of T ignoring the zero entries, i.e., T (m) maps
x = (xj)j∈Rm

to QmTJ (m)(x) =
∑

j∈Rm
Tm,jxj .

One final piece of notation before we relate factorization properties of T to those of the
sequence

(

T (m)
)

: for subsets A and B of N we write A < B if a < b for all a ∈ A and b ∈ B.

Proposition 1.3. Let T ∈ B(X) be a locally finite operator.

(i) If the T (m) uniformly factor the identity operators Idℓk1
(k ∈ N), then T factors the identity

operator on X.

(ii) T approximately factors through c0 if and only if the T (m) uniformly approximately factor
through ℓn∞ (n ∈ N).

Proof. (i) By the assumption, there exist C > 0, positive integersm1 < m2 < . . . and operators
Ak : ℓ

k
1 → Xmk

and Bk : ℓ
mk

1 → ℓk1 such that Idℓk1 = BkT
(mk)Ak and ‖Ak‖ · ‖Bk‖ ≤ C for every

k ∈ N. We may assume, after passing to a subsequence if necessary, that Rm1 < Rm2 < . . . , so
in particular the mth

j and mth
k rows of T have disjoint support whenever j 6= k. Observe that

the identity operator IdX = diag
(

Idℓk1

)

factors through the diagonal operator

T̃ = diag(T (mk)) :
(

⊕

k

Xmk

)

c0
✲

(

⊕

k

ℓmk

1

)

c0
.

Indeed, we have IdX = BT̃A, where A = diag(Ak) and B = diag(Bk). It is therefore sufficient

to show that T̃ factors through T . Define Ã :
(
⊕

k Xmk

)

c0
→ X by (xk) 7→ ∑

k J
(mk)(xk)

and B̃ : X →
(
⊕

k ℓ
mk

1

)

c0
by x 7→

(

Qmk
(x)

)∞
k=1

. That Ã is well-defined follows from the

assumption Rm1 < Rm2 < . . . . Note that we have T̃ = B̃T Ã, as required.

(ii) Assume the T (m) uniformly approximately factor through ℓn∞ (n ∈ N). Then T̃ =
diag(T (m)) approximately factors through

(
⊕

k ℓ
nk∞
)

c0
for some n1 < n2 < . . . . This lat-

ter space is isomorphic to c0, so it is enough to observe that T factors through T̃ . Indeed,
T = T̃Q, where Qx =

(

Q(m)(x)
)

for x ∈ X .

The converse implication is clear since each T (m) factors through T , and c0 is a L∞-space.
�

2. The general dichotomy theorem

In this section we begin our study of factorization properties of sequences of operators
Tm : Xm → L1 (m ∈ N) where (Xm) is a sequence of arbitrary Banach spaces. We will prove
a dichotomy theorem in this general setting. In the next section we shall apply this to an
operator T on our space X =

(
⊕∞

n=1 ℓ
n
1

)

c0
: the Tm will be the rows T (m) of T (as defined

before Proposition 1.3). Before stating our main theorem we need a definition.

Definition. Let Ti : Xi → L1 (i ∈ I) be a family of operators. We say the Ti have uniform
lattice bounds if

∃C > 0 ∀ i ∈ I ∃ gi ∈ L1 with ‖gi‖L1 ≤ C and Ti

(

BXi

)

⊂ {f ∈ L1 : |f | ≤ gi}
(i.e., |Tix| ≤ gi for all x ∈ BXi

). The family (gi)i∈I is a uniform lattice bound for the Ti.
We say the Ti have uniform approximate lattice bounds if

∀ ε > 0 ∃C > 0 ∀ i ∈ I ∃ gi ∈ L+
1 with ‖gi‖L1 ≤ C and Ti

(

BXi

)

⊂ {f ∈ L1 : |f | ≤ gi}+ εBL1
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(i.e.,
∥

∥

(

|Tix| − gi
)+∥

∥

L1
≤ ε for all x ∈ BXi

). The family (gi)i∈I is a uniform approximate

lattice bound for the Ti corresponding to ε.

We now come to one of the main results in this paper, which yields, as a special case,
Theorem A stated in the Introduction.

Theorem 2.1. Let Tm : Xm → L1 (m ∈ N) be a uniformly bounded sequence of operators.
Then the following dichotomy holds:

(i) either the identity operators Idℓk1 (k ∈ N) uniformly factor through the Tm,

(ii) or the Tm have uniform approximate lattice bounds.

Remark. We observe that this is a genuine dichotomy. Indeed, assume that both alternatives
hold. By (i) there exists C > 0 such that for all k ∈ N there is an m ∈ N such that Tm

(

BXm

)

contains a sequence f1, . . . , fk which is C-equivalent to the unit vector basis of ℓk1 for some
constant C independent of k. By a theorem of Dor [4, Theorem B] there exist δ > 0 (depending
only on C) and disjoint sets E1, . . . , Ek such that ‖fj↾Ej

‖ ≥ δ for all j. By (ii) there exists a
uniform approximate lattice bound (gm) for the Tm corresponding to ε = δ/2. Then

‖gm‖L1 ≥
k
∑

j=1

‖gm↾Ej
‖L1 ≥

k
∑

j=1

‖(|fj| ∧ gm)↾Ej
‖L1

≥
k
∑

j=1

(

‖fj↾Ej
‖L1 − ‖(|fj| − gm)+↾Ej

‖L1

)

≥ kδ/2 .

Thus supm‖gm‖L1 = ∞ — a contradiction.

Before embarking on the proof of Theorem 2.1, we make a simple observation, which places
uniform lattice bounds in the context of factorization.

Proposition 2.2. Let Tm : Xm → L1 (m ∈ N) be a uniformly bounded sequence of opera-
tors.

(i) If the Tm have uniform lattice bounds then they uniformly factor through L∞. In particular,
if dimXm < ∞ for all m, then the Tm uniformly factor through ℓn∞ (n ∈ N).

(ii) Suppose that for each m ∈ N we have Xm = ℓNm

1 for some Nm ∈ N. If the Tm have
uniform approximate lattice bounds, then they uniformly approximately factor through ℓn∞
(n ∈ N).

Proof. (i) Let (gm) be a bounded sequence in L1 such that |Tmx| ≤ gm for all x ∈ BXm
and

for all m ∈ N. Without loss of generality for each m ∈ N we have gm > 0 everywhere. We can
then define maps Am : Xm → L∞ by Amx = Tmx

gm
and Bm : L∞ → L1 by Bmf = gm · f . This

gives the required factorization Tm = BmAm with sup‖Am‖ · ‖Bm‖ = sup‖gm‖L1 < ∞. The
second assertion follows immediately by virtue of the fact that L∞ is a L∞-space.
(ii) Let ε > 0 and let (gm) be a corresponding uniform approximate lattice bound for the Tm.

For m ∈ N define a linear operator Sm : ℓNm

1 → L1 by setting Smei = (Tmei ∧ gm) ∨ (−gm)

(i = 1, . . . , Nm), where (ei)
Nm

i=1 denotes the unit vector basis of ℓNm

1 . Then

‖Tm − Sm‖ = max
1≤i≤Nm

‖(Tm − Sm)(ei)‖L1 ≤ ε .

