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Abstract. A class of variational models describing ecological systems of k species
competing for the same resources is investigated. The occurrence of coexistence in
minimal energy solutions is discussed and positive results are proven for suitably
differentiated internal dynamics.

1. Introduction

This paper is focused on a class of variational problems suitable for studying the
dynamic of segregation of k organisms which share the same territory Ω ⊂ R

N .
Calling ui the density of the i-th population and Fi(ui) its internal potential, the
free energy of the system is

(1.1) E(u1, u2, . . . , uk) =
k
∑

i=1

∫

Ω

(

1

2
|∇ui(x)|2 − Fi(ui(x))

)

dx,

given by the sum of the internal energies of each species. In this context, the question
of finding a global minimizer of the energy in the class of segregated states arises in
a natural way. More precisely, if we define

U =
{

U = (u1, u2, . . . , uk) ∈ [H1(Ω)
]k

: ui ≥ 0, ui · uj = 0 if i 6= j, a.e. in Ω
}

,

we are led to the following optimal partition problem:

(1.2) finding U ∈ U such that E(U) = min
V ∈U

E(V ).

This problem has been recently settled in [7], in connection with strongly competing
variational systems of Lotka-Volterra type

(1.3) −∆ui = fi(ui)− κ ui
∑

j 6=i

u2j , in Ω,

which, since the pioneering work of Volterra, constitute one of the most studied
theoretical models of population ecology, see [14]. As a matter of fact, as the com-
petition rate κ grows indefinitely, the components of any (nonnegative) solution of
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the system tend to separate their supports, leading to an element of U ; in particu-
lar, the problem of finding minimal energy solutions of (1.3) formally translates, as
κ → ∞, into (1.2), see also [6, 8, 11].

In the understanding of the spatial behavior of interacting species, a central prob-
lem is to establish whether coexistence of all the species occurs, or the internal growth
leads to extinction, that is, configurations where one or more densities are null: in
this paper we address the question in the two different theoretical settings, endowing
the models with null Dirichlet boundary conditions:

(1.4) ui = 0 on ∂Ω, i = 1, . . . , k.

At a first insight, extinction has to be expected for competing systems which are,
in a sense, too uniform. For instance, in the case of null Neumann boundary condi-
tions, the global minimum of E on U is in general achieved by configurations where
only one species is alive, see [5, Proposition 2.1]. Nonetheless, a mechanism to avoid
extinction can be found in the spatial inhomogeneity of the territory. Indeed, work-
ing in a special class of non-convex domains close to a union of k disjoint balls, the
existence of local minima of E where all the species are present is proven in [5], (see
also [4]).

As a matter of fact, if the internal energies fi are not differentiated, extinction of
global minimizers under null boundary conditions occurs in any domain, see Section
4.1:

Theorem 1.1. Let Ω be a bounded Lipschitz domain and f be a Lipschitz continuous
function. If fi = f for all i = 1, . . . , k and Fi(s) =

∫ s

0 fi(t) dt, then any global

minimizer of E on U ∩H1
0 (Ω) has at most one nonzero component.

This motivates the question whether different internal laws might produce a mech-
anism to ensure coexistence. With the aim of providing a first answer to this con-
jecture, in this note we consider the special situation when the internal energies fi
are of the same type but act at different density scales, see assumption (2.2).
We first investigate global minimizers for systems in the form (1.3), namely solutions
of the energy minimization problem

min

{

(u1, u2, . . . , uk) ∈ [H1(Ω)
]k

:

k
∑

i=1

∫

Ω

(

1

2
|∇ui(x)|2 − Fi(ui(x))

)

dx+
1

2
κ

k
∑

i,j=1
i 6=j

ui(x)
2uj(x)

2

}

.

We prove in Theorem 2.1 that any global minimizer is a coexistence state of (1.3)
where all the k species are present, provided the internal growths fi of k − 1 pop-
ulations act at a small density scale, depending on κ. This is done with a great
deal of generality both with respect to the domain and to the competing interaction
term appearing in (1.3), see (H1)–(H3) below, but the dependence of fi’s on κ does
not allow recovering a meaningful coexistence result for the corresponding optimal
partition problem (1.2), see Remark 2.2. It is worth pointing out that the investi-
gation of positive solutions to competitive systems in the case of k ≥ 3 densities is a
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challenging task and only partial results are known, see e.g. [4, 5, 6, 9, 10, 12] and
the discussions therein for more references.

