
A Pixel-Based Framework for Data-Driven Clothing

Ning Jin1, Yilin Zhu1, Zhenglin Geng1, and Ronald Fedkiw1,2

1Stanford University, 2Industrial Light & Magic
{njin19,yilinzhu,zhenglin}@stanford.edu, fedkiw@cs.stanford.edu

Abstract

With the aim of creating virtual cloth deformations more
similar to real world clothing, we propose a new com-
putational framework that recasts three dimensional cloth
deformation as an RGB image in a two dimensional pat-
tern space. Then a three dimensional animation of cloth is
equivalent to a sequence of two dimensional RGB images,
which in turn are driven/choreographed via animation pa-
rameters such as joint angles. This allows us to leverage
popular CNNs to learn cloth deformations in image space.
The two dimensional cloth pixels are extended into the real
world via standard body skinning techniques, after which
the RGB values are interpreted as texture offsets and dis-
placement maps. Notably, we illustrate that our approach
does not require accurate unclothed body shapes or robust
skinning techniques. Additionally, we discuss how stan-
dard image based techniques such as image partitioning for
higher resolution, GANs for merging partitioned image re-
gions back together, etc., can readily be incorporated into
our framework.

1. Introduction
Virtual clothing has already seen widespread adoption

in the entertainment industry including feature films (e.g.,
Yoda [12], Dobby [13], Monsters, Inc. [7]), video games
(e.g., [21, 37, 39, 40, 57, 58]), and VR/AR and other real-
time applications (e.g., [31, 53, 68, 70]). However, its po-
tential use in e-commerce for online shopping and virtual
try-on is likely to far surpass its use in the entertainment in-
dustry especially given that clothing and textiles is a three
trillion dollar industry1. Whereas games and real-time ap-
plications can use lower quality cloth and films have the lux-
ury of a large amount of time and manual efforts to achieve
more realistic cloth, successful e-commerce clothing appli-
cations demand high quality predictive clothing with fast
turnaround, low computational resource usage, and good
scalability.

1https://fashionunited.com/
global-fashion-industry-statistics

Although there have been many advances in cloth simu-
lation, the ability to match real cloth of a specific material,
especially with highly detailed wrinkling, hysteresis, etc. is
rather limited. Moreover, contact and collision approaches
typically lack physical accuracy due to unknown parameters
dependent on a multitude of factors even including body
hair density and garment thread friction. Thus, while em-
bracing simulation and geometric techniques wherever pos-
sible, we pursue a new paradigm approaching clothing on
humans in a fashion primarily driven by data at every scale.
This is rather timely as 3D cloth capture technology is start-
ing to seem very promising [17, 61, 63].

Motivated by a number of recent works that view cloth
deformations as offsets from the underlying body [26, 59,
61, 71] as well as the recent phenomenal impact of convo-
lutional neural networks for image processing [28, 42, 51,
62, 64, 66], we recast cloth deformation as an image space
problem. That is, we shrink wrap a cloth mesh onto the un-
derlying body shape, viewing the resulting shrink-wrapped
vertex locations as pixels containing RGB values that rep-
resent displacements of the shrink-wrapped cloth vertices
from their pixel locations in texture and normal coordinates.
These cloth pixels are barycentrically embedded into the tri-
angle mesh of the body, and as the body deforms the pixels
move along with it; however, they remain at fixed locations
in the pattern space of the cloth just like standard pixels on
film. Thus, cloth animation is equivalent to playing an RGB
movie on the film in pattern space, facilitating a straightfor-
ward application of CNNs. Each cloth shape is an image,
and the animation parameters for joint angles are the chore-
ography that sequences those images into a movie of de-
forming cloth.

Although we leverage body skinning [5, 36, 38, 52, 54]
to move the cloth pixels around in world space, we are not
constrained by a need to ascertain the unclothed body shape
accurately as other authors aim to [59, 61]. Of course, an
accurate unclothed body shape might reduce variability in
the cloth RGB image to some degree, but it is likely that
CNN network efficacy will advance faster than the tech-
nology required to obtain and subsequently accurately pose
unclothed body shapes. Even if consumers were willing to
provide more accurate unclothed body data or inferences

1

ar
X

iv
:1

81
2.

01
67

7v
1

 [
cs

.C
V

]
 3

 D
ec

 2
01

8

https://fashionunited.com/global-fashion-industry-statistics
https://fashionunited.com/global-fashion-industry-statistics

of their unclothed body forms improve, it is still difficult
to subsequently pose such bodies to create accurate shapes
governed by animation parameters such as joint angles. In
contrast, we demonstrate that CNNs can learn the desired
clothing shapes even when unclothed body shapes are inten-
tionally modified to be incorrect, thus providing some im-
munity to problematic skinning artifacts (e.g., candy wrap-
per twisting [33, 36, 38]).

2. Related Work
Skinning: Linear blend skinning (LBS) [46, 54] is per-

haps the most popular skinning scheme used in animation
software and game engines. Although fast and computa-
tionally inexpensive, LBS suffers from well-known artifacts
such as candy wrapper twisting, elbow collapse, etc., and
many works have attempted to alleviate these issues, e.g.,
spherical blend skinning (SBS) [38], dual-quaternion skin-
ning (DQS) [36], stretchable and twistable bones skinning
(STBS) [33], optimzied centers of rotations [47], etc. An-
other line of works explicitly model pose specific skin de-
formation from sculpted or captured example poses. For
example, pose space deformation (PSD) [48] uses radial ba-
sis functions to interpolate between artist-sculpted surface
deformations, [44] extends PSD to weighted PSD, and [4]
uses k-nearest neighbor interpolation. EigenSkin [43] con-
structs compact eigenbases to capture corrections to LBS
learned from examples. The SCAPE model [5] decom-
poses pose deformation of each mesh triangle into a rigid
rotation R from its body part and a non-rigid deformation
Q and learns Q as a function of nearby joints, and Blend-
SCAPE [32] extends this expressing each triangle’s rigid
rotation as a linear blend of rotations from multiple parts.
[52] learns a statistical body model SMPL that skins the
body surface from linear pose blendshapes along with iden-
tity blendshapes. More recently, [6] uses neural networks to
approximate the non-linear component of surface mesh de-
formations from complex character rigs to achieve real-time
deformation evaluation for film productions. Still, skinning
remains one of the most challenging problems in the ani-
mation of virtual characters; thus, we illustrate that our ap-
proach has the capability to overcome some errors in the
skinning process.