Since (gm) is a uniform lattice bound for the Sm, it follows from (i) that the Sm uniformly
factor through ℓn∞ (n ∈ N). �
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We now begin the proof of Theorem 2.1. We will need two ingredients. The first of these
is a sort of converse to the aformentioned result of Dor [4, Theorem B]. This converse result
for an infinite sequence (fi), from which the quantitative statement below follows easily, was
proved by H. Rosenthal [14] using a combinatorial argument. Here we sketch a particularly
elegant probabilistic proof from [8] which has the advantage of giving a linear bound (with
respect to k) on the constant n(δ, k) in the statement of the theorem.

Theorem 2.3. For each δ > 0 and k ∈ N there exists n = n(δ, k) ∈ N such that if f1, . . . , fn
are functions in BL1 for which there are disjoint sets E1, . . . , En with ‖fi↾Ei

‖L1 ≥ δ for all i,
then there is a subsequence (fji)

k
i=1 such that

∥

∥

∥

k
∑

i=1

aifji

∥

∥

∥

L1

≥ δ

2
whenever

k
∑

i=1

|ai| = 1 .

In particular, (fji)
k
i=1 is 2

δ -equivalent to the unit vector basis of ℓk1.

Proof. Fix δ ∈ (0, 1] and k ∈ N. Let n =
⌊

10
δ

⌋

· k, and let A = (αi,j) be the n× n matrix with
αi,j = ‖fi↾Ej

‖L1 when i 6= j and zeros on the diagonal. Note that the row sums of A satisfy
∑n

j=1 αi,j ≤ ‖fi‖L1 ≤ 1. We will show the existence of a k × k submatrix (αi,j)i,j∈F whose

row sums are at most δ
2 . An easy direct computation then shows that the subsequence (fi)i∈F

has the required property.
Pick a subset E of {1, . . . , n} of size 2k uniformly at random. Then

E
∑

i,j∈E

αi,j = E

n
∑

i,j=1

αi,j1{i,j∈E} =

n
∑

i,j=1

αi,j

(

n− 2

2k − 2

)(

n

2k

)−1

≤ (2k)2

n− 1
.

It follows that for some subset E the row sums of the submatrix (αi,j)i,j∈E are at most 2k
n−1

on average. Hence, by Markov’s inequality, at least half of the rows sum to at most twice this
average. I.e., for some F ⊂ E with |F | = k, the row sums of (αi,j)i,j∈F are at most δ

2 . �

The second ingredient is a theorem of Dor which shows, in particular, that a subspace of L1

whose Banach–Mazur distance to ℓk1 is not too large is well complemented.

Theorem 2.4 ((Dor [4, Theorem A])). Let µ and ν be measures and T : L1(ν) → L1(µ) an

isomorphic embedding with ‖T ‖ · ‖T−1‖ = λ <
√
2. Then there is a projection P of L1(µ) onto

the range of T with

‖P‖ ≤
(

2λ−2 − 1
)−1

.

In the proof of Theorem 2.1 we shall use an argument that will also be needed in Section 5,
so we state and prove it separately.

Proposition 2.5. Let Tm : Xm → L1 (m ∈ N) be operators with ‖Tm‖ ≤ 1 for all m ∈ N.
Assume that there exists δ > 0 such that for all n ∈ N there exist m ∈ N, functions f1, . . . , fn ∈
Tm(BXm

) and pairwise disjoint sets E1, . . . , En such that ‖fi↾Ei
‖L1 ≥ δ for all i. Then the

identity operators Idℓk1 uniformly factor through the Tm.

Proof. By Theorem 2.3 we can deduce the following from the assumption:

(1) ∀ k ∈ N ∃m ∈ N ∃ y1, . . . , yk ∈ BXm
such that

∥

∥

∥

k
∑

i=1

aiTmyi

∥

∥

∥

L1

≥ δ

2
whenever

k
∑

i=1

|ai| = 1 .
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Thus, in particular, Tm

(

BXm

)

contains a sequence 2
δ -equivalent to the unit vector basis of ℓk1 .

We next use a well known argument of James (see e.g., [13, Proposition 2]) to improve the

equivalence constant 2
δ . Fix 1 < λ <

√
2. Choose r ∈ N such that

(

2
δ

)1/r
< λ, and then set

K = kr. By (1) there exist m ∈ N and y1, . . . , yK ∈ BXm
such that

(2)
∥

∥

∥

K
∑

i=1

aiTmyi

∥

∥

∥

L1

≥ δ

2
whenever

K
∑

i=1

|ai| = 1 .

Now James’s argument shows that there is a block basis zj =
∑pj

i=pj−1+1 aiyi, where 0 = p0 <

p1 < · · · < pk = K and
∑pj

i=pj−1+1|ai| = 1 for all j, such that
(

Tmzj
)k

j=1
is

(

2
δ

)1/r
-equivalent

to the unit vector basis of ℓk1 . Thus there exist constants 0 < α ≤ β with β
α < λ such that

(3) α ≤
∥

∥

∥

k
∑

j=1

bjTmzj

∥

∥

∥

L1

≤ β whenever
k

∑

j=1

|bj | = 1 .

Note that by (2) we have β ≥ ‖Tmzj‖L1 ≥ δ
2 . Now define Am : ℓk1 → Xm by ej 7→ zj . We then

have
∥

∥TmAm

∥

∥ ·
∥

∥(TmAm)−1
∥

∥ < λ, so we can apply Theorem 2.4: there is a projection P of L1

onto the range of TmAm with ‖P‖ ≤
(

2λ−2− 1
)−1

. Let Bm : L1 → ℓk1 be the composition of P

with the map span{Tmzj : j = 1, . . . , k} → ℓk1 defined by Tmzj 7→ ej. Using (3) and the above
estimates involving α and β, we obtain

‖Am‖ ≤ 1 , ‖Bm‖ ≤ ‖P‖ · 1
α

≤ ‖P‖ · λ · 2
δ
≤ 2λ

δ
·
(

2λ−2 − 1
)−1

,

and Idℓk1 = BmTmAm. Thus the Tm uniformly factor the identity operators Idℓk1 (k ∈ N), as

required. �

Proof of Theorem 2.1. Without loss of generality we have ‖Tm‖ ≤ 1 for all m. We assume
that (ii) fails: there exists an ε > 0 such that for all C > 0 there exists m ∈ N such that

(4) ∀ g ∈ L+
1 with ‖g‖L1 ≤ C ∃x ∈ BXm

such that
∥

∥

(

|Tmx| − g
)+∥

∥

L1
> ε .

From this we deduce that the assumption of Proposition 2.5 is satisfied with δ = ε/2.

Fix n ∈ N and set N =
⌊

4n2

ε

⌋

. Putting C = N − 1, we find m ∈ N such that (4) holds.
From now on we let T = Tm. Successive applications of (4) yield x1, . . . , xN ∈ BXm

such that
∥

∥

∥

(

|Txi| −
∨

1≤j<i

|Txj|
)+∥

∥

∥

L1

> ε for i = 1, . . . , N .