To investigate the possibility of coexistence for solutions to the optimal partition
problem (1.2), following an idea developed in [16] to show the existence of sign-
changing solutions to some elliptic equations, we focus on a certain class of (possibly
convex) domains characterized by the presence of an angle. In this framework we
prove, in Theorem 2.3, that any global minimizer of E among segregated states has at
least two nontrivial positive components. Although the result is not exhaustive for an
arbitrary number of species, for systems of two populations it allows us to provide the
full picture of the coexistence phenomenon (Theorem 2.4). Namely, we first prove
that any minimal solution of system (1.3) with k = 2 is an equilibrium configuration
where both the species are present, provided the scales of their internal energies
are different but independent from the competition rate κ. Hence we perform the
asymptotic analysis as κ → ∞ and prove that both components survive as the
interspecific competition becomes larger and larger. As a result, any minimal state of
system (1.3) converges to a spatially segregated distribution where the two densities
coexist and solve the optimal partition problem (1.2).

In conclusion, our results suggest that in ecological systems with strong com-
petition between the species, suitably differentiated internal energies may ensure
coexistence in minimal energy configurations.

2. Assumptions and main results

Let k ≥ 2, ε = (ε2, . . . , εk) ∈ (0, 1)k−1, λ > 0, κ > 0, and Ω be an open bounded
set in R

N (N ≥ 2). We shall consider a class of competitive systems of the form

(2.1)







−∆ui(x) = λfi,ε(ui(x)) − κ
∂H

∂ui
(u1(x), u2(x), . . . , uk(x)), in Ω,

ui ∈ H1
0 (Ω), i = 1, . . . , k,

where fi,ε and H satisfy the following sets of assumptions.

Assumptions on fi,ε. Let g ∈ C0(R) satisfying

(F1) g(s) = 0 for all s ∈ (−∞, 0] and g is right differentiable at 0 with g′+(0) = 1;
(F2) there exists β > 0 such that

g(t) < 0 for all t > β and g(t) ≥ 0 for all t ∈ (0, β);

(F3)
∫ β

0 g(s)ds = α > 0.

A typical example is given by the classical logistic nonlinearity (see e.g. [9]), namely
g(s) = s− s2 for s ≥ 0. We set

(2.2) fi,ε(s) =

{

g(s), if i = 1,
1√
kεi

g
(√

k
εi
t
)

, if i = 2, . . . , k.

It is immediate to check that, for all i ≥ 2, fi,ε satisfies

(2.3) fi,ε(s) < 0 for all s > βi,

∫ βi

0
fi,ε(s)ds =

α

k
,
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where, for i ≥ 2, βi =
βεi√
k
. For the sake of convenience, we shall refer to β as β1.

Assumptions on H. Let H ∈ C1(Rk) satisfy, for all (s1, s2, . . . , sk) ∈ R
k,

ΒΒi

Figure 1. The nonlinearities fi,ε in the case g(s) = s − s2 with
k = 4 and ε = (12 ,

1
4 ,

1
7).

H(s1, s2, . . . , sk) ≥ 0,(H1)

si
∂H

∂si
(s1, s2, . . . , sk) ≥ 0 for all i = 1, . . . , k,(H2)







H(s1, s2, . . . , sk) = 0 if si = 0 for at least k − 1 variables,

∂H

∂si
(s1, s2, . . . , sk) = 0 implies that either si = 0 or sj = 0 for all j 6= i.

(H3)

The first assumption states the competitive character of the interaction term; a
typical example which fits all the above assumptions is

(2.4) H(s1, s2, . . . , sk) =
1

2

k
∑

i,j=1
i 6=j

s2i s
2
j ,

which is widely used in modeling population dynamics, nonlinear optics (see e.g.
[1, 13]), and Bose-Einstein condensation (see [3, 15, 17]).

Setting Fi,ε(t) =
∫ t

0 fi,ε(s)ds, we define the internal energy of the system

Iλ,κ
ε

: [H1
0 (Ω)]

k → (−∞,∞]

as

Iλ,κ
ε

(u1, . . . , uk) =

k
∑

i=1

∫

Ω

(

1

2
|∇ui(x)|2 − λFi,ε(ui(x))

)

dx(2.5)

+ κ

∫

Ω
H(u1(x), u2(x), . . . , uk(x)) dx.

Our first result states that the global minimizers of Iλ,κε are configurations of
coexistence if the range ε of the internal growths of k− 1 species is suitably related
to λ and κ.
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Theorem 2.1. Let g ∈ C0(R) satisfy (F1–3), H ∈ C1(Rk) satisfy (H1)–(H2), and
Ω ⊂ R

N be a bounded domain. There exists λ0 > 0 such that, for every λ > λ0 and
κ ≥ 0, there exists ελ,κ > 0 with the following property: for all ε ∈ (0, ελ,κ)

k−1,
the competing system (2.1) with fi,ε as in (2.2) has a solution U = (u1, . . . , uk) ∈
[H1

0 (Ω)]
k satisfying

(i) ui 6≡ 0 for all i = 1, . . . , k;
(ii) 0 ≤ ui ≤ βi for all i = 1, . . . , k;

(iii) U is a global minimizer of Iλ,κε , namely

Iλ,κ
ε

(U) = min
{

Iλ,κ
ε

(V ), V ∈ [H1
0 (Ω)]

k
}

.