Cloth Skinning and Capture: A number of authors
have made a library of cloth versus pose built primarily on
simulation results and pursued ways of skinning the cloth
for poses not in the library. [68] looks up a separate wrin-
kle mesh for each joint and blends them, and similarly [70]
queries nearby examples for each body region and devises a
sensitivity-optimized rigging scheme to deform each exam-
ple before blending them. [39] incrementally constructs a
secondary cloth motion graph. [21] learns a linear function
for the principal component coefficients of the cloth shape,
and [27] runs subspace simulation using a set of adaptive

bases learned from full space simulation data. Extending
the SCAPE model to cloth, [26] decomposes per-triangle
cloth deformation into body shape induced deformation D,
rigid rotation R, and non-rigid pose induced deformation
Q, and applies PCA on D and Q to reduce dimensional-
ity. Whereas [26] treats the cloth as a separate mesh, [59]
models cloth as an additional deformation of the body mesh
and learns a layered model. More recently [61] builds a
dataset of captured 4D sequences and retargets cloth de-
formations to new body shapes by transfering offsets from
body surfaces. The aforementioned approaches would all
likely achieve more realistic results using real-world cloth
capture as in [45, 61] as opposed to physical simulations.

Networks: Some of the aforementioned skinning type
approaches to cloth and bodies learn from examples and
therefore have procedural formulas and weights which of-
ten require optimization in order to define, but here we
focus primarily on methods that use neural networks in a
more data-driven as opposed to procedural fashion. While
we utilize procedural methods for skinning the body mesh
and subsequently finding our cloth pixel locations, we use
data-driven networks to define the cloth deformations; er-
rors in the procedural skinning are simply incorporated into
the offset function used to subsequently reach the data.
Several recent works used neural networks for learning
3D surface deformations for character rigs [6] and cloth
shapes [20, 45, 71]. In particular, [6, 71] input pose pa-
rameters and output non-linear shape deformations of the
skin/cloth, both using a fully connected network with a few
hidden layers to predict PCA coefficients. [20] takes in-
put images from single or multiple views and uses a con-
volutional network to predict 1000 PCA coefficients. [45]
takes a hybrid approach combining a statistical model for
pose-based global deformation with a conditional genera-
tive adversarial network for adding details on normal maps
to produce finer wrinkles.

Faces: Face deformations bear some similarities to body
skinning except there are only two bones with a single joint
connecting the skull and the jaw, and most of the param-
eters govern shape/expression. We briefly mention the re-
view paper on blendshapes [49] and refer the reader to that
literature for more discussions. However, the recently pro-
posed [23] has some similarities with our approach. They
use texture coordinates similar to ours, except that they store
the full 3D positions as RGB values, whereas our cloth pix-
els derive their 3D positions from the surface of a skinned
body mesh while storing offsets from these 3D positions as
RGB values. Extending our approach to faces, our pixels
would follow the shape of the skinned face as the jaw opens
and closes. The RGB values that we would store for the
face would only contain the offsets from the skinned cra-
nium and jaw due to blendshaped expressions. We would
not need to learn the face neutral (identity) shape or the

2

skinning, and the offset function would simply be identi-
cally zero when no further expressions were applied, reduc-
ing the demands on the network. Essentially, their method
is what computational mechanics refers to as “Eulerian”
where the computational domain is fixed, as opposed to
a “Lagrangian” method with a computational data struc-
ture that follows the motion of the material (e.g., using
particles). Our approach could be considered an Arbitrary
Lagrangian-Eulerian (ALE [55]) method where the compu-
tational domain follows the material partially but not fully,
i.e., our cloth pixels follow only the deformation captured
by body skinning.

3. Pixel-Based Cloth
We start by creating a texture map for the cloth mesh,

assigning planar UV coordinates to each vertex. For il-
lustration, we take the front side of a T-shirt mesh as an
example, see Figure 1a. Using UV space as the domain,
each vertex stores a vector-valued function of displacements
dx(u, v) = (∆u,∆v,∆n) representing perturbations in
the texture coordinate and normal directions. This can be vi-
sualized by moving each vertex by dx, see Figure 1b. These
displacements can be conveniently interpreted as RGB col-
ors stored at vertex locations in this pattern space; thus, we
will refer to these vertices as cloth pixels, see Figure 1c.
Note that the RGB colors of the cloth pixels may con-
tain values not in the visible range using HD image for-
mats, floating point representations, etc. This framework
allows us to leverage standard texture mapping [11, 16, 29]
as well as other common approaches, such as using bump
maps [10] to perturb normal directions and displacement
maps [19] to alter vertex positions; these techniques have
been well-established over the years and have efficient im-

plementations on graphics hardware enabling us to hijack
and take advantage of the GPU-supported pipeline for opti-
mized performance.

4. Cloth Images
As can be seen in Figure 1a and 1c, the cloth pixels are

located at vertex positions and are connected via a trian-
gle mesh topology. CNNs exploit spatial coherency and
such methods can be applied here using graph learning tech-
niques [14, 15, 22, 30, 56], see in particular [67]. Alterna-
tively, since our cloth pixels have fixed UV coordinates in
the two dimensional pattern space, we may readily interpo-
late to a uniform background Cartesian grid of pixels us-
ing standard triangle rasterization ([24]) with some added
padding at the boundaries to ensure smoothness (see Fig-
ure 2), thus facilitating more efficient application of stan-
dard CNN technologies especially via GPUs.