(Note that
∥

∥

∨

1≤j<i|Txj |
∥

∥

L1
≤ N − 1 = C for all i ≤ N .) For each i = 1, . . . , N set

Di =
{

ω ∈ [0, 1] : |Txi|(ω) >
∨

1≤j<i

|Txj|(ω)
}

, and

D̃i =
{

(ω, t) ∈ [0, 1]× R : ω ∈ Di, |Txi|(ω) > t >
∨

1≤j<i

|Txj |(ω)
}

.

(Thus D̃i is the region between the graphs of |Txi| and
∨

1≤j<i|Txj | where the former is

greater.) For each 1 < i0 ≤ N , the regions (Di0 × R) ∩ D̃i , i = 1, . . . , i0 − 1, are pairwise
disjoint and lie beneath the graph of |Txi0 |. It follows that

i0−1
∑

i=1

∥

∥

∥

(

|Txi| −
∨

1≤j<i

|Txj|
)+

· 1Di0

∥

∥

∥

L1

≤ ‖Txi0‖L1 ≤ 1 ,
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and hence
∣

∣

∣

{

i < i0 :
∥

∥

∥

(

|Txi| −
∨

1≤j<i

|Txj |
)+

· 1Di0

∥

∥

∥

L1

≥ ε

2n

}∣

∣

∣
≤ 2n

ε
.

By the choice of N , we can therefore find N = i1 > i2 > · · · > in ≥ 1 such that
∥

∥

∥

(

|Txis | −
∨

1≤j<is

|Txj |
)+

· 1Dir

∥

∥

∥

L1

<
ε

2n
for 1 ≤ r < s ≤ n .

Now set fs = Txis and Es = Dis \
⋃

r<s Dir for s = 1, . . . , n. Then f1, . . . , fn ∈ T (BXm
), the

sets E1, . . . , En are pairwise disjoint, and ‖fi↾Ei
‖L1 ≥ ε

2 for all i = 1, . . . , n. This completes
the proof of the theorem. �

3. The existence of a unique maximal ideal

Let J be an operator ideal. We say J is injective if, given any operator T : E → F between
Banach spaces and an (isomorphic) embedding J : F → G, we have JT ∈ J (E,G) implies
T ∈ J (E,F ). The injective hull of J is defined to be

J (inj)(E,F ) =
{

T ∈ B(E,F ) : ∃ embedding J : F → G such that JT ∈ J (E,G)
}

.

It is easy to see that J (inj) is an injective operator ideal and it is the smallest injective ideal
containing J .

The dual concept is that of a surjective ideal. We say J is surjective if, given any operator
T : E → F and a quotient map (i.e., an onto bounded linear map) Q : D → E, we have
TQ ∈ J (D,F ) implies T ∈ J (E,F ). The surjective hull of J is

J (sur)(E,F ) =
{

T ∈ B(E,F ) : ∃ quotient map Q : D → E such that TQ ∈ J (D,F )
}

.

One can again verify that J (sur) is a surjective operator ideal and it is the smallest such ideal
containing J .

In this section we investigate what happens if we apply these two ways of obtaining a new
ideal from a given one in the algebra B(X). Recall that throughout X =

(
⊕∞

n=1 ℓ
n
1

)

c0
. Since

K is an injective and surjective operator ideal, we only need to consider Gc0(X). Taking the
injective hull, we obtain nothing new.

Theorem 3.1. G(inj)

c0 (X) = B(X).

Proof. Since X is the c0-sum of finite-dimensional spaces, we have an embedding J : X → c0
and JIX ∈ Gc0(X, c0). �

The surjective hull, however, does give new information about the ideal structure of B(X).
This is the main result of this section.

Theorem 3.2. G(sur)

c0 (X) is the unique maximal ideal of B(X).

Proof. We first show that G(sur)

c0 (X) is a proper ideal. Assume, for a contradiction, that this
ideal contains IdX , i.e., that some quotient map Z → X approximately factors through c0.
Without loss of generality we can assume that Z is separable. By considering a quotient map
ℓ1 → Z, we may also assume that Z = ℓ1, so there is an embedding X∗ =

(
⊕∞

n=1 ℓ
n
∞
)

ℓ1
→ ℓ∞

which approximately factors through ℓ1. It follows easily that ℓ1 contains ℓ
n
∞ (n ∈ N) uniformly.

This is impossible, e.g., because ℓ1 has cotype 2.
Now fix T ∈ B(X). We are going to show that if IdX does not factor through T , then T

belongs to G(sur)

c0 (X). This will prove that every proper ideal is contained in G(sur)

c0 (X), and
our proof is then complete.
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Without loss of generality we can assume that T is locally finite (Lemma 1.2). We are going
to use the notation introduced before Proposition 1.3: Rm = {j ∈ N : Tm,j 6= 0} is the mth

row support of T , Xm =
(
⊕

j∈Rm
ℓj1
)

ℓ∞
, and T (m) : Xm → ℓm1 is the mth row of T .

Fix quotient maps π : ℓ1 → X and πm : ℓNm

1 → Xm with

1

2
BXm

⊂ πm

(

BℓNm
1

)

⊂ BXm
(m ∈ N).

Note that π̃ = diag(πm) :
(

⊕

m ℓNm

1

)

c0
→

(
⊕

m Xm

)

c0
is also a quotient map.

Recall from the proof of Proposition 1.3(ii) that T factors through T̃ = diag(T (m)) via the

map Q : X →
(
⊕

m Xm

)

c0
given by Qx =

(

Q(m)(x)
)∞
m=1

for x ∈ X . By the lifting property

of ℓ1 there is a map Q̃ : ℓ1 →
(

⊕

m ℓNm

1

)

c0
with ‖Q̃‖ ≤ 2 such that Qπ = π̃Q̃. We thus have

the following commuting diagram:

ℓ1
π

✲ X

(

⊕

m

ℓNm

1

)

c0

Q̃

❄

π̃
✲

(

⊕

m

Xm

)

c0

Q

❄

T̃
✲

(

⊕

m

ℓm1

)

c0
.

T

✲

We claim that Tπ approximately factors through c0. Since T does not factor IdX , the T (m)

do not factor Idℓk1 (k ∈ N) uniformly (Proposition 1.3(i)). By Theorem 2.1, the T (m), and

hence the T (m)πm, have uniform approximate lattice bounds. It follows by Proposition 2.2(ii)

that the T (m)πm uniformly approximately factor through ℓn∞ (n ∈ N). This implies that T̃ π̃
approximately factors through c0, and hence so does Tπ. �

Remark. Of course, we have Gc0(X) ⊂ G(sur)

c0 (X), but we do not know whether this inclusion is
strict i.e., whether there exist closed ideals of B(X) other than those listed in Proposition 1.1.

4. Perturbing operators with uniform approximate lattice bounds

In Proposition 2.2(ii), can we replace ℓNm

1 by more general spaces Xm? I.e., given operators
Tm : Xm → L1 (m ∈ N) with uniform approximate lattice bounds, do the Tm uniformly
approximately factor through ℓn∞ (n ∈ N)? Proposition 2.2(i) gives an affirmative answer to
this question provided there exist arbitrarily small perturbations of the Tm with uniform lattice
bounds. This leads to the following question.

