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The algebra of integro-differential operators on a polynomial

algebra

V. V. Bavula

Abstract

We prove that the algebra In := K〈x1, . . . , xn,
∂

∂x1
, . . . , ∂

∂xn
,
∫
1
, . . . ,

∫
n
〉 of integro-differential

operators on a polynomial algebra is a prime, central, catenary, self-dual, non-Noetherian alge-
bra of classical Krull dimension n and of Gelfand-Kirillov dimension 2n. Its weak homological
dimension is n, and n ≤ gldim(In) ≤ 2n. All the ideals of In are found explicitly, there are
only finitely many of them (≤ 22

n

), they commute (ab = ba) and are idempotent ideals
(a2 = a). The number of ideals of In is equal to the Dedekind number dn. An analogue of
Hilbert’s Syzygy Theorem is proved for In. The group of units of the algebra In is described
(it is a huge group). A canonical form is found for each integro-differential operators (by
proving that the algebra In is a generalized Weyl algebra). All the mentioned results hold
for the Jacobian algebra An (but GK(An) = 3n, note that In ⊂ An). It is proved that the
algebras In and An are ideal equivalent.
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algebra, the classical Krull dimension, the global dimension, the weak homological dimension,
the Gelfand-Kirillov dimension, the Weyl algebras, the Jacobian algebras, the prime spectrum.
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1 Introduction

Throughout, ring means an associative ring with 1; module means a left module; N := {0, 1, . . .}
is the set of natural numbers; K is a field of characteristic zero and K∗ is its group of units;
Pn := K[x1, . . . , xn] is a polynomial algebra over K; ∂1 := ∂

∂x1
, . . . , ∂n := ∂

∂xn
are the partial

derivatives (K-linear derivations) of Pn; EndK(Pn) is the algebra of all K-linear maps from Pn to
Pn; the subalgebra An := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 of EndK(Pn) is called the n’th Weyl algebra.

Definition, [11]: The Jacobian algebra An is the subalgebra of EndK(Pn) generated by the
Weyl algebra An and the elements H−1

1 , . . . , H−1
n ∈ EndK(Pn) where

H1 := ∂1x1, . . . , Hn := ∂nxn.

Clearly, An =
⊗n

i=1 A1(i) ≃ A
⊗n
1 where A1(i) := K〈xi, ∂i, H

−1
i 〉 ≃ A1. The algebra An

contains all the integrations
∫

i
: Pn → Pn, p 7→

∫
p dxi, since

∫

i

= xiH
−1
i : xα 7→ (αi + 1)−1xix

α.
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In particular, the algebra An contains the algebra In := K〈x1, . . . , xn, ∂1, . . . , ∂n,
∫

1
, . . . ,

∫

n
〉

of polynomial integro-differential operators. Note that In =
⊗n

i=1 I1(i) ≃ I
⊗n
1 where I1(i) :=

K〈xi, ∂i,
∫

i
〉.

The paper proceeds as follows. In Section 2, two sets of defining relations are given for the
algebra In (Proposition 2.2); a canonical form is found for each element of In by showing that the
algebra In is a generalized Weyl algebra (Proposition 2.2.(2)); the Gelfand-Kirillov dimension of
the algebra In is 2n (Theorem 2.3).

In Section 3, a new equivalence relation, the ideal equivalence, on the class of algebras is
introduced: two algebras A and B are ideal equivalent if there exists a bijection f from the set
J (A) of all the ideals of the algebra A to the set J (B) of all the ideals of the algebra B such that,
for all a, b ∈ J (A),

f(a+ b) = f(a) + f(b), f(a ∩ b) = f(a) ∩ f(b), f(ab) = f(a)f(b).

The algebras In and An are ideal equivalent (Theorem 3.1). As a result, we have for free many
results for the ideals of In using similar known results for the ideals of An of [11]. Name just a
few:

• In is a prime, catenary algebra of classical Krull dimension n, and there is a unique maximal
ideal an of the algebra In.

• ab = ba and a2 = a for all a, b ∈ J (In).

• The lattice J (In) is distributive.

• Classifications of all the ideals and the prime ideals of the algebra In are given.

• The set J (In) is finite. Moreover, |J (In)| = dn where dn is the Dedekind number, and

2− n+
∑n

i=1 2
(ni) ≤ dn ≤ 22

n

.

• Pn is the only (up to isomorphism) faithful simple In-module.

The fact that certain rings of differential operators are catenary was proved by Brown, Goodearl
and Lenagan in [24].

In Section 4, it is proved that the factor algebra In/a is Noetherian iff the ideal a is maximal
(Proposition 4.1); and GK(In/a) = 2n for all the ideals a of In distinct from In (Lemma 4.2).

In Section 5, for the algebra In an involution ∗ is introduced such that ∂∗
i =

∫

i
,
∫ ∗

i
= ∂i, and

H∗
i = Hi, see (18). This means that the algebra In is ‘symmetrical’ with respect to derivations

and integrations. a∗ = a for all ideals a of the algebra In (Lemma 5.1.(1)). Each ideal of the
algebra In is an essential left and right submodule of In (Lemma 5.2.(2)). The group I∗n of units
of the algebra In is described:

I
∗
n = K∗ × (1 + an)

∗ ⊇ K∗ ×GL∞(K)⋉ · · ·⋉GL∞(K)
︸ ︷︷ ︸

2n−1 times

and its centre is K∗ (Theorem 5.6). For n = 1, the group I∗n is found explicitly, I∗1 ≃ K∗×GL∞(K)
(Corollary 5.7). The centre of the algebra In is K (Lemma 5.4.(2)). It is proved that, for a K-
algebra A, the algebra A⊗ In is prime iff the algebra A is prime (Corollary 5.3).

In Section 6, we prove that the weak (w.dim) dimension of the algebra In is n (Theorem 6.2).
Moreover, wdim(In/p) = n for all the prime ideals p ∈ Spec(In) (Corollary 6.4). Recall that for
each Noetherian ring its weak dimension coincides with its global dimension (in general, this is
wrong for non-Noetherian rings). In 1972, Roos proved that the global dimension of the Weyl
algebra An is n, [55]. This result was generalized by Chase [28] to the ring of differential operators
on a smooth affine variety. Goodearl obtained formulae for the global dimension of certain rings
of differential operators [36], [37] (see also Levasseur [48], and van den Bergh [61]). Holland and
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Stafford found the global dimension of the ring of differential operators on a rational projective
curve [35] (see also Smith and Stafford [59]).

Many classical algebras are tensor product of algebras (eg, Pn = P⊗n
1 , An = A⊗n

1 , An = A
⊗n
1 ,

In = I
⊗n
1 , etc). In general, it is difficult to find the dimension d(A ⊗ B) of the tensor product

of two algebras (even to answer the question of when it is finite). In [33], it was pointed out
by Eilenberg, Rosenberg and Zelinsky that ‘the questions concerning the dimension of the tensor
product of two algebras have turned out to be surprisingly difficult.’ An answer is known if one of
the algebras is a polynomial algebra:

Hilbert′s Syzygy Theorem : d(Pn ⊗B) = d(Pn) + d(B) = n+ d(B),

where d = wdim, gldim. In [8], [9], an analogue of Hilbert’s Syzygy Theorem was established for
certain generalized Weyl algebras A (eg, A = An, the Weyl algebra):

l.gldim(A⊗B) = l.gldim(A) + l.gldim(B)

for all left Noetherian finitely generated algebras B (K is an algebraically closed uncountable field
of characteristic zero). In this paper, a similar result is proved for the algebra In and for all its prime
factor algebras but for the weak dimension (Theorem 6.5). It is shown that n ≤ gldim(In) ≤ 2n
(Proposition 6.7).

In Section 7, we prove that the weak dimension of the Jacobian algebra An is n (Theorem
7.2), and wdim(An/p) = n for all the prime ideals p ∈ Spec(An) (Corollary 7.3). An analogue
of Hilbert’s Syzygy Theorem is proved for the Jacobian algebra An and its prime factor algebras
(Theorem 7.4). It is shown that n ≤ gldim(An) ≤ 2n (Proposition 7.5).

The algebra I1 = A1〈
∫
〉 is an example of the Rota-Baxter algebra. The latter appeared in

the work of Baxter [21] and further explored by Rota [56, 57], Cartier [25], and Atkinson [4], and
more recently by many others: Aguiar, Moreira [1]; Cassidy, Guo, Keigher, Sit, Ebrahimi-Fard
[26], [32]; Connes, Kreimer, Marcoli [29], [30], name just a few. From the angle of the Rota-Baxter
algebras the algebra I1 was studied by Regensburger, Rosenkranz and Middeke [54].

2 Defining relations for the algebra In

In this section defining relations are found for the algebra In and it is proved that the algebra In

is a generalized Weyl algebra (Proposition 2.2) of Gelfand-Kirillov dimension 2n (Theorem 2.3)
which is neither left nor right Noetherian (Lemma 2.4).

Generalized Weyl Algebras. Let D be a ring, σ = (σ1, ..., σn) be an n-tuple of commuting
ring endomorphisms of D, and a = (a1, ..., an) be an n-tuple of elements of D. The generalized
Weyl algebra A = D(σ, a) (briefly, GWA) of degree n is a ring generated by D and 2n elements
x1, ..., xn, y1, ..., yn subject to the defining relations [6], [7]:

yixi = ai, xiyi = σi(ai),

xid = σi(d)xi, dyi = yiσi(d), d ∈ D,

[xi, xj ] = [yi, yj ] = [xi, yj] = 0, i 6= j,

where [x, y] = xy− yx. We say that a and σ are the sets of defining elements and endomorphisms
of A respectively. For a vector k = (k1, ..., kn) ∈ Zn, let vk = vk1

(1) · · · vkn
(n) where, for 1 ≤

i ≤ n and m ≥ 0: vm(i) = xm
i , v−m(i) = ymi , v0(i) = 1. It follows from the definition that

A =
⊕

k∈Zn Ak is a Z
n-graded algebra (AkAe ⊆ Ak+e, for all k, e ∈ Z

n), where Ak = vk,−Dvk,+;
vk,+ :=

∏

ki>0 vki
(i) and vk,− =

∏

ki<0 vki
(i). The tensor product (over the ground field) A⊗A′

of generalized Weyl algebras of degree n and n′ respectively is a GWA of degree n+ n′:

A⊗ A′ = D ⊗D′((τ, τ ′), (a, a′)).
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Let Pn be a polynomial algebra K[H1, . . . , Hn] in n indeterminates and let σ = (σ1, ..., σn) be
the n-tuple of commuting automorphisms of Pn such that σi(Hi) = Hi − 1 and σi(Hj) = Hj , for
i 6= j. The algebra homomorphism

An → Pn((σ1, ..., σn), (H1, . . . , Hn)), xi 7→ xi, ∂i 7→ yi, i = 1, . . . , n, (1)

is an isomorphism. We identify the Weyl algebra An with the GWA above via this isomorphism.
Note that Hi = ∂ixi = xi∂i + 1.

It is an experimental fact that many small quantum algebras/groups are GWAs. More about
GWAs and their generalizations the interested reader can find in [2, 3, 12, 15, 16, 17, 18, 19, 20,
22, 27, 34, 40, 42, 43, 44, 45, 50, 51, 52, 53, 58, 60].