Note that we convert all our training data into pixel-
based cloth images and train on those images directly, so
that the networks learn to predict 2D images, not 3D cloth
shapes. If one wanted to connect animation parameters to
cloth vertex positions in a more fully end-to-end manner,
then the interpolatory approach back and forth between the
triangle mesh vertices and the pixels on the Cartesian grid
would potentially require further scrutiny. For example, the
fluid dynamics community takes great care in addressing
the copying back and forth of data between particle-based
data structures (similar to our cloth pixels in Figure 1c) and
background grid degrees of freedom (similar to our cloth
image in Figure 2). Most notable are the discussions on
PIC/FLIP, see e.g. [34].

Quite often one needs to down-sample images, which
creates problems for learning high frequency details. In-

(a) (b) (c)

Figure 1: Left: Triangle mesh depicted in texture space using the vertices’ UV coordinates. Middle: depiction of the
displacement via (u, v, 0) +dx for each vertex. Right: visualization of the displacement field dx converted into RGB values
normalized to the visible [0, 255] range and plotted at each vertex.

3

Figure 2: Standard uniform Cartesian grid of pixels for our
cloth image. We add some padding to ensure smoothness
on the boundaries for convolutional filters.

stead, we use a support “cage” to divide the cloth mesh into
smaller patches to aid the learning process, see Figure 3.
This notion of a cage and patch based cloth is quite power-
ful and is useful for capture, design, simulation, blendshape
systems, etc. (see Appendix C for more discussions). While
cloth already exhibits spatially invariant physical proper-
ties making it suitable for convolutional filters and other
spatially coherent approaches, further dividing it into se-
mantically coherent individual patches allows a network
to enjoy a higher level of specialization and performance.
The only caveat is that one needs to take care to maintain
smoothness and consistency across patch boundaries, but
this can be achieved using a variety of techniques such as
GANs [25, 50], image inpainting [8, 72], PCA filtering, etc.

5. Skinning Cloth Pixels
While the cloth pixels have fixed UV locations in their

2D pattern space, their real-world 3D positions change as
the body moves. We generate real-world positions for the

Figure 3: Left: front side of a T-shirt mesh divided into
patches by a “cage” (depicted as black edges). Right: the
triangulated cloth pixels and corresponding RGB cloth im-
age for the highlighted patch.

cloth pixels by barycentrically embedding each of them into
a triangle of the body mesh. Then as the body mesh de-
forms, the real-world locations of the cloth pixels move
along with the triangles they were embedded into. Figure 4
top row shows the pixel RGB values from Figure 1c em-
bedded into the rest pose and a different pose. Applying the
dx offsets depicted in Figure 1b to the real-world pixel lo-
cations in Figure 4 top row yields the cloth shapes shown
in Figure 4 bottom row. In Figure 5, we show the process
reversed where the cloth shape shown in Figure 5 left is
recorded as dx displacements and stored as RGB values on
the cloth pixels embedded in the body mesh, see Figure 5
middle. These pixel RGB values in turn correspond to a
cloth image in the pattern space, see Figure 5 right.

In order to obtain barycentric embeddings of the cloth
pixels to the triangles of the body mesh, we start in a rest
pose and uniformly shrink the edges of the cloth mesh mak-
ing it skin-tight on the body. Since this preprocessing step
is only done once, and moreover can be accomplished on
a template mesh, we take some care in order to achieve a
good sampling distribution of the body deformations that
drive our cloth image. Note that our formulation readily
allows for more complex clothing (such as shirts/jacket col-
lars) to be embedded on the body with overlapping folds
in a non-one-to-one manner, i.e., the inverse mapping from

Figure 4: Top: the cloth pixels are shown embedded into
body triangles with RGB values copied over from Figure 1c
in the rest pose (top left) and a different pose (top right).
Bottom: The final cloth shapes obtained by adding displace-
ments dx depicted in Figure 1b to the cloth pixel locations
in the top row.

4

Figure 5: Left: part of a 3D cloth shape. Middle: cloth
pixels embedded on the body mesh storing displacements
dx as RGB values. Right: corresponding cloth image in
the two dimensional pattern space.

the body texture coordinates to the cloth texture coordinates
does not need to exist. See Appendix A for more details.

One might alternatively skin the cloth as discussed in
Section 2 to obtain a candidate cloth shape, and embed our
cloth pixels into the real-world skinned cloth shape, learn-
ing offsets from the skinned cloth to the simulated or cap-
tured cloth. The difficulty with this approach is that much of
the example-based cloth can behave in quite unpredictable
ways making it difficult for a network to learn the offset
functions. Thus we prefer to embed our pixels into the body
geometry which deforms in a more predictable and smooth
manner. Moreover, this allows us to leverage a large body
of work on body skinning as opposed to the much smaller
number of works that consider cloth skinning.

An interesting idea would be to learn the cloth shape
in a hierarchical fashion, first obtaining some low resolu-
tion/frequency cloth as offsets from the human body using
our image-based cloth, and then embedding pixels in that
resulting cloth mesh, subsequently learning offsets from it
for higher resolution. We instead prefer analyzing the result
from our image based cloth using a number of techniques
including compression [35] to see where it might require
further augmentation via for example data based wrinkle
maps. That is, we do not feel that the same exact approach
should be applied at each level of the hierarchy, instead pre-
ferring more specialized approaches at each level using do-
main knowledge of the interesting features as well as the
ability to incorporate them.

6. Network Considerations
Given input pose parameters, we predict cloth images on

the Cartesian grid of pixels in the pattern space. These im-
ages represent offsets dx from the pixels embedded to fol-
low the body as opposed to global coordinates so that one
does not need to learn what can be procedurally incorpo-
rated via body skinning (as discussed in Section 2 in regards
to faces). Moreover, dx is parameterized in local geodesic
coordinates u and v as well as the normal direction n in

order to enable the representation of complex surfaces via
simpler functions, e.g., see Figure 6; even small perturba-
tions in offset directions can lead to interesting structures.