Question. Let Tm : Xm → L1 (m ∈ N) be a uniformly bounded sequence of operators. Assume
that the Tm have uniform approximate lattice bounds. Does there exist, for all ε > 0, a sequence
Sm : Xm → L1 (m ∈ N) of operators with ‖Tm − Sm‖ < ε for all m such that the Sm have
uniform lattice bounds?

One cannot hope for a positive answer for a general sequence (Xm) of Banach spaces: e.g.,
the diagonal operatorsAm : ℓm2 → ℓm1 below give a simple counterexample (c.f. Proposition 4.2).
However, the proof of Proposition 2.2(ii) shows that we do have a positive answer in the case
when each Xm is an ℓ1-space. We would hope to generalize this to the case when each Xm is
a finite ℓ∞-direct sum of finite-dimensional ℓ1-spaces. A positive answer in that case together
with Theorem 2.1 and Proposition 2.2(ii) would provide a positive answer to the problem raised
in the Introduction (stated before Theorem C). In turn, this would imply (by Proposition 1.3)
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that the list in Proposition 1.1 is a complete list of the closed ideals of B(X) for our space
X =

(
⊕∞

n=1 ℓ
n
1

)

c0
.

In this section we present an example that shows that the above question has a negative
answer even in the case when each Xm is a finite-dimensional ℓ∞-space. Here it will be
convenient to use a different normalization: the range spaces will be ℓm1 (m ∈ N) instead of L1.

For m ∈ N set Nm = 2m and Xm = ℓNm∞ . Let rmi ∈ X∗
m be the ith Rademacher function,

i = 1, . . . ,m, normalized with respect to the ℓ∞-norm, i.e., the coordinates of each rmi are ±1.
Let emi , i = 1, . . . ,m, denote the standard basis of Rm. Define Tm : Xm → ℓm1 by defining its
adjoint

T ∗
m : ℓm∞ ✲ X∗

m , emi ✲
1√
m

1

Nm
rmi , i = 1, . . . ,m .

Thus we have
〈Tmx, emi 〉 = 1√

mNm

〈

x, rmi
〉

, x ∈ ℓNm
∞ , i = 1, . . . ,m .

Note that ‖Tm‖ ≤ 1 for all m. We now show that the Tm have uniform approximate lattice
bounds. We have factorizations

Xm
Tm

✲ ℓm1

ℓm2

Am

✲

Bm
✲

obtained from its dual

ℓm∞
T ∗
m ✲ X∗

m

ℓm2

B∗
m

✲

A∗
m

✲

where A∗
m(emi ) = 1√

m
emi and B∗

m(emi ) = 1
Nm

rmi for i = 1, . . . ,m. Note that ‖Am‖ = 1 (consider

extreme points of Bℓm∞) and ‖Bm‖ = 1 for all m ∈ N. Thus, in particular, it is sufficient to
show that the Am have uniform approximate lattice bounds.

Proposition 4.1. Given ε > 0, let C = 1
ε . Then for each m ∈ N and x =

∑m
i=1 xie

m
i ∈ Bℓm2

we have
∥

∥Amx↾L
∥

∥

ℓm1
≤ ε, where L = L(m,x) = {i : |〈Amx, emi 〉| > C/m}.

Proof. For x ∈ Bℓm2
we have L = L(m,x) =

{

i : |xi| > C/
√
m
}

. Since |L|C2

m ≤ ‖x‖2ℓm2 , by

Cauchy–Schwarz we get

∥

∥Amx↾L
∥

∥

ℓm1
=

∑

i∈L

|xi|√
m

≤
√

|L|
m

· ‖x‖ℓm2 ≤ 1

C
= ε . �

This shows that for any ε > 0 and for C = 1
ε we have

Tm(BXm
) ⊂

{

y =
∑

yie
m
i ∈ ℓm1 : |yi| ≤ C

m for i = 1, . . . ,m
}

+ εBℓm1
.

Thus the Tm have uniform approximate lattice bounds. The difficult part is to show that
the Tm cannot be perturbed to get uniform lattice bounds. We first show this for the Am.
Although we do not need this, the proof is much simpler than for the Tm and contains some
of the ideas used later.
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Proposition 4.2. Let ε ∈ (0, 1). Assume that for all m ∈ N there exist Sm : ℓm2 → ℓm1 and
gm ∈ ℓm1 such that

(5) ‖Sm −Am‖ < ε

(6) |Smx| ≤ gm for all x ∈ Bℓm2
.

Then sup‖gm‖ℓm1 = ∞.

Proof. Fix m ∈ N. We will show that ‖gm‖ℓm1 ≥ (1−ε)
√
m

3 . For the rest of the proof we drop
the subscript m; π will denote a permutation of {1, . . . ,m} as well as the corresponding linear
map on Rm given by ei 7→ eπ(i). Note that A = π−1Aπ for all π. Let

S =
1

m!

∑

π

π−1Sπ and C = ‖g‖ℓm1 =

m
∑

i=1

g(i) .

Then ‖S − A‖ < ε and

∣

∣〈Sx, ei〉
∣

∣ ≤ 1

m!

∑

π

∣

∣〈Sπ(x), π(ei)〉
∣

∣ ≤ 1

m!

∑

π

g(π(i)) =
C

m
.

Thus, without of loss of generality, g is the constant function C
m and S = π−1Sπ for all π. It

follows that for some a, b ∈ R we have 〈Sei, ei〉 = a
m for all i, and 〈Sei, ej〉 = b

m(m−1) for all

i 6= j.
Now by (6) we have |a| ≤ C and |b| ≤ C(m − 1). We next apply (5) to x = 1√

m

∑

(−1)iei
to obtain

ε > ‖Ax− Sx‖ℓm1 ≥ ‖Ax‖ℓm1 − ‖Sx‖ℓm1 ≥ 1− 1√
m

(

|a|
m + 2|b|

m(m−1)

)

·m ≥ 1− 3C√
m

,

from which our claim follows. �

Remark. The motivation behind the proof of Proposition 4.2 is as follows. In contrast to A, S
cannot be large on the diagonal because it has a lattice bound. On the other hand, being close
to A, S has norm close to 1, so the off-diagonal entries of S must make a significant contribution
to the norm of S. Next, since A is symmetric, we could “symmetrize” S, and hence assume
that S is constant off the diagonal. Applying S to a “flat” vector whose coefficients alternate
in sign, we produce a small vector due to cancellations. On the other hand, when we apply
the diagonal operator A to the same vector, no cancellations occur making the outcome large.
This contradicts that A and S are close in norm. The idea behind the proof of Theorem 4.3
below is exactly the same.

We now turn to the proof that the Tm cannot be perturbed to have uniform lattice bounds.
By Khintchine’s inequality in L1 (see, for example [7]), with K =

√
2 we have

(7)
1

K

(

m
∑

i=1

a2i

)1/2

≤
∥

∥

∥

m
∑

i=1

ai
1

Nm
rmi

∥

∥

∥

ℓNm
1

≤
(

m
∑

i=1

a2i

)1/2

for all (ai)
m
i=1 ∈ Rm .