Suppose that A is a K-algebra that admits two elements x and y with yx = 1. The element
xy ∈ A is an idempotent, (xy)2 = xy, and so the set xyAxy is a K-algebra where xy is its identity
element. Consider the linear maps σ = σx,y, τ = τx,y : A → A which are defined as follows

σ(a) = xay, τ(a) = yax. (2)

Then τσ = idA and στ(a) = xy · a · xy, and so the map σ is an algebra monomorphism with
σ(1) = xy and

A = σ(A)
⊕

ker(τ). (3)

In more details, σ(A) ∩ ker(τ) = 0 since τσ = idA. Since (στ)2 = στ , we have the equality
A = im(στ)

⊕
im(1 − στ). Clearly, im(στ) ⊆ im(σ) and im(1 − στ) ⊆ ker(τ) as τσ = idA. Then

A = im(σ) + ker(τ), i.e. (3) holds. In general, the map τ is not an algebra endomorphism and
its kernel is not an ideal of the algebra A. Suppose that the algebra A contains a subalgebra D
such that σ(D) ⊆ D (and so xy = σ(1) ∈ D), and that the algebra A is generated by D, x, and
y. Since yx = 1, we have xiDD ≃ D and DDyi ≃ D. It follows from the relations:

yx = 1, xy = σ(1),

xd = σ(d)x, dy = yσ(d), d ∈ D,

that A =
∑

i≥1 y
iD +

∑

i≥0 Dxi. Suppose, in addition, that the sum is a direct one. Then the
algebra A is the GWA D(σ, 1).

Lemma 2.1 [14] Keep the assumptions as above, i.e. A = D〈x, y〉 =
⊕

i≥1 y
iD

⊕⊕

i≥0 Dxi and
σ(D) ⊆ D. Then A = D(σ, 1). If, in addition, τ(D) ⊆ D and the element xy is central in D.
Then Dxi = xiD and Dyi = yiD for all i ≥ 1.

Definition, [13]. The algebra Sn of one-sided inverses of Pn is an algebra generated over a field
K by 2n elements x1, . . . , xn, yn, . . . , yn that satisfy the defining relations:

y1x1 = · · · = ynxn = 1, [xi, yj] = [xi, xj ] = [yi, yj ] = 0 for all i 6= j,

where [a, b] := ab− ba is the algebra commutator of elements a and b.

By the very definition, the algebra Sn ≃ S
⊗n
1 is obtained from the polynomial algebra Pn by

adding commuting, left (but not two-sided) inverses of its canonical generators. The algebra S1

is a well-known primitive algebra [39], p. 35, Example 2. Over the field C of complex numbers,
the completion of the algebra S1 is the Toeplitz algebra which is the C∗-algebra generated by
a unilateral shift on the Hilbert space l2(N) (note that y1 = x∗

1). The Toeplitz algebra is the
universal C∗-algebra generated by a proper isometry.

The Jacobian algebra An contains the algebra Sn where

y1 := H−1
1 ∂1, . . . , yn := H−1

n ∂n.
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Moreover, the algebra An is the subalgebra of EndK(Pn) generated by the algebra Sn and the 2n
invertible elements H±1

1 , . . . , H±1
n of EndK(Pn).

The algebras Sn and An are much more better understood than the algebra In. We will see
that the three classes of algebras have much in common. In particular, they are GWAs. Moreover,
we will deduce many results for the algebra In from known results for the algebras Sn and An in
[11], [13], [14].

The algebra Sn is a GWA. Clearly, Sn = S1(1) ⊗ · · · ⊗ S1(n) ≃ S
⊗n
1 where S1(i) :=

K〈xi, yi | yixi = 1〉 ≃ S1 and Sn =
⊕

α,β∈Nn Kxαyβ where xα := xα1

1 · · ·xαn
n , α = (α1, . . . , αn),

yβ := yβ1

1 · · · yβn
n , β = (β1, . . . , βn). In particular, the algebra Sn contains two polynomial subalge-

bras Pn and Qn := K[y1, . . . , yn] and is equal, as a vector space, to their tensor product Pn ⊗Qn.
Note that also the Weyl algebra An is a tensor product (as a vector space) Pn ⊗K[∂1, . . . , ∂n] of
its two polynomial subalgebras.

When n = 1, we usually drop the subscript ‘1’ if this does not lead to confusion (we do the
same also for the algebras A1, A1 and I1). So, S1 = K〈x, y | yx = 1〉 =

⊕

i,j≥0 Kxiyj . For each

natural number d ≥ 1, let Md(K) :=
⊕d−1

i,j=0 KEij be the algebra of d-dimensional matrices where
{Eij} are the matrix units, and

M∞(K) := lim
−→

Md(K) =
⊕

i,j∈N

KEij

be the algebra (without 1) of infinite dimensional matrices. The algebraM∞(K) =
⊕

k∈Z
M∞(K)k

is Z-graded where M∞(K)k :=
⊕

i−j=k KEij (M∞(K)kM∞(K)l ⊆ M∞(K)k+l for all k, l ∈ Z).
The algebra S1 contains the ideal F :=

⊕

i,j∈N
KEij , where

Eij := xiyj − xi+1yj+1, i, j ≥ 0. (4)

Note that Eij = xiE00y
j and E00 = 1−xy. For all natural numbers i, j, k, and l, EijEkl = δjkEil

where δjk is the Kronecker delta function. The ideal F is an algebra (without 1) isomorphic to
the algebra M∞(K) via Eij 7→ Eij . In particular, the algebra F =

⊕

k∈Z
F1,k is Z-graded where

F1,k :=
⊕

i−j=k KEij (F1,kF1,l ⊆ F1,k+l for all k, l ∈ Z). For all i, j ≥ 0,

xEij = Ei+1,j , yEij = Ei−1,j , Eijx = Ei,j−1, Eijy = Ei,j+1, (5)

where E−1,j := 0 and Ei,−1 := 0.

xEi,j = Ei+1,j+1x, Eijy = yEi+1,j+1. (6)

S1 = K ⊕ xK[x]⊕ yK[y]⊕ F, (7)

the direct sum of vector spaces. Then

S1/F ≃ K[x, x−1] =: L1, x 7→ x, y 7→ x−1, (8)

since yx = 1, xy = 1− E00 and E00 ∈ F .

The algebra Sn =
⊗n

i=1 S1(i) contains the ideal

Fn := F⊗n =
⊕

α,β∈Nn

KEαβ, where Eαβ :=

n∏

i=1

Eαiβi
(i), Eαiβi

(i) := xαi

i yβi

i − xαi+1
i yβi+1

i .

Note that EαβEγρ = δβγEαρ for all elements α, β, γ, ρ ∈ Nn where δβγ is the Kronecker delta
function.

Using Lemma 2.1, we can show that the algebra S1(i) is the GWA F1,0(i)(σi, 1) where F1,0(i) :=
K

⊕⊕

k≥0 KEkk(i) and σi(a) = xiayi (moreover, σi(1) = 1−E00(i) and σi(Ekk(i)) = Ek+1,k+1(i)).

Therefore, Sn =
⊗n

i=1 F1,0(i)(σi, 1) = Fn,0((σ1, . . . , σn), (1, . . . , 1)) is a GWA (Lemma 3.3, [14])
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where Fn,0 :=
⊗n

i=1 F1,0(i). The algebra Fn,0 is a commutative, non-finitely generated, non-
Noetherian algebra, it contains the direct sum

⊕

α∈Nn KEαα of ideals, hence Fn,0 is not a prime
algebra. The algebra Sn =

⊕

α∈Zn Sn,α is a Zn-graded algebra where Sn,α = Fn,0vα = vαFn,0 for

all α ∈ Zn where vα :=
∏n

i=1 vαi
(i) and vj(i) :=

{

xj
i if j ≥ 0,

y−j
i if j < 0.

The map τi : Sn → Sn, a 7→ yiaxi, is not an algebra endomorphism but its restriction
to the subalgebra Fn,0 of Sn is a K-algebra epimorphism, τi(Fn,0) = Fn,0, with ker(τi|Fn,0

) =

KE00(i)
⊗⊗

j 6=i F1,0(j). For all j ∈ N and d ∈ Fn,0, dx
j
i = xj

i τ
j
i (d) and yji d = τ ji (d)y

j
i .

The algebra In := K〈∂1, . . . , ∂n,
∫

1, . . . ,
∫

n
〉 of integro-differential operators with constant coef-

ficients is canonically isomorphic to the algebra Sn:

Sn → In, xi 7→

∫

i

, yi 7→ ∂i, i = 1, . . . , n. (9)

For n = 1 this is obvious since the map above is a well-defined epimorphism (since ∂
∫
= 1) which

must be an isomorphism as the algebra I1 is non-commutative but any proper factor algebra of
S1 is commutative [13]. Then the general case follows since Sn ≃ S

⊗n
1 and In ≃ I⊗n

1 .
The Jacobian algebra An is a GWA. The Jacobian algebraAn = Dn((σ1, . . . , σn), (1, . . . , 1))

is a GWA (Lemma 3.4, [14]) where Dn :=
⊗n

i=1 D1(i),

D1(i) = L−
1 (i)

⊕

L+
1 (i)

⊕

F1,0(i), F1,0(i) :=
⊕

s≥0

KEss(i),

L−
1 (i) :=

⊕

s,t≥1

K
1

(Hi − s)t1
, (Hi − s)1 := Hi − s+ Es−1,s−1(i),

L+
1 (i) := K[H±1

i , (Hi + 1)−1, (Hi + 2)−1, . . .],

and σi(a) = xiayi. In more detail, for all natural numbers s ≥ 0 and t ≥ 1,

σi(Ess(i)) = Es+1,s+1(i), σi((Hi − t)1) = (Hi − t− 1)1σi(1),

σi(Hi) = Hi − 1 = (Hi − 1)σi(1) = (Hi − 1)1σi(1).

The algebra Dn is a commutative, non-finitely generated, non-Noetherian algebra, it contains the
direct sum

⊕

α∈Nn KEαα of ideals (and so Dn is not a prime algebra). Note that HiEss(i) =
Ess(i)Hi = (s + 1)Ess(i). Clearly, An =

⊗n
i=1 A1(i) =

⊗n
i=1 D1(i)(σi, 1). The algebra An =

⊕

α∈Zn An,α is a Zn-graded algebra where An,α = Dnvα = vαDn, vα :=
∏n

i=1 vαi
(i) and

vj(i) :=

{

xj
i if j ≥ 0,

y−j
i if j < 0.

(10)

The map τi : An → An, a 7→ yiaxi, is not an algebra endomorphism but its restriction to the
subalgebraDn of An is aK-algebra epimorphism, τi(Dn) = Dn, ker(τi|Dn

) = KE00(i)
⊗⊗

j 6=i D1(j).
In more detail, for a, b ∈ D1,

τ(a)τ(b) = ya(1− E00)bx = τ(ab)− yaE00bx = τ(ab),

since aE00b ∈ KE00 and yE00 = 0. For all j ∈ N and d ∈ Dn, dx
j
i = xj

i τ
j
i (d) and yji d = τ ji (d)y

j
i .

Indeed, when n = 1, xτ(d) = (1− E00)dx = dx− E00dx = dx since E00d ∈ KE00 and E00x = 0.
The algebra In is a GWA. Since xi =

∫

i
Hi, the algebra In is generated by the elements

{∂i, Hi,
∫

i
| i = 1, . . . , n}, and In =

⊕n
i=1 I1(i) where I1(i) := K〈∂i, Hi,

∫

i
〉 = K〈∂i, xi,

∫

i
〉 ≃ I1.