Furthermore, ελ,κ depends on the ratio λ/κ and tends to 0 if λ/κ → 0.

Some remarks are in order.

Remark 2.2.

a) It will be clear from the proof how ελ,κ depends on the data of the problem,
see (4.8). For instance, for the Lotka-Volterra model in a ball, H as in (2.4) and
g(u) = u− u2, we can choose

ε2λ,κ =
1

6k2
λ

κ
.

b) If the interspecific competition rate κ grows (at λ fixed), then every εi becomes
smaller and smaller. Hence by (ii) we learn that k − 1 components annihilate uni-
formly in Ω, implying that in the limit configuration as κ → ∞ only the first
component is alive.

Concerning the optimal partition problem stated in the introduction, we shall
focus on a special class of domains.

Description of the domain. Let Ω ⊂ R
N , N ≥ 2, be a bounded Lipschitz domain

with 0 ∈ ∂Ω such that

(D1) Ω ⊂ T , where T =
{

x = (x1, x2, . . . , xN ) ∈ R
N : m

√

∑N
i=2 x

2
i ≤ x1 ≤ 1

}

and m > 1;
(D2) there exists δ0 ∈ (0, 1) such that

δΩ = {x ∈ R
N : δ−1x ∈ Ω} ⊂ Ω,

for every δ ∈ (0, δ0).

Theorem 2.3. Let g ∈ C0(R) satisfy (F1–3) and Ω be a bounded Lipschitz domain
satisfying (D1–2). There exist λ0 > 0 and ε0 > 0 such that, if ε ∈ (0, ε0)

k−1 and
λ > λ0, then every global minimizer of

Eλ
ε
(u1, . . . , uk) =

k
∑

i=1

∫

Ω

(

1

2
|∇ui(x)|2 − λFi,ε(ui(x))

)

dx

on U ∩H1
0 (Ω) has at least two nonnegative and nonzero components.
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PSfrag replacements

Ω

T

Figure 2. An example of domain Ω ⊂ R
2.

In the case of two species we have a better understanding of the phenomenon.
In particular, we establish the link between limit configurations of system (2.1) as
κ → ∞ and solutions to the optimal partition problem.

Theorem 2.4. Let k = 2. Let g ∈ C0(R) satisfy (F1–3), H ∈ C1(R2) satisfy
(H1–3) and Ω be a bounded Lipschitz domain satisfying (D1–2). There exist λ0 > 0

and ε0 > 0 such that, if ε ∈ (0, ε0)
k−1 and λ > λ0, then the global minimum of Iλ,κε

is achieved for all κ > 0 and every global minimizer is a nontrivial configuration
(uκ1 , u

κ
2 ) with both uκi ≥ 0, uκi 6≡ 0, i = 1, 2. Moreover, for every fixed ε ∈ (0, ε0)

k−1

and λ > λ0, there exists U = (u1, u2) ∈ [H1
0 (Ω)]

2 such that

(1) ui 6≡ 0 for i = 1, 2,
(2) U = (u1, u2) ∈ U ,
(3) U is a global minimizer of Eλ

ε
on U ∩H1

0 (Ω),

and, up to subsequences, uκi converges strongly to ui in H1(Ω).

3. Preliminary results

Let Ω be a bounded open set in R
N and g ∈ C0(R) satisfy (F1–3). For every

λ > 0, ε ∈ (0, 1)k−1, and i ≥ 2, let us define Jλ
1 , J

λ
i,ε : H1

0 (Ω) → (−∞,+∞]

Jλ
1 (u) =

∫

Ω

(

1

2
|∇u(x)|2 − λ

∫ u(x)

0
g(s) ds

)

dx,

Jλ
i,ε(u) =

∫

Ω

(

1

2
|∇u(x)|2 − λFi,ε(u(x))

)

dx.

If λ > λ1(Ω), with λ1(Ω) being the first eigenvalue of the Laplace operator with null
Dirichlet boundary conditions, it is easy to prove that the infima

mλ
1 := inf

{

Jλ
1 (u), u ∈ H1

0 (Ω)
}

, mλ
i,ε := inf

{

Jλ
i,ε(u), u ∈ H1

0 (Ω)
}

are achieved and any minimizer is a positive weak solution to the elliptic equation
{

−∆u = λfi,ε(u), in Ω,

u ∈ H1
0 (Ω),
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see e.g. [2].