Theorem 4.3. Let 0 < ε < 1
4K . Assume that for all m ∈ N there exist gm ∈ ℓm1 and

Sm : ℓNm∞ → ℓm1 such that

(8) ‖Sm − Tm‖ < ε ,

(9) |Smx| ≤ gm for all x ∈ BℓNm
∞

.

Then supm‖gm‖ℓm1 = ∞.
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Proof. We shall argue by contradiction. Assume that for some 0 < ε < 1
4K there is a C > 0

such that for all m ∈ N there exist gm ∈ ℓm1 and Sm : ℓNm∞ → ℓm1 such that (8) and (9) hold,
and moreover ‖gm‖ℓm1 ≤ C for all m ∈ N.

We will obtain a contradiction in a number of steps. From now on we fix a large m (to be
specified at the end of the proof), and drop m in the various subscripts and superscripts. We
denote by N the power set of {1, . . . ,m} and write the standard basis of RN as eα, α ∈ N .
The Rademacher functions can then be expressed as

ri =
∑

α, i∈α

eα −
∑

α, i/∈α

eα i = 1, . . . ,m .

The letter π will always denote a permutation of {1, . . . ,m} as well as the following induced
maps:

ℓm1
π
✲ ℓm1 , ei ✲ eπ(i)

N
π

✲ N , α ✲ {π(i) : i ∈ α}

ℓN∞
π
✲ ℓN∞ , eα ✲ eπ(α) .

Note that the first and third interpretations of π are isometries. The letter R will also stand
for a number of different maps:

ℓm1
R

✲ ℓm1 , ei ✲ −ei

N
R

✲ N , α ✲ ¬α = {1, . . . ,m} \ α

ℓN∞
R

✲ ℓN∞ , eα ✲ eR(α) .

Here again R is an isometry in the first and third definitions. Note also that the last map
satisfies R

(

ri
)

= −ri, and that R and π commute in each their interpretations.
Having fixed our notation, we next show that S can be assumed to have various symmetries.

We begin with the observation that T is symmetric in the sense that it equals the composite
π−1Tπ:

ℓN∞
π

✲ ℓN∞
T

✲ ℓm1
π−1

✲ ℓm1 .

Similarly, T = RTR. Set S = 1
m!

∑

π π
−1Sπ and C = ‖g‖ℓm1 =

∑m
i=1 g(i). Then ‖S − T ‖ < ε,

and, by (9), for all x ∈ BℓN∞
and for i = 1, . . . ,m we have

∣

∣〈Sx, ei〉
∣

∣ ≤ 1

m!

∑

π

∣

∣〈Sπ(x), π(ei)〉
∣

∣ ≤ 1

m!

∑

π

g(π(i)) =
C

m
.

Thus, without of loss of generality, we may assume that g is the constant function C
m and that

S = π−1Sπ for all π.
Next we set S = 1

2 (S + RSR). Then ‖S − T ‖ < ε,
∣

∣〈Sx, ei〉
∣

∣ ≤ C
m for all x ∈ BℓN∞

and for
i = 1, . . . ,m. We can thus also assume that S = RSR.

The above two symmetrization procedures have the following implications for the matrix of
S: there exist ak ∈ R, k = 1, . . . ,m, such that

Si,α = 〈Seα, ei〉 =
{

a|α| if i ∈ α

−a|¬α| if i /∈ α
α ∈ N, i = 1, . . . ,m .
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To complete the proof of Theorem 4.3 we require a number of lemmas.

Lemma 4.4. 2

m
∑

k=1

|ak|
(

m− 1

k − 1

)

≤ C

m
.

Proof. For x ∈ ℓN∞ and i = 1, . . . ,m we have

(10) 〈Sx, ei〉 =
∑

α

xαSi,α =

m
∑

k=1

ak
∑

|α|=k, i∈α

(xα − x¬α) .

Fix an arbitrary i ∈ {1, . . . ,m}, set

xα =

{

sign(ak) if |α| = k, i ∈ α

−sign(ak) if |α| = m− k, i /∈ α ,

and use (9) to obtain

∣

∣〈Sx, ei〉
∣

∣ = 2
m
∑

k=1

|ak|
(

m− 1

k − 1

)

≤ C

m
,

as required. �

Lemma 4.5. Fix k0 ∈ N. Let εi ∈ {−1,+1}, i = 1, . . . ,m. For α ∈ N set

xα = sign
(

∑

i∈α

εi −
∑

i/∈α

εi

)

whenever k0 ≤ |α| ≤ m − k0 (we let sign(0) = 0), otherwise set xα = 0. Then there exists
m(k0) ∈ N such that ‖Tx‖ℓm1 ≥ 1

4K provided m ≥ m(k0).

Proof. Recall that T ∗ : ℓm∞ → ℓN1 is given by T ∗(ei) =
1√
mN

ri, i = 1, . . . ,m. For y =
∑m

i=1 εiei

Khintchine’s inequality (7) yields

‖T ∗y‖ℓN1 =
∥

∥

∥

m
∑

i=1

εi√
mN

ri

∥

∥

∥

ℓN1

≥ 1

K

∥

∥

∥

m
∑

i=1

εi√
m
ei

∥

∥

∥

ℓm2

=
1

K
.

It follows that setting z = sign
(

T ∗y
)

, we have

‖Tz‖ℓm1 ≥ 〈Tz, y〉 = 〈z, T ∗y〉 = ‖T ∗y‖ℓN1 ≥ 1

K
.

Now for any α ∈ N we have

〈T ∗y, eα〉 = 1√
mN

m
∑

i=1

εi〈ri, eα〉 = 1√
mN

(

∑

i∈α

εi −
∑

i/∈α

εi

)

,

and hence

zα = sign
(

∑

i∈α

εi −
∑

i/∈α

εi

)

.

Note that xα = zα whenever k0 ≤ |α| ≤ m− k0.
Observe that if we add an element to the set α ∈ N , then the expression

∑

i∈α εi −
∑

i/∈α εi
changes by at most 2 in absolute value. It follows that

∑

|α|=k+1

∣

∣〈T ∗y, eα〉
∣

∣ ≥
∑

|α|=k

∣

∣〈T ∗y, eα〉
∣

∣−
(

m

k

)

2√
mN
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whenever 0 ≤ k < m
2 . (Indeed, there exists an injection from sets of size k to sets of size k+ 1

mapping each α to some set β ⊃ α. This can be seen using Hall’s marriage theorem.) Iterating
k0 times, we get

∑

|α|=k+k0

∣

∣〈T ∗y, eα〉
∣

∣ ≥
∑

|α|=k

∣

∣〈T ∗y, eα〉
∣

∣−
k0−1
∑

j=0

(

m

k + j

)

2√
mN

≥
∑

|α|=k

∣

∣〈T ∗y, eα〉
∣

∣− 2√
m

whenever 0 ≤ k < m
2 − k0. Summing over k, we obtain

2k0−1
∑

k=k0

∑

|α|=k

∣

∣〈T ∗y, eα〉
∣

∣ ≥
k0−1
∑

k=0

∑

|α|=k

∣

∣〈T ∗y, eα〉
∣

∣ − 2k0√
m

provided k0 < m
4 . Similarly (or using 〈T ∗y, e¬α〉 = −〈T ∗y, eα〉), we obtain

2k0−1
∑

k=k0

∑

|α|=m−k

∣

∣〈T ∗y, eα〉
∣

∣ ≥
k0−1
∑

k=0

∑

|α|=m−k

∣

∣〈T ∗y, eα〉
∣

∣− 2k0√
m

.