By (9), when n = 1 the following elements of the algebra I1 = K〈∂,H,
∫
〉,

eij :=

∫ i

∂j −

∫ i+1

∂j+1, i, j ∈ N, (11)

6



satisfy the relations: eijekl = δjkeil. Note that eij =
∫ i

e00∂
j . The matrices of the linear maps

eij ∈ EndK(K[x]) with respect to the basis {x[s] := xs

s! }s∈N of the polynomial algebra K[x] are
the elementary matrices, i.e.

eij ∗ x
[s] =

{

x[i] if j = s,

0 if j 6= s.

It follows that

eij =
j!

i!
Eij , (12)

Keij = KEij , and F =
⊕

i,j≥0 Keij ≃ M∞(K). Moreover, Fn =
⊕

α,β∈Nn Keαβ where eαβ :=
∏n

i=1 eαiβi
(i) and eαiβi

(i) :=
∫ αi

i
∂βi

i −
∫ αi+1

i
∂βi+1
i .

The next proposition gives a finite set of defining relations for the algebra In and shows that
the algebra In is a GWA (and so we have another set of defining relations for the algebra In).

Proposition 2.2 1. The algebra In is generated by the elements {∂i,
∫

i
, Hi | i = 1, . . . , n} that

satisfy the defining relations:

∀i : ∂i

∫

i

= 1, [Hi,

∫

i

] =

∫

i

, [Hi, ∂i] = −∂i, Hi(1−

∫

i

∂i) = (1−

∫

i

∂i)Hi = 1−

∫

i

∂i,

∀i 6= j : aiaj = ajai where ak ∈ {∂k,

∫

k

, Hk}.

2. The algebra In =
⊗n

i=1 D1(i)(σi, 1) = Dn((σ1, . . . , σn), (1, . . . , 1)) is a GWA (
∫

i
↔ xi,

∂i ↔ yi, Hi ↔ Hi) where Dn :=
⊗n

i=1 D1(i), D1(i) := K[Hi]
⊕⊕

j≥0 Kejj(i), Hiejj(i) =
ejj(i)Hi = (j + 1)ejj(i), and the K-algebra endomorphisms σi of Dn are given by the rule
σi(a) :=

∫

i
a∂i (σi(Hi) = Hi − 1, σiejj(i)) = ej+1,j+1(i)). Moreover, the algebra In =

⊕

α∈Zn In,α is Zn-graded where In,α = Dnvα = vαDn for all α ∈ Zn where vα :=
∏n

i=1 vαi
(i)

and vj(i) :=







∫ j

i
if j > 0,

1 if j = 0.

∂−j
i if j < 0.

3. (The canonical basis for the algebra In) In =
⊕

α∈Zn In,α and, for all α ∈ Z
n, In,α =

vα,+Dnvα,− ≃ Dn (vα,+dvα,− ↔ d) where vα,+ :=
∏

αi>0 vαi
(i) and vα,− :=

∏

αi<0 vαi
(i).

So, each element a ∈ In is a unique finite sum a =
∑

α∈Zn vα,+aαvα,− for unique elements
aα ∈ Dn.

Proof. It suffices to prove the statements for n = 1 since In =
⊗n

i=1 I1(i). So, let n = 1 and I′1

be an algebra generated by symbols ∂,
∫
, and H that satisfy the defining relations of statement 1.

The algebra I1 is generated by the elements ∂,
∫
, and H ; and they satisfy the defining relations of

statement 1 as we can easily verify. Therefore, there is the natural algebra epimorphism I′1 → I1

given by the rule: ∂ 7→ ∂,
∫
7→

∫
, H 7→ H . It follows from the relations of statement 1 and from

the equalities eij =

{∫ i−j
ejj if i ≥ j,

eii∂
j−i if i < j,

that

I
′
1 =

∑

i≥1

D′
1∂

i +D′
1 +

∑

i≥1

∫ i

D′
1 =

∑

i≥1

∂iD′
1 +D′

1 +
∑

i≥1

D′
1

∫ i

where D′
1 := K〈H〉+

∑

i≥0 Keii. Since ∂
∫
= 1, the left D′

1-modules D′
1 and D′

1∂
i are isomorphic,

and the right D′
1-modules

∫ i
D′

1 and D′
1 are isomorphic. Using the Z-grading of the Jacobian

algebra A1 and the fact that I1 ⊆ A1, we have

I1 =
⊕

i≥1

D1∂
i
⊕

D1

⊕⊕

i≥1

∫ i

D1 =
⊕

i≥1

∂iD1

⊕

D1

⊕⊕

i≥1

D1

∫ i
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where D1 = K[H ]
⊕⊕

i≥0 Keii = K[H ]
⊕⊕

i≥0 KEii since Keii = KEii. Note that the left

D1-modules D1 and D1∂
i are isomorphic and the right D1-modules D1 and

∫ i
D1 are isomorphic

since ∂
∫
= 1. This implies that the sum for I′1 above is a direct one. Therefore, I′1 ≃ I1 and the

relations in statement 1 are defining relations for the algebra I1 and D′
1 = D1. The condition of

Lemma 2.1 hold, and so I1 = D1(σ, 1) with D1

∫ i
=

∫ i
D1 and D1∂

i = ∂iD1 for all i ≥ 1. The
proof of statements 1 and 2 of the proposition is complete.

Statement 3 follows from statement 2 and the fact that, for all α ∈ Zn, the linear map
In,α → Dn, b 7→ uα,−buα,+, is a bijection since uα,−vα,+ = 1 and vα,−uα,+ = 1 where uα,− :=
∏

αi>0 v−αi
(i) and uα,+ :=

∏

αi<0 v−αi
(i). �

Definition. For each element a ∈ In, the unique sum for a in statement 3 of Proposition 2.2 is
called the canonical form of a.

The map τi : In → In, a 7→ ∂ia
∫

i
, is not an algebra endomorphism but its restriction to the sub-

algebraDn of In is aK-algebra epimorphism, τi(Dn) = Dn with ker(τi|Dn
) = Ke00(i)

⊕⊕

j 6=i D1(j).
In more detail, for n = 1 and a, b ∈ D1,

τ(a)τ(b) = ∂a(1− e00)b

∫

= τ(ab)− ∂ae00b

∫

= τ(ab)

since ae00b ∈ Ke00 and ∂e00 = 0. For all j ∈ N and d ∈ Dn, d
∫ j

i
=

∫ j

i
τ ji (d) and ∂j

i d = τ ji (d)∂
j
i .

Indeed, for n = 1,
∫
τ(d) = (1 − e00)d

∫
= d

∫
−e00d

∫
= d

∫
since e00d ∈ Ke00 and e00

∫
= 0.

Note that

τi(Hj) = Hj + δij and τi(est(j)) =

{

es−1,t−1(i) if i = j,

est(j) if i 6= j.
(13)

It follows that
⋂n

i=1 ker(τi|Dn
) = K

∏n
i=1 e00(i) = Ke00 and

⋂n
i=1 ker(τi|Dn

− 1) = K.
For the definition and properties of the Gelfand-Kirillov dimension GK the reader is referred

to [47] and [49].

Theorem 2.3 The Gelfand-Kirillov dimension GK(In) of the algebra In is 2n.

Proof. Since An ⊆ In, we have the inequality 2n = GK(An) ≤ GK(In). To prove the reverse
inequality let us consider the standard filtration {In,i}i∈N of the algebra In with respect to the
set of generators {∂i, Hi,

∫

i
| i = 1, . . . , n} of the algebra In. By Proposition 2.3, In,i ⊆ I′n,i :=

⊕

|α|≤i vαDn,i where Dn,i :=
⊗n

j=1 D1,i(j) and D1,i(j) :=
⊕i

s=0 KHs
j

⊕⊕i
t=0 Kett(j). Then

dim(In,i) ≤ dim(I′n,i) ≤ (2i+ 1)n(2i+ 2)n, and so GK (In) ≤ 2n, as required. �

Lemma 2.4 The algebra In is neither left nor right Noetherian. Moreover, it contains infinite
direct sums of nonzero left (resp. right) ideals.

Proof. Since In ≃ I
⊗n
1 , it suffices to prove the lemma for n = 1. The ideal F =

⊕

i,j≥0 KEij of
the algebra I1 is the infinite direct sum

⊕

j≥0(
⊕

i≥0 KEij) (resp.
⊕

i≥0(
⊕

j≥0 KEij)) of nonzero
left (resp. right) ideals, and the statements follow. �

3 Ideals of the algebra In

In this section, we prove that the restriction map (Theorem 3.1) from the set of ideals J (An) of
the algebra An to the set of ideals J (In) of the algebra In is a bijection that respects the three
operations on ideals: sum, intersection and product. As a consequence, we obtain many results
for the ideals of the algebra In using similar results for the ideals of the algebra An in [11], see
Corollary 3.3 and Corollary 3.4: a classification of all the ideals of In (there are only finitely many
of them) and a classification of prime ideals of In, etc.
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Definition. Let A and B be algebras, and let J (A) and J (B) be their lattices of ideals. We
say that a bijection f : J (A) → J (B) is an isomorphism if f(a ∗ b) = f(a) ∗ f(b) for ∗ ∈ {+, ·,∩},
and in this case we say that the algebras A and B are ideal equivalent. The ideal equivalence is
an equivalence relation on the class of algebras.

The next theorem shows that the algebras An and In are ideal equivalent.

Theorem 3.1 The restriction map J (An) → J (In), a 7→ ar := a ∩ In, is an isomorphism (i.e.
(a1 ∗ a2)r = ar1 ∗ a

r
2 for ∗ ∈ {+, ·,∩}) and its inverse is the extension map b 7→ be := AnbAn.

Proof. The theorem follows from Theorem 3.2. �

Recall that Fn,0 ⊂ In ⊂ An ⊂ EndK(Pn). The subset of J (Fn,0), J (Fn,0)σ,τ := {b ∈
J (Fn,0) |σi(b) ⊆ b, τi(b) ⊆ b for all i = 1, . . . , n}, is closed under addition, multiplication and
intersection of ideals where σi(a) =

∫

i
a∂i and τi(a) = ∂ia

∫

i
(recall that the maps σi, τi : Fn,0 →

Fn,0 are K-algebra homomorphisms; τi(1) = 1 but σi(1) = 1− e00(i)).

Theorem 3.2 1. The restriction map J (In) → J (Fn,0)σ,τ , a 7→ ar := a ∩ Fn,0, is an iso-
morphism (i.e. (a1 ∗ a2)

r = ar1 ∗ a
r
2 for ∗ ∈ {+, ·,∩}) and its inverse is the extension map

b 7→ be := InbIn.

2. The restriction map J (An) → J (Fn,0)σ,τ , a 7→ ar := a ∩ Fn,0, is an isomorphism (i.e.
(a1 ∗ a2)r = ar1 ∗ a

r
2 for ∗ ∈ {+, ·,∩}) and its inverse is the extension map b 7→ be := AnbAn.

The proof of Theorem 3.2 is given at the end of this section. Now, we obtain some consequences
of Theorem 3.1.

The next corollary shows that the ideal theory of In is ‘very arithmetic.’ Let Bn be the set of
all functions f : {1, 2, . . . , n} → {0, 1}. For each function f ∈ Bn, If := If(1) ⊗ · · · ⊗ If(n) is the
ideal of In where I0 := F and I1 := I1. Let Cn be the set of all subsets of Bn all distinct elements of
which are incomparable (two distinct elements f and g of Bn are incomparable if neither f(i) ≤ g(i)
nor f(i) ≥ g(i) for all i). For each C ∈ Cn, let IC :=

∑

f∈C If , the ideal of In. The number dn of
elements in the set Cn is called the Dedekind number. It appeared in the paper of Dedekind [31].
An asymptotic of the Dedekind numbers was found by Korshunov [46].