Lemma 3.1. There hold

mλ
1 ≥ −αλ|Ω|, lim

λ→+∞
λ−1mλ

1 = −α|Ω|,

mλ
i,ε ≥ −λ

α

k
|Ω|, lim

λ→+∞
λ−1mλ

i,ε = −α

k
|Ω|, i = 2, . . . , k,

where | · | denotes the Lebesgue measure in R
N .

Proof. We prove the result for mλ
i,ε, i ≥ 2; similar computations hold for mλ

1 . By

(2.3) we have

mλ
i,ε ≥ −λ

∫

Ω

(

∫ vi(x)

0
fi,ε(s)ds

)

dx ≥ −λ
α

k
|Ω|.

We are left to show that for any δ > 0 there exists φ ∈ H1
0 (Ω) such that

lim
λ→∞

λ−1Jλ
i,ε(φ) ≤ −α

k
|Ω|+ δ.

Let φ ∈ H1
0 (Ω) such that φ ≥ 0 a.e. in Ω and φ = β/

√
k on a set Ω′ ⊂ Ω satisfying

|Ω′| > |Ω| − δ. Then

λ−1Jλ
i,ε(εiφ) ≤ λ−1 ε

2
i

2

∫

Ω
|∇φ|2 − α

k
|Ω′| ≤ Cλ−1 +

α

k
(−|Ω|+ δ)

for some C > 0, and the result follows for λ large. �

According to the lemma above, we define λ0 as the smallest positive number
which is greater than λ1(Ω) and for which the following inequality holds

(3.1) λ−1mλ
1 < −α|Ω|

(

1− 1

2k

)

, ∀λ > λ0.

Lemma 3.2. Let H ∈ C1(Rk) satisfy (H1–2). Let (u1, . . . , uk) be a weak [H1
0 (Ω)]

k-
solution of the system (2.1). Then

0 ≤ ui(x) ≤ βi, for a.e. x ∈ Ω and all i = 1, . . . , k.

Proof. Testing (1.3) with −u−i and using (F1) and (H2), we obtain that ui ≥ 0 a.e.
in Ω for all i = 1, 2, . . . , k. On the other hand, by testing (1.3) with (ui − βi)

+ and
using (2.3) and (H2), we deduce the required inequality. �

Lemma 3.3. Let Ω be a bounded Lipschitz domain satisfying (D1–2). If u ∈ H1
0 (Ω)

weakly solves

−∆u ≤ λg(u), in Ω,

then, for a.e. x ∈ Ω,

u(x1, . . . , xN ) ≤ γ

(

x21 −m2
N
∑

i=2

x2i

)

.

with γ =
λ max[0,β] g

2(m2(N−1)−1)
.
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Proof. Let us denote the right hand side of the inequality by ũ(x1, . . . , xN ). By
simple computations, noticing that ũ is nonnegative on the boundary of T and
Ω ⊂ T , it is easy to verify that

{

−∆(ũ− u) ≥ λ max[0,β] g − λg(u) ≥ 0, in Ω,

ũ− u ≥ 0, on ∂Ω.

Testing the above inequality with −(ũ − u)− we deduce that u(x) ≤ ũ(x) for a.e.
x ∈ Ω. �

4. Proof of the main results.

4.1. Proof of Theorem 1.1. For U ∈ U , let E(U) be defined as in (1.1) with
Fi(s) =

∫ s

0 f(t) dt for all i and let

µ = inf
u∈H1

0 (Ω)

∫

Ω

(

1

2
|∇u(x)|2 − F (u)

)

dx,

By taking k-tuples of the form (u, 0, . . . , 0), we realize that

inf
U∈U∩H1

0 (Ω)
E(U) ≤ µ.

Assume there exists a minimizing k-tuple V = (v1, . . . , vk) ∈ U ∩H1
0 (Ω) and define

Ṽ = (ṽi, . . . , ṽk) where ṽ1 =
∑

i vi and ṽi = 0 for all i > 1. Then

µ ≥ E(V ) = E(Ṽ ) =

∫

Ω

(

1

2
|∇ṽ1(x)|2 − F (ṽ1(x))

)

dx ≥ µ

implying in particular that ṽ1 is a weak solution of −∆u = f(u) (see e.g. [2]). By
the Strong Maximum Principle, we deduce that either ṽ1 ≡ 0 (and then vi ≡ 0 for
all i = 1, . . . , k) or ṽ1(x) > 0 for a.e. x ∈ Ω and then k − 1 components of V must
be null.