Putting these together, we finally get

‖Tx‖ℓm1 ≥ 〈Tx, y〉 =
∑

k0≤|α|≤m−k0

∣

∣〈eα, T ∗y〉
∣

∣

≥ 1

3

∑

α

∣

∣〈eα, T ∗y〉
∣

∣− 4k0
3
√
m

>
1

4K

provided m is sufficiently large. �

The quantity d(m, k) in Lemmas 4.6 and 4.7 is defined for an even integer m as follows:

d(m, k) =























(m
2 − 1
k−1
2

)2

if k is odd

(m
2 − 1
k
2 − 1

)(m
2 − 1

k
2

)

if k is even.

Lemma 4.6. Fix k0 ∈ N, let m ∈ N be even, and set εi = (−1)i for i = 1, . . . ,m. Define
x = (xα) ∈ ℓN∞ as in Lemma 4.5. Then for k0 ≤ k ≤ m− k0 and for j = 1, . . . ,m we have

∑

|α|=k, j∈α

xα = (−1)j · d(m, k) .

Proof. It is sufficient to consider j = m. Let E be the set of all even numbers in {1, . . . ,m}.
Note that for the given choice of signs ε1, . . . , εm we have

xα = sign
(

∑

i∈α

εi −
∑

i/∈α

εi

)

= sign
(

∑

i∈α

εi

)

.

Given α ∈ N with |α| = k and m ∈ α, let

β = {i+ 1 : i ≤ m− 2, i ∈ α \ E} ∪ {i− 1 : i ≤ m− 2, i ∈ α ∩ E} ∪
(

α ∩ {m− 1,m}
)

.

Then |β| = k, m ∈ β and xα+xβ = 0 unless m−1 /∈ α and either (k is odd and) |α∩E| = k+1
2 ,

or (k is even and) |α ∩ E| = k
2 or k

2 + 1. The result follows. �
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Lemma 4.7. Let m ∈ N be even. Then

d(m, k) ≤ 2

(

m− 1

k − 1

)(

k
⌊

k
2

⌋

)

1

2k
for each k = 1, . . . ,m .

Proof. Assume k is even. Then

d(m, k)

(

m− 1

k − 1

)−1

=

1

2k−1
·
[

(m− 2)(m− 4) . . . (m− k + 2)
]

·
[

(m− 2)(m− 4) . . . (m− k)
]

(m− 1)(m− 2) . . . (m− k + 1)
· (k − 1)!
(

k
2 − 1

)

! ·
(

k
2

)

!

=
m− 2

m− 1
· m− 4

m− 3
· · · m− k

m− k + 1
·
(

k

k/2

)

· 1

2k
≤

(

k

k/2

)

· 1

2k
.

An almost identical computation works for odd k except we get an extra factor of 2 in that
case. �

Lemma 4.8. There is a universal constant U such that

(

k
⌊

k
2

⌋

)

≤ U
2k√
k

for all k ∈ N .

Proof. For k
2 −

√
k ≤ j < k

2 we have

(

k

j + 1

)

=

(

k

j

)

· k − j

j + 1
≤

(

k

j

)

·
k
2 +

√
k

k
2 −

√
k
≤

(

k

j

)

·
(

1 +
6√
k

)

provided k is sufficiently large. It follows that for k
2 −

√
k ≤ j < k

2 we have

(

k
⌊

k
2

⌋

)

≤
(

1 +
6√
k

)

√
k

·
(

k

j

)

≤ e6 ·
(

k

j

)

for sufficiently large k. Hence for a universal constant U and for all k ∈ N we have

√
k ·

(

k
⌊

k
2

⌋

)

≤ U · 2k ,

as required. �

Proof of Theorem 4.3 continued. We finally have all the ingredients to obtain the required
contradiction. Choose k0,m ∈ N with 2UC√

k0
< 1

4K − ε, m ≥ m(k0) and m even. Recall that

C and ε were fixed at the very beginning of the proof, K is the Khintchine constant, U is the
universal constant obtained in Lemma 4.8 above, and m(k0) is given by Lemma 4.5.
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Let x = (xα) ∈ ℓN∞ be as in Lemma 4.5 with εi = (−1)i. Note that x¬α = −xα for all
α ∈ N . We have

‖Sx‖ℓm1 =

m
∑

i=1

∣

∣〈Sx, ei〉
∣

∣

≤
m
∑

i=1

m
∑

k=1

2|ak| ·
∣

∣

∣

∑

|α|=k, i∈α

xα

∣

∣

∣
by (10)

≤ m
∑

k0≤k≤m−k0

2|ak|d(m, k) by Lemma 4.6

≤ m
∑

k0≤k≤m−k0

4|ak|
(

m− 1

k − 1

)

U
1√
k

by Lemmas 4.7 and 4.8

≤ 2UC√
k0

<
1

4K
− ε by Lemma 4.4.

Finally, by Lemma 4.5 we have ‖Tx‖ℓm1 ≥ 1
4K , and this contradicts (8). �

5. Searching for new ideals

Proposition 1.3 tells us that a possible new closed ideal in B(X) (if there is one) is generated
by an operator defined by a sequence T (m) : ℓm∞(ℓm1 ) → L1 (m ∈ N) which neither factors the
identity operators Idℓk1 (k ∈ N) uniformly, nor does it factor through ℓk∞ (k ∈ N) approximately

uniformly. The main result of this section, stated as Theorem C in the Introduction, shows

that there is no such sequence when for each m ∈ N, the entries of the random matrix
(

T
(m)
i,j

)

are independent, symmetric random variables.
We begin with a characterization of sequences of operators which uniformly factor through

ℓk∞ (k ∈ N) in terms of the 2-summing norm. The 2-summing norm is defined for an operator
U : E → F between Banach spaces as

π2(U) = sup
{

(
∑k

s=1‖Uz(s)‖2
)1/2

: k ∈ N, z(1), . . . , z(k) ∈ E ,

∑k
s=1|〈z(s), z∗〉|2 ≤ 1 ∀ z∗ ∈ BE∗

}

.

We denote by Ωk the probability space
(

{1, . . . , k}, µk

)

, where µk is the uniform probability

measure given by µk

(

{i}
)

= 1
k for i = 1, . . . , k.

Theorem 5.1. Let T (m) : ℓm∞(ℓm1 ) → L1 (m ∈ N) be a uniformly bounded sequence of operators.
Then the following are equivalent.

(i) The T (m) uniformly factor through ℓk∞ (k ∈ N).

(ii) supm π2

(

T (m)
)

< ∞.

(iii) The T (m) uniformly factor through the formal identity maps

ιk : ℓ
k
∞ → L2(Ωk) ,

∑k
i=1 xiei 7→

∑k
i=1 xi1{i} (k ∈ N).