Corollary 3.3 1. The algebra In is a prime algebra.

2. The set of height one prime ideals of the algebra In is {p1 := F ⊗ In−1, p1 := I1 ⊗ F ⊗
In−2, . . . , pn := In−1 ⊗ F}.

3. Each ideal of the algebra In is an idempotent ideal (a2 = a).

4. The ideals of the algebra In commute (ab = ba).

5. The lattice J (In) of ideals of the algebra In is distributive.

6. The classical Krull dimension cl.Kdim(In) of the algebra In is n.

7. ab = a ∩ b for all ideals a and b of the algebra In.

8. The ideal an := p1 + · · · + pn is the largest (hence, the only maximal) ideal of In distinct
from In, and Fn = F⊗n =

⋂n
i=1 pi is the smallest nonzero ideal of In.

9. (A classification of ideals of In) The map Cn → J (In), C 7→ IC :=
∑

f∈C If is a bijection
where I∅ := 0. The number of ideals of In is the Dedekind number dn. Moreover, 2 − n +
∑n

i=1 2
(ni) ≤ dn ≤ 22

n

. For n = 1, F is the unique proper ideal of the algebra I1.

10. (A classification of prime ideals of In) Let Subn be the set of all subsets of {1, . . . , n}. The
map Subn → Spec(In), I 7→ pI :=

∑

i∈I pi, ∅ 7→ 0, is a bijection, i.e. any nonzero prime
ideal of In is a unique sum of primes of height 1; |Spec(In)| = 2n; the height of pI is |I|; and
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11. pI ⊂ pJ iff I ⊂ J .

Proof. By Theorem 3.1, the statements hold for the algebra In since the same statements hold
for the algebra An, and below references are given for their proofs in [11].

1. Corollary 2.7.(5).
2. Corollary 3.5.
3. Theorem 3.1.(2).
4. Corollary 3.10.(3).
5. Theorem 3.11.
6. Corollary 3.7.
7. Corollary 3.10.(3).
8. Corollary 2.7.(4,7).
9. Theorem 3.1.
10. Corollary 3.5.
11. Corollary 3.6. �

For each ideal a of In, Min(a) denotes the set of minimal primes over a. Two distinct prime
ideals p and q are called incomparable if neither p ⊆ q nor p ⊇ q. The algebras In have beautiful
ideal theory as the following unique factorization properties demonstrate.

Corollary 3.4 1. Each ideal a of In such that a 6= In is a unique product of incompara-
ble primes, i.e. if a = q1 · · · qs = r1 · · · rt are two such products then s = t and q1 =
rσ(1), . . . , qs = rσ(s) for a permutation σ of {1, . . . , n}.

2. Each ideal a of In such that a 6= In is a unique intersection of incomparable primes, i.e. if
a = q1 ∩ · · · ∩ qs = r1 ∩ · · · ∩ rt are two such intersections then s = t and q1 = rσ(1), . . . , qs =
rσ(s) for a permutation σ of {1, . . . , n}.

3. For each ideal a of In such that a 6= In, the sets of incomparable primes in statements 1 and
2 are the same, and so a = q1 · · · qs = q1 ∩ · · · ∩ qs.

4. The ideals q1, . . . , qs in statement 3 are the minimal primes of a, and so a =
∏

p∈Min(a) p =
∩p∈Min(a)p.

Proof. The same statements are true for the algebra An (Theorem 3.8, [11]). Now, the corollary
follows from Theorem 3.1. �

The next corollary gives all decompositions of an ideal as a product or intersection of ideals.

Corollary 3.5 Let a be an ideal of In, and M be the minimal elements with respect to inclusion
of the set of minimal primes of a set of ideals a1, . . . , ak of In. Then

1. a = a1 · · · ak iff Min(a) = M.

2. a = a1 ∩ · · · ∩ ak iff Min(a) = M.

Proof. The same statements are true for the algebra An (Theorem 3.12, [11]), and the corollary
follows from Theorem 3.1. �

This is a rare example of a noncommutative algebra of classical Krull dimension > 1 where
one has a complete picture of decompositions of ideals. Recall that a ring R of finite classical
Krull dimension is called catenary if, for each pair of prime ideals p and q with p ⊆ q, all maximal
chains of prime ideals, p0 = p ⊂ p1 ⊂ · · · ⊂ pl = q, have the same length l.

Corollary 3.6 The algebra In is catenary.

Proof. This follows from Corollary 3.3.(10, 11). �
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Corollary 3.7 The same statements (with obvious modifications) of Corollaries 3.3 and 3.4 hold
for the ideals J (Fn,0)σ,τ of the algebra Fn,0 rather than In (we leave it to the reader to formulate
them).

Proposition 3.8 The polynomial algebra Pn is the only (up to isomorphism) faithful simple In-
module.

Proof. The In-module Pn is faithful (as In ⊂ EndK(Pn)) and simple since the An-module Pn

is simple and An ⊂ In. Let M be a faithful simple In-module. Then FnM 6= 0, i.e. e0βm 6= 0
for some elements β ∈ Nn and m ∈ M . The In-module Pn ≃ In/

∑n
i=1 In∂i is simple. Therefore,

the In-module epimorphism Pn → M = Ine0βm =
∑

α∈Nn Keαβm, 1 7→ e0βm, is an isomorphism.
The proof of the proposition is complete. �

For a ring R and its element r ∈ R, ad(r) : s 7→ [r, s] := rs− sr is the inner derivation of the
ring R associated with the element r.

The proof of Theorem 3.2. We split the proof of Theorem 3.2 into several statements
(which are interesting on their own) to make the proof clearer.

The algebraDn is the zero component of the Zn-graded algebra In = Dn((σ1, . . . , σn), (1, . . . , 1)),
hence σi(Dn) ⊆ Dn and τi(Dn) ⊆ Dn for all i where σi(a) =

∫

i
a∂i and τi(a) = ∂ia

∫

i
. Let

J (Dn)σ,τ := {b ∈ J (Dn) |σi(b) ⊆ b, τi(b) ⊆ b for all i = 1, . . . , n}. Similarly, the algebra Dn is the
zero component of the Zn-graded algebra An = Dn((σ1, . . . , σn), (1, . . . , 1)), hence σi(Dn) ⊆ Dn

and τi(Dn) ⊆ Dn for all i where σi(a) = xiayi and τi(a) = yiaxi. Let J (Dn)σ,τ := {b ∈
J (Dn) |σi(b) ⊆ b, τi(b) ⊆ b for all i = 1, . . . , n}.

Theorem 3.9 1. For each ideal a of the algebra In, a =
⊕

α∈Zn vα,+a
rvα,− where ar := a ∩

Dn ∈ J (Dn)σ,τ and, for each ideal b ∈ J (Dn)σ,τ , b
e := InbIn =

⊕

α∈Zn vα,+bvα,− where
vα,+ :=

∏

αi>0 vαi
(i), vα,− :=

∏

αi<0 vαi
(i), and vj(i) is defined in Proposition 2.2.(2).

2. For each ideal a of the algebra An, a =
⊕

α∈Zn vα,+a
rvα,− where ar := a ∩ Dn ∈ J (Dn)σ,τ

and, for each ideal b ∈ J (Dn)σ,τ , b
e := AnbAn =

⊕

α∈Zn vα,+bvα,− where vα,± are as above
but the elements vj(i) are defined in (10).

Proof. 1. Let a be an ideal of the algebra In. The algebra In =
⊕

α∈Zn In,α is a Zn-graded
algebra with In,α :=

⋂n
i=1 ker(ad(Hi) − αi) for all α ∈ Zn. Then a is a homogeneous ideal,

that is a =
⊕

α∈Zn aα where aα := a ∩ In,α. The ideal a0 := a ∩ Dn = ar of the algebra
Dn belongs to the set J (Dn)σ,τ since σi(a0) =

∫

i
a0∂i ⊆ a0 and τi(a0) = ∂ia0

∫

i
⊆ a0 for all

i = 1, . . . , n. By Proposition 2.2.(2), aα = vα,+bαvα,− for some ideal bα of the algebra Dn:
aα = DnaαDn = Dnvα,+bαvα,−Dn = vα,+τα,+(Dn)bατα,−(Dn)vα,− = vα,+DnbαDnvα,− since
τα,±(Dn) = Dn where τα,+ :=

∏

αi>0 τi and τα,− :=
∏

αi<0 τi. Let

uα,− :=
∏

αi>0

v−αi
(i), uα,+ :=

∏

αi<0

v−αi
(i). (14)

The ideal bα is unique since vα,+bαvα,− = vα,+b
′
αvα,− implies

bα = 1 · bα · 1 = uα,−vα,+bαvα,−uα,+ = uα,−vα,+b
′
αvα,−uα,+ = 1 · b′α · 1 = b′α.

Moreover, bα = a0 for all α ∈ Zn since a0 ⊇ uα,−an,αuα,+ = uα,−vα,+bαvα,−uα,+ = 1 ·bα ·1 = bα.
On the other hand, an,α ⊇ vα,+a0vα,−, and so a0 ⊆ bα.

Let b ∈ J (Dn)σ,τ . Then ber = b since

b ⊆ ber = (InbIn)
r =

∑

α∈Zn

In,αbIn,−α

=
∑

α∈Zn

vαDnbDnv−α (Proposition 2.2.(2))

=
∑

α∈Zn

σα,+τα,−(b)vαv−α ⊆ bDn = b,
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where σα,+ :=
∏

αi>0 σi. Therefore, b
e =

⊕

α∈Zn vα,+bvα,−, by the first part of statement 1.
2. Repeat the proof of statement 1 replacing (In, Dn) by (An,Dn) and making obvious modi-

fications. �

For each function f ∈ Bn, let

ff := ff(1) ⊗ · · · ⊗ ff(n) where f0 := F1,0, f1 := F1,0;

df := df(1) ⊗ · · · ⊗ df(n) where d0 := F1,0, d1 := D1;

d′f := d′f(1) ⊗ · · · ⊗ d′f(n) where d′0 := F1,0, d′1 := D1.

Note that ff ∈ J (Fn,0)σ,τ , df ∈ J (Dn)σ,τ , and d′f ∈ J (Dn)σ,τ .

Lemma 3.10 1. The map Cn → J (Fn,0)σ,τ , C 7→ fC :=
∑

f∈C ff , is a bijection where f∅ := 0.

2. The map Cn → J (Dn)σ,τ , C 7→ dC :=
∑

f∈C df , is a bijection where d∅ := 0.

3. The map Cn → J (Dn)σ,τ , C 7→ d′C :=
∑

f∈C d′f , is a bijection where d′∅ := 0.

Proof. 1. It follows from Fn,0 =
⊗n

i=1(K+
∑

j∈N
Kejj(i)), σi(ejj(i)) = ej+1,j+1(i), τi(ejj(i)) =

ej−1,j−1(i), ekk(i)ejj(i) = δjkejj(i) that any ideal b ∈ J (Fn,0)σ,τ is a sum
∑

f∈C′ ff . Then b = fC
for a unique element C ∈ Cn (C is the set of all the maximal elements of C′, it does not depend
on C′), and so the map C 7→ fC is a bijection.

2. Similarly, it follows from Dn =
⊗n

i=1(K[Hi] +
∑

j∈N
Kejj(i)), τi(Hi) = Hi + 1 (hence

K[Hi] =
⋃

s≥1 ker(τi− 1)s) and the actions of the endomorphisms σi, τi on the matrix units ejj(i)
that any ideal b ∈ J (Dn)σ,τ is a sum

∑

f∈C′ df . Then b = dC for a unique element C ∈ Cn (C is
the set of all the maximal elements of C′, it does not depend on C′), and so the map C 7→ dC is
a bijection.