Figure 6: An ellipse with simple constant function offsets
in the normal direction, for three different constant values.
(well-known swallowtail structure2)

Although fully connected networks have been a common
choice for generating dense per-vertex 3D predictions such
as in [6, 71], coalescing a 2D triangulated surface into a 1D
vector forgos potentially important spatial adjacency infor-
mation and may lead to a bigger network size as pointed
out in [23]. A commonly employed remedy resorts to lin-
ear dimensionality reduction methods such as PCA to re-
cover some amount of spatial coherency and smoothness
in the output, as the regularized network predicts a small
number of PCA coefficients instead of the full degrees of
freedom. Alternatively, our pixel-based cloth framework
leverages convolutional networks that are particularly well-
suited for and have demonstrated promising results in tasks
in the image domain where the filters can share weights and
exploit spatial coherency; our convolutional decoder takes a
1D vector of pose parameters and gradually upsamples it to
the target resolution via transpose convolution operations.
As a side note, in Appendix E.3, we illustrate that our cloth
pixel framework offset functions can be approximated via a
lower dimensional PCA basis, which is amenable to train-
ing and prediction via a fully connected network.

Our base loss is defined on the standard Cartesian grid
image pixels weighted by a Boolean mask of the padded UV
map. One can use different norms for this loss, and empiri-
cally we find that while L1 leads to slightly better quantita-
tive metrics thanL2, their visual qualities are rougly similar.
Noting that normal vectors are important in capturing sur-
face details, we experiment with incorporating an additional
loss term on the per-vertex normals.

7. Experiments
Dataset Generation: For the T-shirt examples, we gen-

erate 20K poses for the upper body by independently sam-
pling rotation angles along each axis for the 10 joints from
a uniformly random distribution in their natural range of
motion, and then applying a simple pruning procedure to
remove invalid poses, e.g., with severe nonphysical self-
penetrations. We divided the dataset into a training set (16k

2See for example page 21 of [65].

5

Figure 7: Network predictions/errors (blue = 0, red > 1 cm)
from models trained with different loss functions. While L1

and L2 loss on the pixels behave similarly, adding a loss
term on the normals yields better visual quality. From left
to right: L1 on the pixels; L2 on the pixels; L2 on the pixels
and cosine on the normals; ground truth.

samples), a regularization set (2K samples to prevent the
network from overfitting), and a test set (2K samples that
the optimization never sees during training). The test set is
used for model comparisons in terms of loss functions and
network architectures, and serves as a proxy for generaliza-
tion error. See Appendix D for more details.

Architecture, Training, and Evaluation: Our convo-
lutional decoder network takes in 1 × 1 × 90 dimensional
input rotation matrices, and applies transpose convolution,
batch normalization, and ReLU activation until the target
output size of 256×256×6 is reached, where 3 output chan-
nels represent offset values for the front side of the T-shirt
and 3 channels represent those of the back. The models are

Figure 8: Dataset average per cloth pixel errors on
the front/back side of the T-shirt. Top row: model
trained on whole T-shirts (training/generalization error is
0.37 cm/0.51 cm). Bottom row: models trained on patches
(training/generalization error is 0.20 cm/0.46 cm).

Figure 9: Network predictions and errors on training set and
test set examples using our best loss model.

trained using the Adam optimizer [41] with 10−3 learning
rate. Our implementation uses the PyTorch [60] platform,
and the code will be made publicly available along with the
dataset. The best visual results we obtained were from mod-
els that used additional losses on the normals, see Figure 7
for comparison. Figure 9 shows more examples in various
poses from both the training and the test set and their error
maps using our best loss model. It is interesting to observe
that the quantitative error metrics may not directly translate
to visual quality since slight visual shift of folds or wrinkles
can introduce big numerical errors. Figure 8 shows the av-
erage per cloth pixel model prediction errors on the training
and test set. Unsurprisingly, the biggest errors occur near
the sleeve seams and around the waist, where many wrin-
kles and folds form as one lifts their arms or bends. Finally,
to see how well our model generalizes to new input data,
we evaluated it on a motion capture sequence from [1], see
Figure 10 and accompanying video.

Figure 10: Evaluation on motion capture. Top: skeletal
poses. Middle: predicted cloth images. Bottom: predicted
cloth shapes.

6

Figure 11: Training the network on unclothed body shapes
that are too thin (left column) or too thick (right column)
does not hinder its ability to predict cloth shapes, as com-
pared to the ground truth (middle column). The cloth im-
ages (middle row) readily compensate for the incorrect un-
clothed body shape assumptions leading to similar cloth
shapes (bottom row) in all three cases.

Modified Body Shapes: The inability to obtain accurate
unclothed body shapes is often seen as a real-world impedi-
ment to e-commerce clothing applications. Our approach
embeds cloth pixels in the unclothed form and leverages
procedural body skinning techniques to move those cloth
pixels throughout space. This embedding of cloth pixels
provides spatial coherency for the CNN and alleviates the
need for the network to learn body shape (identity) and de-
formation. However, similar body shapes would tend to
deform similarly, especially if the dimensions aren’t too
different. Thus, we intentionally modified our unclothed
body shape making it too thick/thin in order to represent
inaccuracies in the assumed body shape of the user. For
each modified body shape, we use the same training data
for cloth shapes noting that this merely changes the values
of dx and thus the cloth image stored for each pose. As
compared to the high variance in dx caused by folds and
wrinkles, changing the body shape makes lower frequency
modifications that are not too difficult for the network to
learn. Surprisingly, the erroneously modified too thick/thin
body shapes had almost no effect on the network’s predic-
tion ability indicating that our approach is robust to inac-
curacies in the unclothed body shape. See Figure 11 and
Figure 13 left.