4.2. Proof of Theorem 2.1. Let λ0 as in (3.1) and, for every fixed λ > λ0, let us
consider the minimization problem

Λ = inf
U∈[H1

0 (Ω)]k
Iλ,κ
ε

(U),

where Iλ,κε : [H1
0 (Ω)]

k → (−∞,+∞] is defined in (2.5).

Step 1. Λ is achieved. We first observe that, by (H1) and Lemma 3.1,

Iλ,κ
ε

(U) ≥ mλ
1 +

k
∑

i=2

mλ
i,ε ≥ −λα|Ω|

(

1 +
k − 1

k

)

for all U ∈ [H1
0 (Ω)]

k, hence Λ > −∞. Let
{

Vn = (vn1 , . . . , v
n
k )
}

n∈N be a minimizing

sequence, i.e. limn→+∞ Iλ,κε (Vn) = Λ. Notice that we can choose Vn such that
vni ≥ 0 a.e. in Ω for all i = 1, . . . , k; otherwise we take ((vn1 )

+, . . . , (vnk )
+) with

(vni )
+ := max{vni , 0}, which is another minimizing sequence. Indeed, in view of (2.3)

and (H2), the function t 7→ H(s1, . . . , si−1, t, si+1, . . . , sk) has a global minimum in
t = 0 thus yielding H(v+1 , . . . , v

+
k ) ≤ H(v1, . . . , vk). Besides, since the function

t 7→ H(s1, . . . , si−1, t, si+1, . . . , sk) is non decreasing in (0,+∞) from (F2) and (H2),



GLOBAL MINIMIZERS OF COEXISTENCE FOR COMPETING SPECIES 9

letting Un = (un1 , . . . , u
n
k) with uni = min{vni , βi}, we have that Iλ,κε (Un) ≤ Iλ,κε (Vn).

Then also
{

Un

}

n∈N is a minimizing sequence.

Since
{

Un

}

n∈N is a minimizing sequence and it is uniformly bounded, it is easy

to realize that
{

Un

}

n∈N is bounded in
[

H1
0 (Ω)

]k
; hence there exists a subsequence,

still denoted as
{

Un

}

n∈N, which converges to some U = (u1, . . . , uk) ∈
[

H1
0 (Ω)

]k

weakly in
[

H1
0 (Ω)

]k
, strongly in

[

L2(Ω)
]k

and a.e. in Ω. A.e. convergence implies
that 0 ≤ ui ≤ βi a.e. in Ω. From the Dominated Convergence Theorem, it follows
that

lim
n→+∞

∫

Ω
Fi,ε(u

n
i (x)) dx =

∫

Ω
Fi,ε(ui(x)) dx, for every i = 1, . . . , k,

lim
n→+∞

∫

Ω
H(un1 (x), . . . , u

n
k (x)) dx =

∫

Ω
H(u1(x), . . . , uk(x)) dx,

which, together with weak lower semi-continuity, yields

Λ ≤ Iλ,κ
ε

(U) ≤ lim inf
n→+∞

Iλ,κ
ε

(Un) = lim
n→+∞

Iλ,κ
ε

(Un) = Λ,

thus proving that U attains Λ.

Step 2. If U = (u1, . . . , uk) is a minimizer attaining Λ, then

(4.1) u1 6≡ 0, and Jλ
1 (u1) < −αλ|Ω|

2k
< 0.

Indeed, letting u ∈ H1
0 (Ω) such that mλ

1 = Jλ
1 (u), we have

Λ ≤ Iλ,κ
ε

(u, 0, . . . , 0) = Jλ
1 (u) = mλ

1 .

Besides, appealing to Lemma 3.1 we learn that

k
∑

i=2

Jλ
i,ε(ui) ≥

k
∑

i=2

mλ
i,ε ≥ −αλ|Ω|k − 1

k
.

Since Λ = Iλ,κε (U) ≥ Jλ
1 (u1) +

∑k
i=2 J

λ
i,ε(ui) by (H1), choosing λ as in (3.1) we

finally have

Jλ
1 (u1) ≤ mλ

1 −
k
∑

i=2

Jλ
i,ε(ui) < −αλ|Ω|

(

1− 1

2k
− k − 1

k

)

= −αλ|Ω|
2k

< 0,

thus proving the estimate in (4.1), which in particular ensures u1 6≡ 0.

Step 3. If U = (u1, . . . , uk) is a minimizer attaining Λ, then ui 6≡ 0 for all i =
1, . . . , k. We already know by step 2 that u1 6≡ 0. Moreover, by standard Critical
Point Theory, U = (u1, . . . , uk) is a weak solution to (2.1), and hence, by Lemma
3.2, 0 ≤ ui(x) ≤ βi for all i = 1, . . . , k and a.e. x ∈ Ω. Assume by contradiction
that

(4.2) ui ≡ 0 for some i > 1.