3. Statement 3 follows from statement 2 since the commutative algebra Dn is a localization of
the commutative algebraDn at the monoid generated by the set {(Hi−j)1 | i = 1, . . . , n; 0 6= j ∈ N}
of nonzero divisors and d′C = DndC for all C ∈ Cn. �

Corollary 3.11 1. The restriction map J (Dn)σ,τ → J (Fn,0)σ,τ , b 7→ br := b ∩ Fn,0, is an
isomorphism (i.e. (b1 ∗ b2)r = br1 ∗ b

r
2 for ∗ ∈ {+, ·,∩}) and its inverse is the extension map

c 7→ ce := Dnc.

2. The restriction map J (Dn)σ,τ → J (Fn,0)σ,τ , b 7→ br := b ∩ Fn,0, is an isomorphism (i.e.
(b1 ∗ b2)r = br1 ∗ b

r
2 for ∗ ∈ {+, ·,∩}) and its inverse is the extension map c 7→ ce := Dnc.

Proof. 1. Statement 1 follows from Corollary 3.10.(1,2) and the fact that drC = fC for all
C ∈ Cn.

2. Statement 2 follows from Corollary 3.10.(1,3) and the fact that (d′C)
r = fC for all C ∈ Cn.

�

Proof of Theorem 3.2. 1. By Theorem 3.9.(1), the restriction map J (In) → J (Dn)σ,τ is an
isomorphism and its inverse map is the extension map. By Corollary 3.11.(1), the restriction
map J (Dn)σ,τ → J (Fn)σ,τ is an isomorphism and its inverse map is the extension map. Now,
statement 1 is obvious.

2. Similarly, by Theorem 3.9.(2), the restriction map J (An) → J (Dn)σ,τ is an isomorphism
and its inverse map is the extension map. By Corollary 3.11.(2), the restriction map J (Dn)σ,τ →
J (Fn,0)σ,τ is an isomorphism and its inverse map is the extension map. Now, statement 2 is
obvious. �

Theorem 3.12 Let Id(In) be the set of all the idempotent ideals of the algebra In. Then
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1. the restriction map I(In) → Id(In), a 7→ ae := a∩In is a bijection such that (a1∗a2)r = ar1∗a
r
2

for ∗ ∈ {+, ·,∩}, and its inverse is the extension map b 7→ be := InbIn.

2. The restriction map Id(In) → J (Fn,0)σ,τ , b 7→ br := b ∩ Fn,0, is a bijection such that
(b1 ∗ b2)

r = br1 ∗ b
r
2 for ∗ ∈ {+, ·,∩}, and its inverse is the extension map c 7→ ce := IncIn.

Proof. 1. Statement 1 follows from Theorem 3.2.(1) and statement 2.
2. Statement 2 follows at once from a classification of the idempotent ideals of the algebra

Sn ≃ In (Theorem 7.2, [13]). �

4 The Noetherian factor algebra of the algebra In

The aim of this section is to show that the factor algebra In/an of the algebra In at its maximal
ideal an = p1 + · · ·+ pn is the only Noetherian factor algebra of the algebra In (Proposition 4.1).

The factor algebra In/an. Recall that the Weyl algebra An is the generalized Weyl algebra
Pn((σ1, ..., σn), (H1, . . . , Hn)). Denote by Sn the multiplicative submonoid of Pn generated by
the elements Hi + j where i = 1, . . . , n and j ∈ Z. It follows from the above presentation of
the Weyl algebra An as a GWA that Sn is an Ore set in An, and, using the Zn-grading of An,
that the (two-sided) localization An := S−1

n An of the Weyl algebra An at Sn is the skew Laurent
polynomial ring

An = S−1
n Pn[x

±1
1 , . . . , x±1

n ;σ1, ..., σn] (15)

with coefficients in the algebra

Ln := S−1
n Pn = K[H±1

1 , (H1 ± 1)−1, (H1 ± 2)−1, . . . , H±1
n , (Hn ± 1)−1, (Hn ± 2)−1, . . .],

which is the localization of Pn at Sn. We identify the Weyl algebra An with its image in the
algebra An via the monomorphism,

An → An, xi 7→ xi, ∂i 7→ Hix
−1
i , i = 1, . . . , n.

Let kn be the n’th Weyl skew field, that is the full ring of quotients of the n’th Weyl algebra
An (it exists by Goldie’s Theorem since An is a Noetherian domain). Then the algebra An is a
K-subalgebra of kn generated by the elements xi, x

−1
i , Hi and H−1

i , i = 1, . . . , n since, for all
j ∈ N,

(Hi ∓ j)−1 = x±j
i H−1

i x∓j
i , i = 1, . . . , n. (16)

Clearly, An ≃ A1 ⊗ · · · ⊗ A1 (n times).
Recall that the algebra In is a subalgebra of An and the extension aen of the maximal ideal

an of the algebra In is the maximal ideal of the algebra An. By (22) of [11], there is the algebra
isomorphism (where a := a+ aen):

An/a
e
n → An, xi 7→ xi, ∂i 7→ Hix

−1
i , H±1

i 7→ H±1
i , i = 1, . . . , n.

Since aern = an (Theorem 3.1), the algebra Bn := In/an is a subalgebra of the algebra An/a
e
n, and

so there is the algebra monomorphism (where a := a+ aen):

Bn → An, xi 7→ xi, ∂i 7→ Hix
−1
i ,

∫

i

7→ xiH
−1
i , Hi 7→ Hi, i = 1, . . . , n.

It follows that there is the algebra isomorphism:

Bn →
n⊗

i=1

K[Hi][∂i, ∂
−1
i ; τi] = Pn[∂

±1
1 , . . . , ∂±1

n ; τ1, . . . , τn],
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the RHS is the skew Laurent polynomial algebra with coefficients in the polynomial algebra Pn =
K[H1, . . . , Hn] where τi(Hj) = Hj + δij . It is a standard fact that

Bn = (An)∂1,...,∂n
(17)

where (An)∂1,...,∂n
is the localization of the Weyl algebra An at the Ore subset of An which is the

submonoid of An generated by the elements ∂1, . . . , ∂n. Note that (An)∂1,...,∂n
≃ (An)x1,...,xn

. It
is well-known that the algebra Bn is a simple, Noetherian, finitely generated algebra of Gelfand-
Kirillov dimension 2n and l.gldim(Bn) = r.gldim(Bn) = n.

Proposition 4.1 Let a be an ideal of the algebra In such that a 6= In. The following statements
are equivalent.

1. The factor algebra In/a is a left Noetherian algebra.

2. The factor algebra In/a is a right Noetherian algebra.

3. The factor algebra In/a is a Noetherian algebra.

4. a = an.

Proof. Note that the algebra Bn = In/an is a Noetherian algebra as a two-sided localization of
the Noetherian algebra An. Suppose that a 6= an. Fix p ∈ Min(a). Then p = pI :=

∑

i∈I pi for a
non-empty subset I of the set {1, . . . , n} with m := |I| < n (Corollary 3.3.(10) and Corollary 3.4).
The factor algebra In/p ≃ Bm ⊗ In−m is neither left nor right Noetherian since the algebra In−m

is so. The algebra In/p is a factor algebra of the algebra In/a. Then the algebra In/a is neither
left nor right Noetherian. Now, the proposition is obvious. �

Lemma 4.2 Let a be an ideal of the algebra In distinct from In. Then GK(In/a) = 2n.

Proof. It is well-known that GK(Bn) = 2n. Now, 2n = GK(In) ≥ GK(In/a) ≥ GK(In/an) =
GK (Bn) = 2n. Therefore, GK (In/a) = 2n. �

5 The group of units of the algebra In and its centre

In this section, the group I∗n of units of the algebra In is described (Theorem 5.6.(1)) and its
centre is found (Theorem 5.6.(2)). It is proved that the algebra In is central (Lemma 5.4.(2)) and
self-dual.

The involution ∗ on the algebra In. Using the defining relations in Proposition 2.2.(1), we
see that the algebra In admits the involution:

∗ : In → In, ∂i 7→

∫

i

,

∫

i

7→ ∂i, Hi 7→ Hi, i = 1, . . . , n, (18)

i.e. it is a K-algebra anti-isomorphism ((ab)∗ = b∗a∗) such that ∗ ◦ ∗ = idIn . Therefore, the
algebra In is self-dual, i.e. is isomorphic to its opposite algebra Iopn . As a result, the left and the
right properties of the algebra In are the same. For all elements α, β ∈ Nn,

e∗αβ = eβα. (19)

An element a ∈ In is called hermitian if a∗ = a.

Lemma 5.1 1. a∗ = a for all ideals a of the algebra In.

2. (In,α)
∗ = In,−α for all α ∈ Zn.

14



3. The set FixIn(∗) = {a ∈ In | a∗ = a} of all the hermitian elements of the algebra In is the
commutative subalgebra Dn of the algebra In.

Proof. 1. By (19), p∗i = pi for all i = 1, . . . , n (see Corollary 3.3.(2)). By Corollary 3.3.(4,9),
a∗ = a.

2. Note that D∗
n = Dn and v∗α = v−α. By Proposition 2.2.(2), (In,α)

∗ = (vαDn)
∗ = Dnv−α =

In,−α.
3. By statement 2, FixIn(∗) ⊆ Dn. The opposite inclusion is obvious. Therefore, FixIn(∗) =

Dn. �

The involution ∗ of the algebra In respects the maximal ideal an (a∗n = an). Therefore, the
factor algebra Bn = In/an inherits the involution ∗: ∂∗

i = ∂−1
i , x∗

i = xi + ∂−1
i , H∗

i = Hi for

i = 1, . . . , n (since ∂∗
i =

∫

i
= ∂−1

i and x∗
i = (∂iHi)

∗ = Hi∂
−1
i = ∂ixi∂

−1
i = xi + ∂−1

i ).
The involution ∗ of the algebra In can be extended to an involution of the algebra An by setting

x∗
i = Hi∂i, ∂∗

i =

∫

i

, (H±1
i )∗ = H±1

i , i = 1, . . . , n.

This can be checked using the defining relations coming from the presentation of the algebra An

as a GWA. Note that y∗i = (H−1
i ∂i)

∗ =
∫

i
H−1

i = xiH
−2
i , A∗

n 6⊆ An, S
∗
n 6⊆ Sn, but I∗

n = In where
In is the algebra of integro-differential operators with constant coefficients.

For a subset S of a ring R, the sets l.annR(S) := {r ∈ R | rS = 0} and r.annR(S) := {r ∈
R |Sr = 0} are called the left and the right annihilators of the set S in R. Using the fact that the
algebra In is a GWA and its Zn-grading, we see that

l.annIn(

∫

i

) =
⊕

k∈N

Kek0(i)
⊗⊗

i6=j

I1(j), r.annIn(

∫

i

) = 0. (20)

r.annIn(∂i) =
⊕

k∈N

Ke0k(i)
⊗⊗

i6=j

I1(j), l.annIn(∂i) = 0. (21)

Recall that a submodule of a module that intersects non-trivially each nonzero submodule of the
module is called an essential submodule.

Lemma 5.2 1. For all nonzero ideals a of the algebra In, l.annIn(a) = r.annIn(a) = 0.

2. Each nonzero ideal of the algebra In is an essential left and right submodule of In.

Proof. The algebra In is self-dual, so it suffices to prove only, say, the left versions of the
statements.