Skinning Artifacts: Whether using an accurate un-
clothed body shape or not, clearly body skinning is not a
solved problem; thus, we modified our skinning scheme
to intentionally create significant artifacts using erroneous
bone weights. Then, we trained the CNN as before noting

Figure 12: Training the network using a body skinning
method that contains artifacts (shown in blue) does not hin-
der its ability to predict cloth shapes as compared to the
ground truth (left column). The cloth images (middle row)
readily compensate (see regions annotated by circles) for
the skinning artifacts leading to similar cloth shapes (bot-
tom row) in all three cases.

that the cloth training images will be automatically modified
whenever skinning artifacts appear. The erroneous skinning
artifacts had almost no effect on the network’s prediction
ability indicating that our approach is robust to inaccuracies
in the body skinning. See Figure 12 and Figure 13 right.

Cloth Patches: As mentioned in Section 4, we can
segment the cloth mesh into smaller semantically coherent
pieces, and then train separate networks on these individ-
ual patches to achieve better results. Figure 8 shows that
the models trained on the patches yield lower errors. See
Figure 14 for visual comparison. One can use a variety
of methods to achieve visually continuous and smooth re-
sults across the patch boundaries. For example, one can
precompute the PCA bases of the whole mesh on the train-
ing samples, and then project the stitched mesh onto a sub-

Figure 13: The CNN predicts the correct cloth shape even
when the unclothed shapes are so erroneous that they pen-
etrate the clothing. In these cases, the network merely pre-
dicts offsets in the negative normal direction. Left: dressed
version of Figure 11 right. Right: dressed version of Fig-
ure 12 right.

7

Figure 14: Comparison of network predictions/errors from
model trained on whole T-shirts versus models trained on
patches. The latter can better capture folds and wrinkles.

set of those bases. Since the simulation/captured data do
not have kinks at patch boundaries, the PCA bases also will
not have kinks at boundaries unless one gets into ultra-high
frequency modes that represent noise; thus, reconstructing
the network predicted results using a not too high number
of PCA bases acts as a filter to remove discontinuities at
patch boundaries. In our experiments, using 2048 compo-
nents leads to the best filtering results, see Figure 15.

Necktie: For generality we also show a necktie example,
which unlike the T-shirt, exhibits much larger deformation
as the body moves; the maximum per-vertex offset value
can be over 50 centimeters. See Figure 16, and Appendix F
for more details.

8. Conclusion and Future Work
In conclusion, we have introduced a new flexible pixel-

based framework for representing virtual clothing shapes as
offsets from the underlying body surface, and further illus-
trated that this data structure is especially amenable to learn-
ing by convolutional neural networks in the image space.

Figure 15: PCA filtering on a stitched mesh from predicted
patches (an example from the test set).

Figure 16: Top left: triangle mesh of necktie in pattern
space. Top right: a necktie image. Bottom: network pre-
dictions of neckties in different poses (also, necktie pixels
are shown embedded on the skinned body mesh).

Our preliminary experiments show promising results with
CNNs successfully predicting garment shapes from input
pose parameters, and we are optimistic that the results could
be further improved with better and more advanced network
technologies.

For future work, we would like to leverage real-world
captured cloth data and generalize our approach to a larger
variety of garment types and materials as well as body
types. We would also like to explore alternative network ar-
chitectures, loss functions, and training schemes to enhance
the visual quality of the predictions. In addition, while our
evaluation on the motion capture sequence already appears
quite smooth in time, we would like to experiment with
techniques such as 3D CNNs and recurrent neural networks
to achieve better temporal coherency.

Acknowledgements
Research supported in part by ONR N000014-13-1-

0346, ONR N00014-17-1-2174, ARL AHPCRC W911NF-
07-0027, and generous gifts from Amazon and Toyota. In
addition, we would like to thank Radek Grzeszczuk for ini-
tiating conversations with Amazon and those interested in
cloth there, Andrew Ng for many fruitful discussions on
cloth for e-commerce, and both Reza and Behzad at ONR
for supporting our efforts into machine learning. Also,
we greatly appreciate the remarkable things that Jen-Hsun
Huang (Nvidia) has done for both computer graphics and
machine learning; this paper in particular was motivated
by and enabled by a combination of the two (and inspira-
tions from chatting with him personally). NJ is supported
by a Stanford Graduate Fellowship, YZ is supported by
a Stanford School of Engineering Fellowship, and ZG is
supported by a VMWare Fellowship. NJ would also like
to personally thank a number of people who helped con-
tribute to our broader efforts on data-driven cloth, including
Davis Rempe, Haotian Zhang, Lucy Hua, Zhengping Zhou,
Daniel Do, and Alice Zhao.

8

Appendices
A. Cloth/Body Texture Space

It is important to note that that we do not assume a one-
to-one mapping between the cloth texture coordinates and
the body texture coordinates; rather, we need only a map-
ping from the cloth texture space to the body texture space
(invertibility is not required). This allows for the ability to
handle more complex real-life clothing such as the collars
of shirts and jackets, which would naturally be embedded to
the shoulder/chest areas on the body causing them to over-
lap with other parts of the same garment (and/or other gar-
ments). See for example Figure 17.

Figure 17: Collars such as this one are more naturally as-
sociated with the chest than the neck. Our approach can
handle such a non-invertible many-to-one mapping from the
cloth texture space to the body texture space.

B. Image Editing
Our pixel-based cloth framework enables convenient

shape modification via image editing. Since the displace-
ment maps represent offsets from the locations of the em-
bedded cloth pixels on the skinned body surface, we can
achieve easy and rather intuitive control by manipulating
their RGB values in the image space. For example, adjust-
ing the brightness of the texture coordinates channels (red
and green) induces shifting of the cloth shape, whereas ad-
justing the normal directions channel (blue) leads to shrink-
ing or inflation. Moreover, one can add features to the cloth
shape by painting in image space, especially using a blue

brush that changes the offset values in the normal direc-
tions. Furthermore, one can transfer features from another
cloth image by selective image blending, e.g., adding wrin-
kle lines. See Figure 18 for a set of modified cloth shapes
resulting from image editing operations.