Proof. (i)⇒(ii) follows from the fact that π2(·) is an ideal norm and from the following conse-
quence of Grothendieck’s theorem (c.f. [3, Theorem 3.5]).

Theorem 5.2. Let Φ be a compact, Hausdorff space and µ an arbitrary measure on some
measurable space. Then for 1 ≤ p ≤ 2 any operator U : C(Φ) → Lp(µ) is 2-summing with
π2(U) ≤ KG‖U‖, where KG is the Grothendieck constant.
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(ii)⇒(iii) is a consequence of the following special case of Pietsch’s Factorization Theorem
(c.f. [3, Corollary 2.16]).

Theorem 5.3. Let E and F be Banach spaces, and let Φ be a w∗-compact subset of BE∗ which
is 1-norming for E. Let κ : E → C(Φ) denote the canonical embedding: κ(x)(x∗) = x∗(x), x ∈
E, x∗ ∈ Φ.

Then an operator u : E → F is 2-summing if and only if there is a probability measure µ
on the Borel σ-algebra of Φ and an operator ũ : L2(µ) → F such that u = ũ ◦ ι ◦ κ, where
ι : C(Φ) → L2(µ) is the formal identity. Moreover, ũ can be chosen with ‖ũ‖ = π2(u).

(iii)⇒(i) is of course obvious. �

Recall that for eachm ∈ N we denote by ei,j = e
(m)
i,j the unit vector basis of ℓm∞(ℓm1 ) such that

the norm of
∑

i,j ai,jei,j is given by maxi
∑

j |ai,j |. We identify an operator U : ℓm∞(ℓm1 ) → L1

with the m×m matrix (Ui,j) in L1, where Ui,j = U(ei,j). We now estimate π2(U) in the case
the matrix entries Ui,j form a symmetric sequence of random variables. Here and elsewhere we
will make use of the square function inequality: if f1, . . . , fn ∈ L1 form a symmetric sequence
of random variables, then

(11)
1

K

∥

∥

∥

(

n
∑

i=1

|fi|2
)1/2∥

∥

∥

L1

≤
∥

∥

∥

n
∑

i=1

fi

∥

∥

∥

L1

≤
∥

∥

∥

(

n
∑

i=1

|fi|2
)1/2∥

∥

∥

L1

.

This is a well known consequence of Khintchine’s inequality (7).

Lemma 5.4. Let m ∈ N, and let U : ℓm∞(ℓm1 ) → L1 be an operator such that the matrix entries
Ui,j form a symmetric sequence of random variables. Then

π2(U) ≤
(

m
∑

i=1

max
1≤j≤m

‖Ui,j‖2L2

)1/2

.

Proof. By definition

(12) π2
2(U) = sup

(z(s))ks=1

∑k
s=1‖Uz(s)‖2L1

supz∗∈Bℓm1 (ℓm∞)

∑k
s=1|〈z(s), z∗〉|2

where the supremum is over all k ∈ N and z(1), . . . , z(k) ∈ ℓm∞(ℓm1 ). We will estimate the de-
nominator and numerator of the above expression separately. We will denote by ρ an arbitrary
element (ρj)

m
j=1 of {±1}m. We begin with the denominator:

sup
z∗∈Bℓm

1
(ℓm∞)

k
∑

s=1

|〈z(s), z∗〉|2 = max
1≤i≤m

max
ρ

k
∑

s=1

∣

∣

∣

m
∑

j=1

ρjz
(s)
i,j

∣

∣

∣

2

≥ max
1≤i≤m

k
∑

s=1

m
∑

j=1

|z(s)i,j |2 .

The equality follows since the sup is attained at an extreme point of Bℓm1 (ℓm∞). We then replace

maxρ by Aveρ, interchange Aveρ and
∑k

s=1, and compute the variance of a linear combination
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of independent Bernoulli random variables. This yields the inequality. Now the numerator:

k
∑

s=1

‖Uz(s)‖2L1
≤

k
∑

s=1

∥

∥

∥

(

m
∑

i,j=1

∣

∣z
(s)
i,j Ui,j

∣

∣

2
)1/2∥

∥

∥

2

L1

≤
k
∑

s=1

∥

∥

∥

m
∑

i,j=1

∣

∣z
(s)
i,j Ui,j

∣

∣

2
∥

∥

∥

L1

=
k

∑

s=1

m
∑

i,j=1

|z(s)i,j |2‖Ui,j‖2L2
=

m
∑

i=1

( k
∑

s=1

m
∑

j=1

|z(s)i,j |2‖Ui,j‖2L2

)

≤
m
∑

i=1

max
1≤j≤m

‖Ui,j‖2L2
·
( k
∑

s=1

m
∑

j=1

|z(s)i,j |2
)

.

Here the first inequality is the square function inequality (11), the second inequality follows
from Jensen’s inequality whereas the rest is straightforward. Substitution of our estimates
into (12) yields the result. �

Proof of Theorem C. For m ∈ N we let Fm be the set of functions {1, . . . ,m} → {1, . . . ,m}.
Functions j, j′ ∈ Fm are said to be disjoint if ji 6= j′i for all i = 1, . . . ,m. Since ‖T (m)‖ is
attained at an extreme point of Bℓm∞(ℓm1 ), we have

‖T (m)‖ = sup
{

E
∣

∣

m
∑

i=1

ρiT
(m)
i,ji

∣

∣ : j ∈ Fm, ρ ∈ {±1}m
}

.

By the symmetry of the T
(m)
i,j , we in fact have

‖T (m)‖ = sup
{

E
∣

∣

m
∑

i=1

T
(m)
i,ji

∣

∣ : j ∈ Fm

}

.

We consider two cases motivated by the notion of uniform approximate lattice bounds. The
second case is the negation of the first.

(i’) ∃ ε > 0 ∀C > 0 ∀n ∈ N ∃m ∈ N and pairwise disjoint functions j(s) ∈ Fm (s = 1, . . . , n)
such that

(13)
∥

∥

∥

m
∑

i=1

T
(m)

i,j
(s)
i

· 1{∣
∣T

(m)

i,j
(s)
i

∣

∣>C
}

∥

∥

∥

L1

≥ ε for s = 1, . . . , n .

(ii’) ∀ ε > 0 ∃C > 0 ∃n ∈ N ∀m ≥ n there exist pairwise disjoint functions j(s) ∈ Fm

(s = 1, . . . , n) such that

(14)
∥

∥

∥

m
∑

i=1

T
(m)
i,ji

· 1{|T (m)
i,ji

|>C}

∥

∥

∥

L1

< ε

for each j ∈ Fm that is disjoint from all the j(s).

We will deduce alternatives (i) and (ii) of Theorem C from the above cases (i’) and (ii’),

respectively. We begin with case (i’). Fix n ∈ N and choose C > 0 such that
(

1 − 2
C

)n ≥ 1
2 .