1. Suppose that b := l.annIn(a) 6= 0, we seek a contradiction. By Corollary 3.3.(8), the nonzero
ideals a and b contain the ideal Fn. Then 0 = ba ⊇ F 2

n = Fn 6= 0, a contradiction. Therefore,
b = 0.

2. Let I be a nonzero left ideal of the algebra In. By statement 1, 0 6= FnI ⊆ Fn∩I. Therefore,
Fn is an essential left submodule of the algebra In. Then so are all the nonzero ideals of the algebra
In since Fn is the least nonzero ideal of the algebra In. �

Corollary 5.3 Let A be a K-algebra. Then the algebra In ⊗ A is a prime algebra iff the algebra
A is so.

Proof. It is obvious that if the algebra A is not prime (ab = 0 for some nonzero ideals a and b

of A) then the algebra In ⊗A is neither (since In ⊗ a · In ⊗ b = 0).
It suffices to show that if the algebra A is prime then so is the algebra In ⊗ A. Let c be a

nonzero ideal of the algebra In ⊗ A. Then Fnc 6= 0, by Lemma 5.2.(1). Note that Fnc ⊆ c. Let
u = Eαβ ⊗ a+ · · ·+Eσρ ⊗ a′ be a nonzero element of Fnc where Eαβ , . . . , Eσρ are distinct matrix
units; a, . . . , a′ ∈ A, and a 6= 0. Then 0 6= Eαβ ⊗ a = EααuEββ ∈ a, and so Fn ⊗AaA ⊆ c. Let d
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be a nonzero ideal of the algebra In ⊗ A. Then Fn ⊗ AbA ⊆ d for some nonzero element b ∈ A.
Then

cd ⊇ Fn ⊗AaA · Fn ⊗AbA = Fn ⊗ (AaA ·AbA) 6= 0

since F 2
n = Fn and AaA ·AbA 6= 0 (A is a prime algebra). Therefore, In⊗A is a prime algebra. �

The centre of the algebra In. For an algebra A and its subset S, the subalgebra of A,
CenA(S) := {a ∈ A | as = sa for all s ∈ S}, is called the centralizer of S in A. The next lemma
shows that the algebra In is a central algebra, i.e. its centre Z(In) is K.

Lemma 5.4 1. CenIn(Fn,0) = CenIn(Dn) = Dn.

2. The centre of the algebra In is K.

3. CenIn(In) = K.

Proof. 1. Since Fn,0 ⊂ Dn and Dn is a commutative algebra, we have the inclusions Dn ⊆
CenIn(Dn) ⊆ CenIn(Fn,0). It remains to show that the inclusion C := CenIn(Fn,0) ⊆ Dn holds.
Recall that the algebra In =

⊕

α∈Zn In,α is a Zn-graded algebra with Fn,0 ⊂ Dn = In,0. Therefore,
C is a homogeneous subalgebra of In, i.e. C =

⊕

α∈Zn Cα where Cα := C ∩ In,α. We have to show
that Cα = 0 for all α 6= 0. Let c ∈ Cα for some α 6= 0. Then c = vα,+dvα,− for some element
d ∈ Dn (the elements vα,+ and vα,− are defined in Theorem 3.9.(1)). For all elements Eββ ∈ Fn,0

where β ∈ Nn,

cEββ = vα,+dτα,−(Eββ)vα,− = vα,+dEβ−α−,β−α−
vα,−,

Eββc = vα,+τα,+(Eββ)dvα,− = vα,+Eβ−α+,β−α+
dvα,−,

where τα,− :=
∏

αi<0 τi, τα,+ :=
∏

αi>0 τi, α− := −
∑

αi<0 αiei and α+ :=
∑

αi>0 αiei (Est = 0
if either s 6∈ Nn or t 6∈ Nn). Since cEββ = Eββc and the map a 7→ vα,+avα,− is injective (its left
inverse is the map a 7→ uα,−auα,+, see (14)), we have the equality Eβ−α+,β−α+

d = Eβ−α−,β−α−
d

for each β ∈ Nn. Since
⊕

γ∈Nn KEγγ is the direct sum of ideals of the algebra Dn, it follows that
Eγγd = 0 for all elements γ ∈ Nn. Then it is not difficult to show that d = 0 (using the fact that
each polynomial of K[H1, . . . , Hn] is uniquely determined by its values on the set Nn).

2. By statement 1, the centre Z of the algebra In is a subalgebra of Dn. Let d ∈ Z. For all
elements i = 1, . . . , n, 0 = dxi−xid = xi(τi(d)−d). Since In ⊆ An, we see that 0 = yixi(τi(d)−d) =
τi(d)− d, and so d ∈

⋂n
i=1 kerDn

(τi − 1) = K. Therefore, Z = K.
3. By (12), Fn,0 ⊆ In. This implies that C := CenIn(In) ⊆ CenIn(Fn,0) = Dn, by statement

1. Let d ∈ C. Then

0 = ∂i · 0 = ∂i(d

∫

i

−

∫

i

d) = ∂i

∫

i

(τi(d)− d) = τi(d)− d for all i = 1, . . . , n,

where τi(a) = ∂ia
∫

i
. Hence d ∈

⋂n
i=1 kerDn

(τi − 1) = K, and so C = K. �

Lemma 5.5 Let C = Pn, K[∂1, . . . , ∂n], K[
∫

1, . . . ,
∫

n
] or Dn. Then CenIn(C) = C and C is a

maximal commutative subalgebra of the algebra In.

Proof. The first statement, CenIn(C) = C, follows from the fact that the algebra In is Zn-
graded and the canonical generators of the algebra C are homogeneous elements of the algebra In

(we leave this as an exercise for the reader). Then C is a maximal commutative subalgebra of the
algebra In since CenIn(C) = C and C is a commutative algebra. �

The group I∗n of units of the algebra In and its centre. The group A∗
1 of units of the

algebra A1 contains the following infinite discrete subgroup Theorem 4.2, [11]:

H := {
∏

i≥0

(H + i)ni ·
∏

i≥1

(H − i)
n−i

1 | (ni)i∈Z ∈ Z
(Z)} ≃ Z

(Z). (22)
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For each tensor multiple A1(i) of the algebra An =
⊗n

i=1 A1(i), let H1(i) be the corresponding
group H. Their (direct) product

Hn := H1(1) · · · H1(n) =

n∏

i=1

H1(i) (23)

is a (discrete) subgroup of the group A∗
n of units of the algebra An, and Hn ≃ Hn ≃ (Zn)(Z).

Note that A∗
n = K∗ × (Hn ⋉ (1 + aen)

∗) and Z(A∗
n) = K∗ (Theorem 4.4, [11]). A similar result

holds for the group I∗n of the algebra In (Theorem 5.6). Since an is an ideal of the algebra In, the
intersection (1 + an)

∗ := I∗n ∩ (1 + an) is a subgroup of the group I∗n of units of the algebra In.

Theorem 5.6 1. Let Fn :=
⊕n

i=1(K + F (i)). Then

I
∗
n = K∗ × (1 + an)

∗ and I
∗
n ⊇ (1 + Fn ∩ an)

∗ ≃ GL∞(K)⋉ · · ·⋉GL∞(K)
︸ ︷︷ ︸

2n−1 times

.

2. The centre of the group I∗n is K∗.

Proof. 1. The commutative diagram of algebra homomorphisms

In

��

// An

��

Bn
// An

yields the commutative diagram of group homomorphisms

I
∗
n

��

// A
∗
n

��

B∗
n

// A∗
n.

Since B∗
n =

⋃

α∈Zn K∗∂α and A∗
n = K∗ × (Hn ⋉ (1 + aen)

∗), we see that

K∗ × (1 + an)
∗ ⊆ I

∗
n ⊆ In ∩ A

∗
n = K∗ × (In ∩ (1 + aen)

∗) = K∗ × (1 + aern )∗ = K∗ × (1 + an)
∗

since aern = an (Theorem 3.1). Therefore, I∗n = K∗ × (1 + an)
∗.

Since Fn ⊂ In ⊂ An, it is obvious that

I
∗
n ⊇ (1 + Fn ∩ an)

∗ = (1 + Fn ∩ aen)
∗ ≃ GL∞(K)⋉ · · ·⋉GL∞(K)

︸ ︷︷ ︸

2n−1 times

.

The isomorphism is established in Corollary 7.3, [14].
2. Let S be the set of elements of the type 1 +

∏

i∈I esisi(i) where ∅ 6= I ⊆ {1, . . . , n}.
Then S ⊆ I∗n and CenIn(S) = CenIn(Fn,0) = Dn, by Lemma 5.4.(1). Therefore, CenI∗n(S) =
CenIn(S) ∩ I∗n = Dn ∩ I∗n = D∗

n = F∗
n,0. We see that CenFn,0

(S) = K. Therefore, the centre of the
group I∗n is K∗. �

The group of units (1+F )∗ and I∗1. Recall that the algebra (without 1) F =
⊕

i,j∈N
Keij is

the unionM∞(K) :=
⋃

d≥1 Md(K) = lim
−→

Md(K) of the matrix algebrasMd(K) :=
⊕

1≤i,j≤d−1 Keij ,
i.e. F = M∞(K). For each d ≥ 1, consider the (usual) determinant detd = det : 1+Md(K) → K,
u 7→ det(u). These determinants determine the (global) determinant,

det : 1 +M∞(K) = 1 + F → K, u 7→ det(u), (24)

where det(u) is the common value of all the determinants detd(u), d ≫ 1. The (global) determinant
has usual properties of the determinant. In particular, for all u, v ∈ 1 + M∞(K), det(uv) =
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det(u) · det(v). It follows from this equality and the Cramer’s formula for the inverse of a matrix
that the group GL∞(K) := (1 +M∞(K))∗ of units of the monoid 1 +M∞(K) is equal to

GL∞(K) = {u ∈ 1 +M∞(K) | det(u) 6= 0}. (25)

Therefore,
(1 + F )∗ = {u ∈ 1 + F | det(u) 6= 0} = GL∞(K). (26)

Corollary 5.7 I∗1 = K∗ × (1 + F )∗ = K∗ × GL∞(K), i.e. I∗1 = {λ(1 + f) | det(1 + f) 6= 0, λ ∈
K∗, f ∈ F}. The elements λ ∈ K∗, 1 + µeij where µ ∈ K and i 6= j, and 1 + γe00 where
γ ∈ K\{−1} are generators for the group I∗n.

6 The weak and the global dimensions of the algebra In

In this section, we prove that the weak dimension of the algebra In and of all its prime factor
algebras is n (Theorem 6.2). An analogue of Hilbert’s Syzygy Theorem is established for the
algebra In and for all its prime factor algebras (Theorem 6.5).