C. Cage and Patch Based Cloth
Given a cloth mesh, we can create a wire “cage” that de-

fines a support structure for its overall shape, e.g., by trac-
ing its intrinsic seams, characteristic body loops (e.g., chest,
waist, hip, arms), etc. See Figure 19a. The cage structure
conveniently divides the cloth surface into patches bound
by boundary curves, and this cage and patch based compu-
tational structure affords a hierarchical data-driven frame-
work where different specialized methods can be applied at
each level. Note that the same cage structure is also defined
on the body surface to facilitate correspondences, see Fig-
ure 19b.

(a) Cage structure defined on
a T-shirt mesh.

(b) Corresponding cage de-
fined on the body.

Figure 19: The cage is defined on the cloth mesh and the
body surface as a lower-dimensional support structure.

To obtain the shape of the cage when the clothing is
dressed on a person, one can interpolate from a set of sparse
marker/characteristic key points. That is, given the loca-
tions of the key points, one can reconstruct the cage. This
can be represented as a constrained optimization problem

Figure 18: Various image editing operations applied to a given cloth image (top row) and their corresponding modified cloth
shapes (bottom row). Note that although the wrinkle lines blended into the image in the last column are hard to see, the
resulting wrinkles are clearly visible.

9

to find a smooth curve that passes through the constraint
points. Specifically, one can interpolate the points with
a piecewise cubic spline curve while attempting to pre-
serve the geodesic lengths between each pair of neighbor-
ing points. Alternatively, one could train a neural network
to learn to recover the cage from the sparse points.

One can use the reconstructed cage as a boundary condi-
tion to fill in the surface patches using a variety of methods.
In particular, one can build a blendshapes basis for each
patch and select blendshape weights based on the shape of
the boundary cage. A cage vertex’s basis function can be
computed, for example, by solving a Poisson equation on
the patch interior with boundary conditions identically zero
except at that vertex where the boundary condition is set to
unity. Then, any perturbation of the cage can be carried to
its interior. For example, given the offsets of the cage from
its position on the skinned body in texture and normal co-
ordinates, one can evaluate the basis functions to quickly
compute offsets for the interior of the patch.

For a simple illustration, the boundary perturbation in
Figure 20a is extended to the patch interior using the Pois-
son equation basis functions to obtain the result shown in
Figure 20b. To achieve more interesting deformations, one
could use anisotropic Poisson equations to construct the ba-
sis functions. Figure 20c shows the boundary perturbation
in Figure 20a evaluated using anisotropic basis functions.
Also, see Figures 21, 22, and 23. One could also create
basis functions via quasistatic simulations.

(a) (b) (c)

Figure 20: An input boundary perturbation (a) can be used
in a blendshape basis to obtain interior patch deformations:
isotropic (b), anisotropic (c).

(a) boundary condition (b) patch shape

Figure 21: Two small perturbations on the boundary yields
two folds coming together.

(a) boundary condition (b) patch shape

Figure 22: A sine wave perturbation on the boundary yields
smooth wrinkles.

(a) boundary condition (b) patch shape

Figure 23: An S-shaped boundary yields an overturning
wave shape.

Moreover, one can use this cage structure as an inter-
mediary for designing and dressing garments onto the body
leveraging the correspondence to body curves shown in Fig-
ure 19.

D. Dataset Generation
D.1. Body Modeling

We use a commercial solution3 to scan a person in the
T-pose. The initially acquired mesh is manually remeshed
to a quad mesh, and then rigged to the skeleton shown in
Figure 24 using Blender [9].

Figure 24: Skeleton structure, bone name, and axis orienta-
tion definition.

3https://www.artec3d.com/

10

https://www.artec3d.com/

D.2. Intentionally Modified Body Shapes

In order to demonstrate the resilience of our network
predictions to errors due to an incorrect assumption of the
underlying body shape, we manually sculpted the scanned
body and generated a number of intentionally incorrect
body shapes. With the normal body shape designated 0 and
the manually sculpted body shape designated 1, we create
a shape change parameter that ranges from −1 to 2 as seen
in Figure 25. The plot shows data points for 7 of our tri-
als: the points at zero represent the original body shape,
and the other 6 pairs of points represent the results obtained
by training the network on the correct cloth shapes using
incorrect unclothed body shape assumptions.

Figure 25: Training and generalization average per-vertex
prediction errors (top plot) of models trained on offsets
computed from different underlying body shapes (bottom
row). As the body shape deviates from the true body shape
(0 on the x-axis), the performance of the trained models stay
roughly constant.

Also, note that the two versions of skinning with artifacts
used in the paper were created on the original rigged body
by manually painting weights of upper arm on the torso,
and painting weights of upper arm on both the torso and the
opposite arm, respectively.

D.3. Pose Sampling

While one could sample from an empirical distribution
learned from motion capture data (e.g., [1]), we prefer an
alternative sampling scheme in order to better cover the en-
tire space of possible poses that can affect the T-shirt shape.
Since we only focus on the T-shirt interaction with the hu-
man body, we define the skeleton structure only for the up-
per body, as shown in Figure 24. We fix the position and
rotation for the hip (root) joint, since we are mainly inter-
ested in static poses as a first step. We set the joint limits
according to [69], where each joint angle has both a posi-

tive limit and a negative limit for each rotation axis relative
to the rest T-pose. For the bones on the vertical center line
in Figure 24 (lower back, spine, spine1, neck, and neck1),
we sample the rotation angles for each axis from a mixture
of two half-normal distributions, each accounting for one
direction of the rotation. Since we don’t have such a strong
prior for shoulder and arm bones, their x-axis rotation an-
gles (azimuth) are uniformly sampled first, their z-axis ro-
tation angles (altitude) are then uniformly sampled in the
transformed space of the sine function, and finally their y-
axis rotation angles are also uniformly sampled. The rota-
tions are applied in the order of x, z, and y. Finally, a simple
pruning procedure is applied to remove poses with severe
nonphysical self-penetrations. This is accomplished by se-
lecting 106 vertices from both arm parts as shown in Fig-
ure 26 and testing if any of these vertices is inside the torso.
The distributions of the sampled joint angles are shown in
Figure 27.