Let us fix x0 ∈ Ω and r,R > 0 such that B(x0, r) ⊂ Ω ⊂ B(0, R) and define

wi(x) =
εi√
k
u1(εi

−1(x− x0)).
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Notice that wi ∈ H1
0 (Ai) where

Ai =

{

x ∈ R
N :

x− x0
εi

∈ Ω

}

.

Moreover |Ai| = εNi |Ω| and Ai ⊂ B(x0, Rεi), which implies Ai ⊂ Ω if εi <
r
R
. In

particular wi ∈ H1
0 (Ω) if εi <

r
R
. From Lemma 3.2,

(4.3) 0 ≤ wi(x) ≤
β εi√
k

for a.e. x ∈ Ai.

Since
∫ wi(x)

0
fi,ε(s)ds =

1√
kεi

∫ wi(x)

0
g(
√
k ε−1

i s)ds =
1

k

∫ u1(ε
−1
i (x−x0))

0
g(t)dt,

from (4.1) it follows

Jλ
i,ε(wi) =

∫

Ai

(

1

2
|∇wi(x)|2 − λ

∫ wi(x)

0
fi,ε(s)ds

)

dx(4.4)

=

∫

Ai

(

1

2k

∣

∣

∣

∣

∇u1

(

x− x0
εi

)∣

∣

∣

∣

2

− λ

k

∫ u1(ε
−1
i (x−x0))

0
g(s)ds

)

dx

=
εNi
k

∫

Ω

(

1

2
|∇u1(x)|2 − λ

∫ u1(x)

0
g(s)ds

)

dx

=
εNi
k
Jλ
1 (u1) < −εNi

αλ |Ω|
2k2

.

We now claim that, letting

W = (u1, . . . , ui−1, wi, ui+1, . . . , uk),

there holds Iλ,κε (W ) < Iλ,κε (U) provided εi is small enough. Indeed

Iλ,κ
ε

(W )− Iλ,κ
ε

(U) = Jλ
i,ε(wi) + κ

∫

Ai

(

H(W (x))−H(U(x))
)

dx.(4.5)

From (H2) it follows that the function t 7→ H(s1, . . . , si−1, t, si+1, . . . , sk) is non
decreasing in (0,+∞), hence, in view of (4.3),

0 ≤ H(W (x))−H(U(x))(4.6)

= H(u1(x), . . . , ui−1(x), wi(x), ui+1(x), . . . , uk(x))

−H(u1(x), . . . , ui−1(x), 0, ui+1(x), . . . , uk(x))

≤ H
(

u1(x), . . . , ui−1(x),
βεi√
k
, ui+1(x), . . . , uk(x)

)

−H(u1(x), . . . , ui−1(x), 0, ui+1(x), . . . , uk(x)).

Since the restriction of H to the cube [0, β]k is uniformly continuous, it admits a
modulus of continuity, i.e. there exists a function ω : [0,+∞) → [0,+∞] such that
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limt→0+ ω(t) = 0 and |H(X) −H(Y )| ≤ ω(|X − Y |) for all X,Y ∈ [0, β]k. Hence,
from (4.6) we derive

0 ≤ H(W (x))−H(U(x)) ≤ ω

(

βεi√
k

)

.(4.7)

Combining (4.4), (4.5), and (4.7), we obtain that

Iλ,κ
ε

(W )− Iλ,κ
ε

(U) < −εNi
αλ |Ω|
2k2

+ κεi
N |Ω|ω

(

βεi√
k

)

which is strictly negative if εi is small enough to satisfy

(4.8) ω

(

βεi√
k

)

<
αλ

2k2κ
.

This concludes the proof.

4.3. Proof of Theorem 2.3. Let k ≥ 2 and λ ≥ λ0 be fixed as in (3.1).
Assume by contradiction that the minimum of Eλ

ε
on U ∩ H1

0 (Ω) is achieved by a
k–tuple U = (u1, . . . , uk) with only one nontrivial component. Reasoning as in (4.1)
it is easy to prove that u1 6≡ 0, hence we can assume uj ≡ 0 for all j > 1; notice that

u1 is in particular a global minimizer of Jλ
1 . The strategy leading a contradiction

consists in modifying u1 near the origin in order to create a new k-tuple V ∈ U with
a second non–vanishing component and

Eλ
ε
(V ) < Eλ

ε
(U)

for ε small. To this aim, let φ ∈ C2(R) be a cut–off function such that 0 ≤ φ ≤ 1
and

φ(s) =

{

0 s ≤ 1,

1 s ≥ 2.