The weak dimension of the algebra In. Let S be a non-empty multiplicatively closed
subset of a ring R, and let ass(S) := {r ∈ R | sr = 0 for some s ∈ S}. Then a left quotient ring of
R with respect to S is a ring Q together with a homomorphism ϕ : R → Q such that

(i) for all s ∈ S, ϕ(s) is a unit in Q;
(ii) for all q ∈ Q, q = ϕ(s)−1ϕ(r) for some r ∈ R and s ∈ S, and
(iii) ker(ϕ) = ass(S).
If there exists a left quotient ring Q of R with respect to S then it is unique up to isomorphism,

and it is denoted S−1R. It is also said that the ring Q is the left localization of the ring R at S.
Example 1. Let S := S∂ := {∂i, i ≥ 0} and R = I1. Then ass(S) = F , I1/ass(S) = B1 and the

conditions (i)-(iii) hold where Q = B1. This means that the ring B1 = I1/F is the left quotient
ring of I1 at S, i.e. B1 ≃ S−1

∂ I1.
Example 2. Let S := S∂1,...,∂n

:= {∂α, α ∈ Nn} and R = In. Then ass(S∂1,...,∂n
) = an,

In/an = Bn, and
S−1
∂1,...,∂n

In ≃ Bn, (27)

i.e. Bn is the left quotient ring of In at S∂1,...,∂n
. Note that the right localization InS

−1
∂1,...,∂n

of In

at S∂1,...,∂n
does not exist. Otherwise, we would have S−1

∂1,...,∂n
In ≃ InS

−1
∂1,...,∂n

but all the elements

∂α are left regular, and we would have a monomorphism In → S−1
∂1,...,∂n

In ≃ Bn, which would be
impossible since the elements ∂i of the algebra In are not regular. By applying the involution ∗
to (27), we see that

InS
−1∫
1
,...,

∫
n

≃ Bn, (28)

i.e. the algebra Bn is the right localization of In at the multiplicatively closed set S∫
1
,...,

∫
n
:=

{
∫ α

|α ∈ Nn}.

Given a ring R and modules RM and NR, we denote by pd(RM) and pd(NR) their projective
dimensions. Let us recall a result which will be used repeatedly in proofs later.

It is obvious that Pn ≃ An/
∑n

i=1 An∂i. A similar result is true for the In-module Pn (Propo-
sition 6.1.(2)). Note that pdAn

(Pn) = n but pdIn
(Pn) = 0 (Proposition 6.1.(3)).

Proposition 6.1 1. I1 = I1∂
⊕

I1e00 and I1 =
∫
I1
⊕

e00I1.

2. InPn ≃ In/
∑n

i=1 In∂i.

3. The In-module Pn is projective.

4. Fn = F⊗n is a left and right projective In-module.

5. The projective dimension of the left and right In-module In/Fn is 1.
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6. For each element α ∈ Nn, the In-module In/In∂
α is projective, moreover, In/In∂

α ≃
⊕n

i=1(K[xi]
⊗⊗

j 6=i I1(i))
αj .

Proof. 1. Using the equality
∫
∂ = 1 − e00, we see that I1 = I1∂ + I1e00. Since ∂e00 = 0 and

e200 = e00, we have I1∂ ∩ I1e00 = (I1∂ ∩ I1e00)e00 ⊆ I1∂e00 = 0. Therefore, I1 = I1∂
⊕

I1e00. Then
applying the involution ∗ to this equality we obtain the equality I1 =

∫
I1
⊕

e00I1.
2. Since I1P1 ≃ I1e00 =

⊕

i∈N
Kei0, 1 7→ e00, we have I1P1 ≃ I1/I1∂, by statement 1.

Therefore, InPn ≃
⊗n

i=1 P1(i) ≃
⊗n

i=1 I1(i)/I1(i)∂i ≃ In/
∑n

i=1 In∂i.
3. By statement 1,

In =
n⊗

i=1

I1(i) =
n⊗

i=1

(I1(i)∂i
⊕

I1(i)e00(i)) = In

n∏

i=1

e00(i)
⊕

(
n∑

i=1

In∂i) ≃ Pn

⊕

(
n∑

i=1

In∂i).

Therefore, Pn is a projective In-module.
4. Note that the left I1-module F =

⊕

i≥0 I1Eii ≃
⊕

i≥0 P1 is projective by statement 2.

Therefore, Fn = F⊗n is a projective left In-module. Since the ideal Fn is stable under the
involution ∗, F ∗

n = Fn, the right In-module Fn is projective.
5. The short exact sequence of left and right In-modules 0 → Fn → In → In/Fn → 0 does not

split since Fn is an essential left and right submodule of In (Lemma 5.2.(2)). By statement 4, the
projective dimension of the left and right In-module In/Fn is 1.

6. Let Zn =
⊕n

i=1 Zei where e1, . . . , en is the canonical free Z-basis for Zn. Let m = |α|. Fix a
chain of elements of Zn, β0 = 0, β1, . . . , βm = α such that, for all i, βi+1 = βi + ej for some index
j = j(i). Then all the factors of the chain of left ideals

In∂
α = In∂

βm ⊂ In∂
βm−1 ⊂ · · · ⊂ In∂

β1 ⊂ In

are projective In-modules since In∂
βi/In∂

βi+1 ≃ In/In∂j ≃ K[xj ] ⊗ In−1 is the projective In-
module (statement 3). The first isomorphism is due to the fact that the element ∂i is left regular,
i.e. a∂i = b∂i implies a = b (by multiplying the equation on the right by

∫

i
). Therefore, the

In-module In/In∂
α is projective. Moreover, In/In∂

α ≃
⊕n

i=1(K[xi]
⊗⊗

j 6=i I1(i))
αj . �

Theorem 6.2 Let In,m := Bn−m ⊗ Im where m = 0, 1, . . . , n and I0 = B0 := K. Then
wdim(In,m) = n for all m = 0, 1, . . . , n. In particular, wdim(In) = n.

Proof. The algebra Bn is Noetherian, hence n = l.gldim(S−1
∂1,...,∂n

In,m) = wdim(Bn) ≤
wdim(In,m) (Corollary 7.4.3, [49]). To finish the proof of the theorem it suffices to show that
the inequality wdim(In,m) ≤ n holds for all numbers n and m. We use induction on n. The
case n = 0 is trivial. So, let n ≥ 1 and we assume the inequality holds for all n′ < n and all
m = 0, 1, . . . , n′. For n, we use the second induction on m = 0, 1, . . . , n. When m = 0, the
inequality holds since In,0 = Bn and wdim(Bn) = n.

Suppose that m > 0 and wdim(In,m′) ≤ n for all m′ < m. We have to show that wdim(In,m) ≤
n or, equivalently, fdIn,m

(M) ≤ n for all In,m-modulesM (fd denotes the flat dimension). Changing
the order of the tensor multiples we can write In,m = I1⊗In−1,m−1. Then wdim(In−1,m−1) ≤ n−1,
by the inductive hypothesis. Recall that B1 = S−1

∂ I1 = I1/F and every ∂-torsion I1-module V is
a direct sum of several (maybe an infinite number of) copies of the projective simple I1-module
K[x] (Proposition 6.1.(6)), hence V is projective, hence V is flat. Note that S−1

∂ In,m ≃ In,m−1 and
wdim(In,m−1) ≤ n, by the inductive hypothesis. The In,m-module tor∂(M) := {m ∈ M | ∂im = 0
for some i} is the ∂-torsion submodule of the In,m-module M . There are two short exact sequences
of In,m-modules,

0 → tor∂(M) → M → M → 0, (29)

0 → M → S−1
∂ M → M ′ → 0, (30)

where the In,m-modules tor∂(M) and M ′ are ∂-torsion, and the In-module S−1
∂ M is ∂-torsion

free. To prove that fdIn,m
(M) ≤ n it suffices to show that the flat dimensions of the In,m-

modules tor∂(M), S−1
∂ M and M ′ are less or equal to n. Indeed, then by (30), fdIn,m

(M) ≤
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max{fdIn,m
(S−1

∂ M), fdIn,m
(M ′)} ≤ n; and by (29), fdIn,m

(M) ≤ max{fdIn,m
(tor∂(M)), fdIn,m

(M)}
≤ n.

The I1-module tor∂(M) (where In,m = I1⊗In−1,m−1) is a direct sum of copies (may be infinitely
many) of the projective simple I1-module K[x]. Note that EndI1(K[x]) ≃ kerK[x](∂) = K since

I1K[x] ≃ I1/I1∂. Using this fact and Proposition 6.1.(6), for each finitely generated submodule T
of the In,m-module tor∂(M) there exists a family {Ti}i∈I of its submodules Ti where (I,≤) is a well-
ordered set such that if i, j ∈ I and i ≤ j then Ti ⊆ Tj, T =

⋃

i∈I Ti and Ti/
⋃

j<i Tj ≃ K[x]⊗ Ti
for some In−1,m−1-module Ti. Note that

fdIn,m
(K[x]⊗ Ti) ≤ fdIn−1,m−1

(Ti) ≤ n− 1,

since the I1-module K[x] is projective. Therefore, fdIn,m
(T ) ≤ n − 1. The module tor∂(M) =

⋃

θ∈Θ Tθ is the union of its finitely generated submodules Tθ, hence

fdIn,m
(tor∂(M)) = fdIn,m

(
⋃

θ∈Θ

Tθ) ≤ sup{fdIn,m
(Tθ)}θ∈Θ = n− 1.

Similarly, fdIn,m
(M) ≤ n− 1 since the In,m-module M is ∂-torsion.

It remains to show that fdIn,m
(S−1

∂ (M)) ≤ n. By (27), the left I1-module B1 is flat, hence the
left In,m-module B1 ⊗ In−1,m−1 is flat. Then, by Proposition 7.2.2.(ii), [49],

fdIn,m
(S−1

∂ M) ≤ fdB1⊗In−1,m−1
(S−1

∂ M) + fdIn,m
(B1 ⊗ In−1,m−1) ≤ wdim(In,m−1) ≤ n.

The proof of the theorem is complete. �

Corollary 6.3 Let M be a ∂-torsion In,m-module, i.e. S−1
∂ M = 0, where S−1

∂ : In,m = I1 ⊗
In−1,m−1 → B1 ⊗ In−1,m−1 = In,m−1 is the localization map and n,m ≥ 1. Then there exists a
family {Ti}i∈I of In,m-submodules of M such that M =

⋃

i∈I Ti, (I,≤) is a well-ordered set such
that if i, j ∈ I and i ≤ j then Ti ⊆ Tj, and Ti/

⋃

j<i Tj ≃ K[x]⊗Ti for some In−1,m−1-module Ti.

Proof. The I1-module M is a direct sum of (may be infinitely many) copies of the projective
simple I1-moduleK[x]. Note that EndI1(K[x]) ≃ kerK[x](∂) = K since I1K[x] ≃ I1/I1∂. Using this
fact, for the In,m-moduleM there exists a family {Ti}i∈I of its submodules Ti where (I,≤) is a well-
ordered set such that if i, j ∈ I and i ≤ j then Ti ⊆ Tj , M =

⋃

i∈I Ti and Ti/
⋃

j<i Tj ≃ K[x]⊗Ti
for some In−1,m−1-module Ti. �

Corollary 6.4 Let A be a prime factor algebra of the algebra In. Then wdim(A) = n.

Proof. By Corollary 3.3.(10), the algebra A is isomorphic to the algebra In,m for some m. Now,
the corollary follows from Theorem 6.2. �

The next theorem is an analogue of Hilbert’s Syzygy Theorem for the algebra In and its prime
factor algebras. The flat dimension of an A-module M is denoted by fdA(M).

Theorem 6.5 Let K be an algebraically closed uncountable field of characteristic zero. Let A be a
prime factor algebra of In (for example, A = In) and B be a Noetherian finitely generated algebra
over K. Then wdim(A⊗B) = wdim(A) + wdim(B) = n+wdim(B).