Figure 26: The body is segmented into three overlapping
parts (left arm, right arm, and torso). The vertices selected
for collision detection are shown as light gray dots.

Figure 27: Plots of joint angle distributions in our dataset.

D.4. Mesh Generation

We carefully construct the rest state of our simulation
mesh to be faithful to real-world garments by employing a
reverse engineering approach where we cut up a garment
along its seam lines, scan in the pieces, and then digitally
stitch them back together, as shown in Figure 28. The T-
shirt triangle mesh is 67 cm long and contains 3K vertices.
Although we try to cut the clothing into pieces such that

11

each piece is as flat as possible to approximate flat design
patterns, this may not always be achievable and the flattened
versions thus obtained would not be in their intrinsic rest
states leading to errors in the simulation input and distor-
tions in the vertex UV map. However, such issues would
be largely alleviated if one could obtain the original flat pat-
terns from fashion designers.

Figure 28: Illustration of the garment mesh generation pro-
cess. Left: a T-shirt is cut into pieces. Middle: the pieces
are scanned in. Right: the digitally stitched T-shirt mesh.

D.5. Skinning the T-shirt

To shrink wrap the T-shirt onto the body, we first define
the cage structure on both the body and the T-shirt as shown
in Figure 19, and then compute displacements on the T-
shirt cage vertices that would morph them to the body cage;
these displacement values are used as boundary conditions
to solve a set of Poisson equations (see e.g. [3, 18]) for dis-
placements on T-shirt interior vertices. A level set is built
for the body for collision detection [13], and any T-shirt ver-
tices that are inside the body are detected and pushed out to
their closest points on the body surface.

Since the morphed T-shirt mesh can exhibit rather large
and non-uniform distortion, we run a simulation using a
mass-spring system to reduce distortion and achieve a bet-
ter set of barycentric embedding weights for the T-shirt ver-
tices, see Figure 29. This is done in an iterative manner.
At each step, while constraining the T-shirt mesh to stay on
the body surface, for each vertex v we compute the aver-
age ratio ᾱv = (1/ deg(v))

∑
e∈E(v)(le/l̄e) of the current

edge length le to the rest edge length l̄e over its incident
edges E(v). Then for each edge e with endpoints a and b,
its target edge length is set to (1/2)(αa + αb)l̄e. This pro-
cess essentially tries to equalize the amount of distortion for
the edges incident to the same vertex, and is repeated until
convergence.

D.6. Simulation

We simulate the T-shirt mesh on each sampled pose us-
ing a physical simulator [2] with gravity, elastic and damp-
ing forces, and collision, contact, and friction forces until
static equilibrium is reached. To make our simulation robust
to skinning artifacts that lead to cloth self-interpenetrations

Figure 29: Shrink wrapping a T-shirt mesh onto a body in
the rest pose. Left: shrink wrapped T-shirt mesh obtained
by solving a Poisson equation that uses a guide “cage” (in
blue) as a boundary condition to morph the T-shirt mesh
onto the body. Middle: this initial version has area distor-
tion, where red indicates stretching and blue indicates com-
pression. Right: after simulation, the distortion has been
reduced and more uniformly spread out so that the cloth
pixels can be embedded at better locations. Note that since
the T-shirt is constrained to be on the body surface, distor-
tion is not fully eliminated.

especially in the armpit regions, we decompose the body
into three parts: the left arm, the right arm, and the torso
(see Figure 26), and associate each cloth mesh vertex with
one body part as its primary collision body.

After running the simulations, we further run analysis on
the resulting cloth meshes and remove any shape that ex-
hibits large distortion to reduce noise in the function to be
learned. Specifically, if the area of any triangle in a sam-
ple compresses by more than 75% or expands by more than
100%, then we discard that sample. Figure 31 shows that
the amount of face area distortion is moderate (top), and the
amount of self-interpenetrations is very small in the dataset
(bottom). Figure 32 shows that the cleaned dataset contains
a similar distribution of poses as the original one. In line
with Appendix B and Figure 18, one could also use image
analysis on the cloth images in order to identify and prune
samples that are deemed undesirable.

This leads to a total of 20,011 samples that we use to
train and evaluate our models, see Figure 30 for some ex-
amples. We create a separate UV map for the front side and
the back side of the T-shirt.

D.7. Patches

There are 28 patches on the front and the back side of
the T-shirt (14 each). Whereas we train on 256× 256 cloth
images for the whole T-shirt, for each patch we make a
160×160 crop from a higher resolution 512×512 cloth im-
age centered at the center of its axis-aligned bounding box.
The cropped patch contains 16 pixels outside of the patch to
capture the surrounding context, and the loss is computed
on this enlarged patch.

12

Figure 30: Random samples from our generated dataset. First row: skeletal poses. Second row: three overlapping collision
bodies. Third row: simulated T-shirts. Fourth row: cloth pixels. Fifth row: cloth images (front side).

Figure 31: Mesh statistics of the simulated T-shirts. Top:
front and back side average face area distortion, measured
as the ratio of the current area to the rest area minus one.
Bottom: front and back side per-face self-interpenetrations,
measured as fraction of samples with self-interpenetrations
in the dataset.

E. Networks
E.1. Architecture

For predicting cloth images of the whole T-shirt, we start
with the 90 dimensional input pose parameters and first ap-

Figure 32: Visualization of selected joint angle histograms
from the dataset. Red and blue lines represent the original
and the filtered dataset respectively.

ply transpose convolution followed by ReLU activation to
obtain an initial 8×8×384 dimensional feature map. Then
we successively apply groups of transpose convolution (fil-
ter size 4× 4 and stride 2), batch normalization, and ReLU
activation until we reach the output resolution of 256×256.
Each time the spatial resolution doubles and the number of
channels halves. Finally, a convolution layer (filter size 3×3
and stride 1) brings the number of channels to 6. The net-
work contains 3.79 million parameters.