Given δ ∈ (0, δ0) we set

Ωδ = {x ∈ Ω : x1 < δ}, Ω′
δ = {x ∈ Ω : δ < x1 < 2δ}.

Let us define

u1,δ(x) = φ(δ−1x1)u1(x),

which vanishes on Ωδ and belongs to H1
0 (Ω) since, for x ∈ Ω2δ,

∇u1,δ(x) = δ−1φ′(δ−1x1)u1(x)(1, 0, . . . , 0) + φ(δ−1x1)∇u1(x).

The growth of energy occurring when substituting u1 in the minimizing k-tuple with
u1,δ can be estimated as follows. Observing first that F1(u1,δ) > 0 by Lemma 3.2,
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and F1(s) ≤ Γs2 for some Γ > 0 by (F1–2), we have

Jλ
1 (u1,δ)− Jλ

1 (u1)

≤
∫

Ω2δ

1

2

(

|∇u1,δ(x)|2 − |∇u1(x)|2
)

dx+ λ

∫

Ω2δ

F1(u1(x)) dx

≤
∫

Ω′

δ

(

1

2
δ−2
(

φ′(δ−1x1)
)2
u21(x) + δ−1φ(δ−1x1)φ

′(δ−1x1)u1(x)
∂

∂x1
u1(x)

)

dx

+ Γλ

∫

Ω2δ

u21(x) dx.

An integration by parts provides

2

∫

Ω′

δ

φ(δ−1x1)φ
′(δ−1x1)u1(x)

∂

∂x1
u1(x) dx =

∫

Ω′

δ

φ(δ−1x1)φ
′(δ−1x1)

∂

∂x1
u21(x) dx

=

∫

∂Ω′

δ

φ(δ−1x1)φ
′(δ−1x1)u

2
1(x) dσ

− 1

δ

∫

Ω′

δ

(

(φ′(δ−1x1))
2 + φ(δ−1x1)φ

′′(δ−1x1)

)

u21(x) dx

≤ ‖φ′‖L∞(R)

∫

∂Ω′

δ

u21(x) dσ +
1

δ
(‖φ′‖2L∞(R) + ‖φ′′‖L∞(R))

∫

Ω′

δ

u21(x) dx

≤ M

∫

∂Ω′

δ

u21(x) dσ +
M

δ

∫

Ω′

δ

u21(x) dx,

for someM = M(φ) > 0. Appealing to Lemma 3.3 we have that u1(x) ≤ γx21 ≤ 4γδ2

for all x ∈ Ω2δ. Hence we have the following estimate:

Jλ
1 (u1,δ)− Jλ

1 (u1)

≤ |Ω2δ|
(

1

2
δ−2M(4γδ2)2 + Γλ(4γδ2)2 +

1

2
δ−2M(4γδ2)2

)

+
1

2
δ−1M |∂Ω′

δ|N−1(4γδ
2)2

≤ CδN+2,

for some C > 0. Now fix any i > 1, set

(4.9) vi(x) =
εi√
k
u1(εi

−1x),

and define V = (v1, . . . , vk) where

(4.10) v1(x) = u1,εi(x) = φ(ε−1
i x1)u1(x),

and vj ≡ 0 if j 6= 1, i. Notice that v1 · vi = 0 by construction, so that V ∈ U and
hence H(v1, . . . , vk) = 0 by (H3). Besides, by the above computations with δ = εi
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and arguing as in (4.4) to estimate Jλ
i,ε(vi), we have

Eλ
ε
(V )− Eλ

ε
(U) = Jλ

1 (v1)− Jλ
1 (u1) + Jλ

i,ε(vi)(4.11)

≤ εNi
k
Jλ
1 (u1) + CεN+2

i

≤ εNi

(

− αλ |Ω|
2k2

+ Cε2i

)

,

which is strictly negative for εi small and provides a contradiction.

4.4. Proof of Theorem 2.4.

Coexistence. Let k = 2 and κ > 0 be fixed. Arguing as in the proof of Theorem

2.1, we immediately obtain that the global minimum of Iλ,κε is achieved for all κ > 0.

Assume by contradiction that the global minimum of Iλ,κε on [H1
0 (Ω)]

2 is achieved
by a pair of the form Uκ = (uκ1 , 0) (recall that by (4.1) the first component of any
minimizer must be nontrivial). Arguing exactly as in the proof of Theorem 2.3, we
define a new pair V κ = (vκ1 , v

κ
2 ) by setting

vκ1 (x) = φ(ε−1
2 x1)u

κ

1 (x), vκ2 (x) =
ε2√
2
uκ1 (ε2

−1x),

as in (4.10) and (4.9) respectively. Since vκ1 and vκ2 have disjoint supports, by (H3) it

holds H(vκ1 , v
κ
2 ) = 0 and no interaction term appears in the evaluation of Iλ,κε (V κ).