Now case (i’) gives m ∈ N and pairwise disjoint functions j(s) ∈ Fm (s = 1, . . . , n) such
that (13) holds. To avoid cumbersome notation, we assume, after permuting entries in each

row if necessary, that j
(s)
i = s for all i = 1, . . . ,m and s = 1, . . . , n. We also drop the superscript

m from T (m) for the rest of this case.
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Fix s ∈ {1, . . . , n}. We apply the square function inequality (11) twice and monotonicity of
‖·‖L1 to (13), to obtain

∥

∥

∥

m
∑

i=1

Ti,s · 1{maxi′ |Ti′,s|>C}

∥

∥

∥

L1

≥ 1

K

∥

∥

∥

(

m
∑

i=1

T 2
i,s · 1{maxi′ |Ti′,s|>C}

)1/2∥
∥

∥

L1

≥ 1

K

∥

∥

∥

(

m
∑

i=1

T 2
i,s · 1{|Ti,s|>C}

)1/2∥
∥

∥

L1

≥ 1

K

∥

∥

∥

m
∑

i=1

Ti,s · 1{|Ti,s|>C}

∥

∥

∥

L1

≥ ε

K
.

Now set fs =
∑m

i=1 Ti,s, E
′
s =

{

maxi|Ti,s| > C
}

and Es = E′
s∩

⋂

r 6=s(E
′
r)

∁. We have ‖fs‖L1 =

E
∣

∣

∑m
i=1 Ti,s

∣

∣ ≤ 1 and ‖fs↾E′
s
‖L1 ≥ ε

K . By an inequality of Lévy (c.f. [11, Proposition 2.3]) and
Markov’s inequality we have

P(E′
s) = P

(

max
i

|Ti,s| > C
)

≤ 2 · P
(∣

∣

∑m
i=1 Ti,s

∣

∣ > C
)

≤ 2

C
.

Since the Ti,j are independent, it follows that

‖fs↾Es
‖L1 = E

∣

∣fs1E′
s
· 1⋂

r 6=s
(E′

r)
∁

∣

∣ = E
∣

∣fs1E′
s

∣

∣ · P
(

⋂

r 6=s

(E′
r)

∁
)

≥ ε

K
·
(

1− 2

C

)n−1

≥ ε

2K
.

Thus we have proved that for all n ∈ N there exist m ∈ N, f1, . . . , fn ∈ T (m)
(

Bℓm∞(ℓm1 )

)

and

disjoint sets E1, . . . , En with ‖fs↾Es
‖ ≥ ε

2K for s = 1, . . . , n. By Proposition 2.5 the identity

maps Idℓk1 (k ∈ N) uniformly factor through the T (m).

We now turn to case (ii’). Fix ε > 0 and choose the corresponding C > 0 and n ∈ N. We
will show that for every m ∈ N there exists S(m) : ℓm∞(ℓm1 ) → L1 such that ‖T (m) − S(m)‖ < ε,
and moreover supm π2(S

(m)) < ∞. We can then complete the proof by applying Theorem 5.1
to deduce that the S(m) uniformly factor through ℓk∞ (k ∈ N). Since ε was arbitrary, it follows
that the T (m) uniformly approximately factor through ℓk∞ (k ∈ N).

Fix m ∈ N. If m < n, then we can take S(m) = T (m). So assume m ≥ n, put T = T (m),
F = Fm, and let j(s) ∈ F (s = 1, . . . , n) be pairwise disjoint functions such that (14) holds for
each j ∈ F that is disjoint from all the j(s). We may again assume for convenience of notation
that j(s) is the constant function with value s for each s = 1, . . . , n. We now define

S = S(1) + S(2) : ℓm∞(ℓm1 ) → L1

by letting, for each i = 1, . . . ,m,

S
(1)
i,j =

{

Ti,j if 1 ≤ j ≤ n

0 if n < j ≤ m

S
(2)
i,j =

{

0 if 1 ≤ j ≤ n

Ti,j · 1{|Ti,j |≤C
} if n < j ≤ m .

We first check that ‖T − S‖ < ε. Here the suprema are taken over all j ∈ F and ρ ∈ {±1}m.

‖T − S‖ = sup
j,ρ

E
∣

∣

∣

m
∑

i=1

ρi(T − S)i,ji

∣

∣

∣

= sup
j,ρ

E
∣

∣

∣

∑

i:n<ji

ρiTi,ji · 1{|Ti,ji
|>C

}

∣

∣

∣
< ε .
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The first line comes from looking at the extreme points of Bℓm∞(ℓm1 ). The second line follows

from the definition of S and (14) as well as the use of convexity and the symmetry of the Ti,j .

We next estimate π2(S) from above. First, S(1) clearly factors through ℓm∞(ℓn1 ) with con-
stant 1. Since ℓm∞(ℓn1 ) is n-isomorphic to ℓmn

∞ , it follows by Theorem 5.2 that π2(S
(1)) ≤ KG ·n.

Second, we can estimate π2(S
(2)) as follows. First, by Lemma 5.4 we have

π2
2(S

(2)) ≤
m
∑

i=1

max
1≤j≤m

∥

∥S
(2)
i,j

∥

∥

2

L2
= max

j∈F

m
∑

i=1

∥

∥S
(2)
i,ji

∥

∥

2

L2
= max

j∈F

∥

∥

∥

m
∑

i=1

S
(2)
i,ji

∥

∥

∥

2

L2

,

where the last equality is the variance of a sum of independent, mean zero random variables.
To continue, we need the following consequence of the Hoffman-Jørgensen inequality (c.f. [11,

Proposition 6.10]). Here the notation a
κ∼ b means that a ≤ κ · b and b ≤ κ · a.

Theorem 5.5. Given 0 < p, q < ∞, there is a constant Kp,q such that if X1, . . . ,XN are
independent, symmetric random variables in Lp then

∥

∥

∥

N
∑

i=1

Xi

∥

∥

∥

Lp

Kp,q∼
∥

∥

∥
max

1≤i≤N
|Xi|

∥

∥

∥

Lp

+
∥

∥

∥

N
∑

i=1

Xi · 1{|Xi|≤δ0}

∥

∥

∥

Lq

where δ0 = inf
{

t > 0 :
∑N

i=1 P
(

|Xi| > t
)

≤ 1
8·3p

}

.

We apply this theorem to the sequence
(

S
(2)
i,ji

)m

i=1
(where j ∈ F) with p = 2, q = 1 to obtain

K−1
2,1 ·

∥

∥

∥

m
∑

i=1

S
(2)
i,ji

∥

∥

∥

L2

≤
∥

∥

∥
max

1≤i≤m
|S(2)

i,ji
|
∥

∥

∥

L2

+
∥

∥

∥

m
∑

i=1

S
(2)
i,ji

· 1|S(2)
i,ji

|≤δ0

∥

∥

∥

L1

≤ C +K ·
∥

∥

∥

m
∑

i=1

Ti,ji

∥

∥

∥

L1

≤ C +K .

The second inequality follows by applying the square function inequality twice and mono-
tonicity of expectation. Substituting this into the previous inequality, we obtain π2(S

(2)) ≤
K2,1 · (C +K).

We have thus shown that π2(S) ≤ π2(S
(1))+π2(S

(2)) ≤ KG ·n+K2,1 · (C+K). This upper
bound is independent of m, and so the proof is complete. �
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