Proof. Recall that A ≃ In,m for some m ∈ {0, 1, . . . , n} and wdim(In,m) = n (Theorem 6.2).
Since

n+wdim(B) = wdim(In,m) + wdim(B) ≤ wdim(In,m ⊗B),

it suffices to show that wdim(In,m⊗B) ≤ n+wdim(B) for all numbers n and m. We use induction
on n. The case n = 0 is trivial since A = K. So, let n ≥ 1, and we assume that the inequality
holds for all n′ < n and all m′ = 0, 1, . . . , n′. For the number n ≥ 1, we use the second induction
on m = 0, 1, . . . , n. The case m = 0, i.e. In,0 = Bn, is known, Corollary 6.3, [8] (this can also be
deduced from Proposition 9.1.12, [49]; see also [9]).
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So, let m > 0 and we assume that the inequality holds for all numbers m′ < m. Let M be
an In,m ⊗ B-module. We have to show that fdIn,m⊗B(M) ≤ n + wdim(B). We can treat M as
an In,m-module. Then we have the short exact sequences (29) and (30) which are, in fact, short
exact sequence of In,m ⊗ B-modules. To prove that fdIn,m⊗B(M) ≤ n + wdim(B) it suffices to

show that the flat dimensions of the In,m ⊗B-modules tor∂(M), S−1
∂ M and M ′ are less or equal

to n+wdim(B), by the same reason as in the proof of Theorem 6.2. Repeating the same argument
as at the end of the proof of Theorem 6.2, for each finitely generated submodule T of the In,m⊗B-
module tor∂(M) (where In,m = I1 ⊗ In−1,m−1) there exists a family {Ti}i∈I of its submodules Ti

where (I,≤) is a well-ordered set such that if i, j ∈ I and i ≤ j then Ti ⊆ Tj , T =
⋃

i∈I Ti and
Ti/

⋃

j<i Tj ≃ K[x]⊗Ti for some In−1,m−1⊗B-module Ti. Note that In,m⊗B = I1⊗In−1,m−1⊗B
and

fdIn,m⊗B(K[x]⊗ Ti) ≤ fdIn−1,m−1⊗B(Ti) ≤ wdim(In−1,m−1 ⊗B) = n− 1 + wdim(B),

since the I1-module K[x] is projective. Therefore, fdIn,m⊗B(Ti) ≤ n−1+wdim(B). The In,m⊗B-
module tor∂(M) =

⋃

θ∈Θ Tθ is the union of its finitely generated submodules Tθ, hence

fdIn,m⊗B(tor∂(M)) = fdIn,m⊗B(
⋃

θ∈Θ

Tθ) ≤ sup{fdIn,m⊗B(Tθ)}θ∈Θ = n− 1 + wdim(B).

Similarly, fdIn,m⊗B(M
′) ≤ n− 1 + wdim(B) since the I1-module M ′ is ∂-torsion.

It remains to show that fdIn,m⊗B(S
−1
∂ M) ≤ n + wdim(B). By (28), the left I1-module B1 is

flat, hence the left In,m ⊗ B-module B1 ⊗ In−1,m−1 ⊗ B is flat. Then, by Proposition 7.2.2.(ii),
[49],

fdIn,m⊗B(S
−1
∂ M) ≤ fdB1⊗In−1,m−1⊗B(S

−1
∂ M) + fdIn,m⊗B(B1 ⊗ In−1,m−1 ⊗B)

≤ wdim(B1 ⊗ In−1,m−1 ⊗B) ≤ n− 1 + wdim(B1 ⊗B)

= n− 1 + wdim(B1) + wdim(B) = n− 1 + 1 + wdim(B) = n+wdim(B),

since the algebra B is Noetherian and finitely generated. The proof of the theorem is complete.
�

The global dimension of the algebra In. For all Noetherian rings, wdim(M) = gldim(M),
and this is not true for non-Noetherian ring, in general. For many Noetherian rings, including the
Weyl algebras An and the algebras Bn, the known proofs of finding their global dimensions are,
in fact, about their weak dimensions as localizations and faithfully flat extensions are used. This
fact together with the fact that the algebras In are not Noetherian are main difficulties in finding
their global dimensions.

Proposition 6.6 [5] Let M be a module over an algebra A, I a non-empty well-ordered set,
{Mi}i∈I be a family of submodules of M such that if i, j ∈ I and i ≤ j then Mi ⊆ Mj. If
M =

⋃

i∈I Mi and pdA(Mi/M<i) ≤ n for all i ∈ I where M<i :=
⋃

j<i Mj then pdA(M) ≤ n.

Let V ⊆ U ⊆ W be modules. Then the factor module U/V is called a sub-factor of the module
W . Each algebra In,m is self-dual, so its left and right global dimensions coincide. Their common
value is denoted by gldim(In,m).

Proposition 6.7 n ≤ gldim(In,m) ≤ n + m for all n ∈ N and m = 0, 1, . . . , n. In particular,
n ≤ gldim(In) ≤ 2n.

Proof. n = gldim(Bn) ≤ gldim(In,m), by (27). It remains to show that gldim(In,m) ≤ n+m.
We use induction on n. The case n = 0 is trivial as I0,0 = K. So, let n ≥ 1 and we assume that
the inequality holds for all n′ < n and all m = 0, 1, . . . , n′. For n, we use the second induction on
m = 0, 1, . . . , n. When m = 0, the inequality holds since In,0 = Bn and gldim(Bn) = n.

Suppose that m > 0 and gldim(In,m′) ≤ n + m′ for all m′ < m. We have to show that
gldim(In,m) ≤ n + m, or equivalently pd

In,m
(M) ≤ n + m for all In,m-modules M . Changing
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the order of the tensor multiples we can write In,m = I1 ⊗ In−1,m−1. For the In,m-module M
we have the short exact sequence of In,m-modules (29). By Corollary 6.3, for the In,m-module
tor∂(M) there exists a family {Ti}i∈I of its submodules Ti where (I,≤) is a well-ordered set such
that if i, j ∈ I and i ≤ j then Ti ⊆ Tj, tor∂(M) =

⋃

i∈I Ti and Ti/
⋃

j<i Tj ≃ K[x] ⊗ Ti for some
In−1,m−1-module Ti. Note that

pd
In,m

(K[x]⊗ Ti) ≤ pd
I1
(K[x]) + pd

In−1,m−1
(Ti) ≤ n+m− 2.

By Proposition 6.6, pdIn,m
(tor∂(M)) ≤ n+m− 2. Note that pdIn,m

(In,m−1) ≤ 1 (since 0 → F →
I1 → B1 → 0 is a projective resolution for the I1-module B1) and, by Proposition 7.2.2.(ii), [49],

pdIn,m
(M) ≤ pdIn,m−1

(M) + pdIn,m
(In,m−1) ≤ n+m− 1 + 1 = n+m.

By (29),
pdIn,m

(M) ≤ max{pdIn,m
(tor∂(M)), pdIn,m

(M)} ≤ n+m,

as required. The proof of the theorem is complete. �

Conjecture. gldim(In) = n.

7 The weak and the global dimensions of the Jacobian al-

gebra An

In this section, we prove that the weak dimension of the Jacobian algebra An and of all its prime
factor algebras is n (Theorem 7.2, Corollary 7.3). An analogue of Hilbert’s Syzygy Theorem is
established for the Jacobian algebras An and for all its prime factor algebras (Theorem 7.4).

A K-algebra R has the endomorphism property over K if, for each simple R-module M ,
EndR(M) is algebraic over K.

Theorem 7.1 [10] Let K be a field of characteristic zero.

1. The algebra An is a simple, affine, Noetherian domain.

2. The Gelfand-Kirillov dimension GK(An) = 3n (6= 2n = GK(An)).

3. The (left and right) global dimension gl.dim(An) = n.

4. The (left and right) Krull dimension K.dim(An) = n.

5. Let d = gl.dim or d = K.dim. Let R be a Noetherian K-algebra with d(R) < ∞ such that
R[t], the polynomial ring in a central indeterminate, has the endomorphism property over
K. Then d(A1 ⊗ R) = d(R) + 1. If, in addition, the field K is algebraically closed and
uncountable, and the algebra R is affine, then d(An ⊗R) = d(R) + n.

GK(A1) = 3 is due to A. Joseph [41], p. 336; see also [47], Example 4.11, p. 45.
The Jacobian algebra An is a localization of the algebra In. Using the presentations of

the algebras In and An as GWAs, it is obvious that the algebra In is the two-sided localization,

An = S−1
In = InS

−1, (31)

of the algebra In at the multiplicatively closed subset S := {
∏n

i=1(Hi+αi)
ni
∗ | (αi) ∈ Zn, (ni) ∈ Nn}

of In where (Hi + αi)∗ :=

{

Hi + αi if αi ≥ 0,

(Hi + αi)1 if αi < 0,
since, for all elements β ∈ Zn,

vβ

n∏

i=1

(Hi + αi)
ni

∗ =

n∏

i=1

(Hi + αi − βi)
ni

∗ vβ . (32)
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The left (resp. right) localization of the Jacobian algebra

An = K〈y1, . . . , yn, H
±1
1 , . . . , H±1

n , x1, . . . , xn〉, (where yi := H−1
i xi)

at the multiplicatively closed set Sy1,...,yn
:= {yα |α ∈ N

n} (resp. Sx1,...,xn
:= {xα |α ∈ N

n}) is
the algebra

An ≃ S−1
y1,...,yn

An ≃ AnS
−1
x1,...,xn

. (33)

The algebra An has the involution ∗. The algebra An ≃ An/a
e inherits the involution ∗ since

(aen)∗ = aen, and so do the algebras An,m := An−m⊗Am where m = 0, 1, . . . , n and A0 = A0 := K.
Therefore, the algebras An,m are self-dual, and so l.gldim(An,m) = r.gldim(An,m) := gldim(An,m).

Theorem 7.2 Let An,m := An−m ⊗ Am where m = 0, 1, . . . , n and A0 = A0 := K. Then
wdim(An,m) = n for all m = 0, 1, . . . , n. In particular, wdim(An) = n.

Proof. By Theorem 7.1.(1,3) and (33),

n = gldim(An) = wdim(An) = l.gldim(S−1
y1,...,yn

An) ≤ wdim(S−1
y1,...,yn−m

An) = wdim(An,m)

≤ wdim(In,m) = n (by (31) and Theorem 6.2).

Therefore, wdim(An,m) = n for all n and m. �

Corollary 7.3 Let A be a prime factor algebra of the algebra An. Then wdim(A) = n.

Proof. By Corollary 3.5, [11], the algebra A is isomorphic to the algebra An,m for some m.
Now, the corollary follows from Theorem 7.2. �

The next theorem is an analogue of Hilbert’s Syzygy Theorem for the Jacobian algebras and
their prime factor algebras.

Theorem 7.4 Let K be an algebraically closed uncountable field of characteristic zero. Let A be
a prime factor algebra of An (for example, A = An) and B be a Noetherian finitely generated
algebra over K. Then wdim(A⊗ B) = wdim(A) + wdim(B) = n+wdim(B).

Proof. Recall that A ≃ An,m for some m ∈ {0, 1, . . . , n} and wdim(An,m) = n (Theorem 7.2).
Since

n+wdim(B) = wdim(An,m) + wdim(B) ≤ wdim(An,m ⊗B)

≤ wdim(S−1
In ⊗B) ≤ wdim(In ⊗B)

= n+wdim(B) (by Theorem 6.5).

Therefore, wdim(An,m ⊗B) = n+ l.gldim(B). The proof of the theorem is complete. �

Proposition 7.5 n ≤ gldim(An,m) ≤ n + m for all n ∈ N and m = 0, 1, . . . , n. In particular,
n ≤ gldim(An) ≤ 2n.

Proof. By Theorem 7.1.(3), Proposition 6.7, (31) and (33), n = gldim(An) ≤ gldim(An,m) ≤
gldim(In,m) ≤ n+m. �

Conjecture. gldim(An) = n.
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