Hence

Iλ,κ
ε

(V κ)− Iλ,κ
ε

(Uκ) = Jλ
1 (v

κ

1 )− Jλ
1 (u

κ

1 ) + Jλ
2,ε(v

κ

2 ),

and estimating as in (4.11), we find that Iλ,κε (V κ)− Iλ,κε (Uκ) is strictly negative for
ε2 sufficiently small, a contradiction. Hence, if ε2 is small enough, for any positive
value of κ the competing system (2.1) has a solution Uκ = (uκ1 , u

2
κ) with both

nonzero components which minimizes the energy Iλ,κε .

Asymptotic analysis. Let λ and ε be fixed and consider Uκ = (uκ1 , u
κ
2 ) such that

Iλ,κ
ε

(Uκ) = Λκ = inf
U∈[H1

0 (Ω)]2
Iλ,κ
ε

(U).

The convergence of Uκ to a minimizer of Eλ
ε
on U ∩H1

0 (Ω) can be proven as in [5,
Theorem 2.3], with minor changes. For the reader’s convenience, we report some

details. Notice first that evaluating Iλ,κε (U) for all U ∈ U annihilates the interaction
term in light of (H3), so that

(4.12) Λκ ≤ min{Eλ
ε
(U), U ∈ U} =: c,

hence we have

‖Uκ‖2[H1
0 (Ω)]2 ≤ 2Λκ + 2|Ω|λ

∑

i

∫ βi

0
fi,ε(s)ds ≤ 2c+ 3|Ω|λα.

Then uκi is bounded in H1
0 (Ω) uniformly with respect to κ, and there exists ui ≥ 0

such that, up to subsequences, uκi ⇀ ui weakly in H1
0 (Ω) and uκi (x) → ui for almost
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every x as κ → +∞. Let us now multiply the equation of uκi times uκi on account of

the boundary conditions: then κ
∫

Ω uκi
∂H
∂si

(uκ1 , u
κ
2 ) is bounded uniformly in κ, giving

∫

Ω
uκi (x)

∂H

∂si
(uκ1 (x), u

κ

2 (x)) dx → 0, as κ → ∞.

By (H2) and the Dominated Convergence Theorem (recall that 0 ≤ uκi ≤ βi) we
infer that

ui(x)
∂H

∂ui
(u1(x), u2(x)) = 0 a.e. x ∈ Ω,

implying in light of (H3) that u1(x) · u2(x) = 0 and hence U = (u1, u2) ∈ U . Now

notice that for κ ≤ κ
′ it holds Λκ ≤ Λκ′ ≤ c, hence the following chain of inequalities

holds:

c ≥ lim
κ→∞

Λκ = lim
κ→∞

Iλ,κ
ε

(Uκ)

= lim sup
κ→∞

[ 2
∑

i=1

{

1

2

∫

Ω
|∇uκi (x)|2dx− λ

∫

Ω
Fi,ε(u

κ

i (x)) dx

}

+ κ

∫

Ω
H(uκ1 (x), u

κ

2 (x))dx

]

≥ lim sup
κ→∞

2
∑

i=1

{

1

2

∫

Ω
|∇uκi (x)|2dx− λ

∫

Ω
Fi,ε(u

κ

i (x)) dx

}

≥ lim inf
κ→∞

2
∑

i=1

{

1

2

∫

Ω
|∇uκi (x)|2dx− λ

∫

Ω
Fi,ε(u

κ

i (x)) dx

}

≥
2
∑

i=1

{

1

2

∫

Ω
|∇ui(x)|2dx− λ

∫

Ω
Fi,ε(ui(x)) dx

}

= Eλ
ε
(U) ≥ c.

Therefore all the above inequalities are indeed equalities. In particular Eλ
ε
(U) = c,

meaning that U is a global minimizer of Eλ
ε
.

Moreover, we learn that limκ→+∞ ‖Uκ‖[H1
0 (Ω)]2 = ‖U‖[H1

0 (Ω)]2 which implies that

the weak convergence of Uκ to U is actually strong in [H1
0 (Ω)]

2.
Finally, to prove that both the components of V are positive, we appeal to Theo-

rem 2.3 in the case k = 2, ensuring that for ε2 small any global minimizer of Eλ
ε
on

U ∩ [H1
0 (Ω)]

2 has two nontrivial components.
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