We use the same network architecture for all 28 patches.
We start with the 90 dimensional input pose parameters, and
first apply a linear layer to obtain a 5×5×512 dimensional
feature map. Then similar to the network for the whole T-
shirt, we successively apply groups of transpose convolu-

13

tion (filter size 4 × 4 and stride 2), batch normalization,
and ReLU activation until we reach the target resolution of
160×160. Again, a final convolution layer (filter size 3×3
and stride 1) brings the number of channels to 3. The net-
work contains 3.96 million parameters.

E.2. Loss Functions
The base loss term for grid pixel values is

Lgrid pix(I
pd, Igt) =

∑
i,j W (i, j)||Ipd(i, j)− Igt(i, j)||∑

i,j W (i, j)
, (1)

where Igt denotes ground truth grid pixel values, Ipd de-
notes predicted grid pixel values, W denotes the Boolean
padded mask of the UV map, and i, j are indices into the
image width and height dimensions.

The additional loss term for the normal vectors is

Lnormal(I
pd, Igt) =

1

Nv

∑
v

(1− npd
v (Ipd) · ngt

v), (2)

where we compute a predicted unit normal vector npd
v on

each vertex v using the predicted grid pixel values Ipd (by
first interpolating them back to cloth pixels and adding these
per-vertex offsets to their embedded locations to obtain pre-
dicted vertex positions) and use the cosine distance to the
ground truth unit normal vector ngt

v as the loss metric. Nv

is the number of vertices.
Table 1 shows the average per-vertex prediction errors

and the normal vector errors from our convolutional de-
coder network trained with different loss terms on our train-
ing set and test set. The weight on the loss on normal vec-
tors is set to 0.01.

Table 1: Average per-vertex position error (in cm) and unit
normal vector error (cosine distance) of our convolutional
decoder network trained with different loss functions. L1

and L2 refer to the loss function used on the Cartesian grid
pixels. N refers to normal loss.

Loss Training Error Generalization Error
Vertex Normal Vertex Normal

L1 0.33 0.020 0.44 0.027
L2 0.35 0.017 0.47 0.028
L2 + N 0.37 0.0075 0.51 0.029

E.3. Fully Connected Networks

We illustrate that our cloth pixel framework provides for
offset functions that can be approximated via a lower di-
mensional PCA basis, and that a fully connected network
can be trained and subsequently generalized to predict cloth
shapes. Furthermore, we compare functions of offsets rep-
resented in different spaces, as well as functions of positions

in the root joint frame. See Table 2 and Figure 33. We train
a fully connected network with two hidden layers each with
256 units and ReLU activation for all the functions. The
networks trained to predict PCA coefficients indeed have
better visual quality and deliver better training and general-
ization errors compared to the networks trained to directly
predict per-vertex values. Our experiments also show that
ReLU activation leads to faster convergence and similar re-
sults compared to the Tanh activation used in [6].

Table 2: Average per-vertex position error (in cm) of the
fully connected network trained with and without PCA in
different spaces. “Off. Loc.” refers to offsets represented in
local tangent-bitangent-normal frames. “Off. Root.” refers
to offsets represented in the root joint frame. “Pos. Root.”
refers to positions in the root frame.

Model Training Error Generalization Error
Off. Loc. Direct 0.65 0.67
Off. Loc. 128 PC 0.50 0.55
Off. Root. Direct 0.69 0.72
Off. Root. 128 PC 0.53 0.58
Pos. Root. Direct 0.63 0.68
Pos. Root. 128 PC 0.58 0.65

Figure 33: Comparison of fully connected network predic-
tions and errors from models trained on different functions
defined on our cloth pixels.

14

F. Neckties
Similar to the T-shirt dataset, we generate 9,999 poses

by randomly sampling rotation angles on 4 joints along the
center line (lower back, spine, neck, and neck1), i.e., our
input pose parameters are only 36 dimensional. The dataset
is divided into a training set of 7,999 poses, a regulariza-
tion set of 1,000 poses, and a test set of 1,000 poses. In
this example, we use one UV map for the entire mesh, and
since the necktie has a much narrower UV map in the tex-
ture space, we modify our network architecture to predict a
rectangular image with aspect ratio 1 : 4 and size 64× 256
containing 3 channels. L1 loss is used for the Cartesian grid
pixels. The weight on the normal loss is set to 0.1. We fur-
ther add an L1 loss term on the edge lengths with weight
0.1 to ensure a smooth boundary:

Ledge len(Ipd) =
1

Ne

∑
e

||lpde (Ipd)− lgte ||, (3)

where we compute a predicted edge length lpde for each
edge e using the predicted grid pixel values Ipd (also by
first interpolating them back to cloth pixels and adding
these per-vertex offsets to their embedded locations to ob-
tain predicted vertex positions) and compare to the ground
truth edge lengths lgte . Ne is the number of edges in the
mesh. We represent the offsets dx in the root joint frame,
i.e., (∆x,∆y,∆z), instead of the local tangent-bitangent-
normal frames (∆u,∆v,∆n). This is more natural for
the neckties, because unlike the T-shirts, they have a much
larger range of displacements from the body surface while
also exhibiting few high frequency wrinkles.

Since the neckties contain less high frequency variation
and the output image size is smaller, a smaller network is
used to learn the necktie images. Starting from the 36 di-
mensional input pose parameters, we first apply a linear
layer with 128 hidden units and then apply another linear
layer to obtain a 8 × 8 × 64 dimensional feature map. Af-
ter that, we successively apply groups of transpose convo-
lution, batch normalization, and ReLU activation as above
until we reach the target resolution of 64 × 256. Then, a
final convolution layer (filter size 3× 3 and stride 1) brings
the number of channels to 3. The network contains 2.16
million parameters.

References
[1] Cmu graphics lab motion capture database. http://

mocap.cs.cmu.edu/. 6, 11
[2] Physbam: physically based animation. http://

physbam.stanford.edu/. 12
[3] D. Ali-Hamadi, T. Liu, B. Gilles, L. Kavan, F. Faure,

O. Palombi, and M.-P. Cani. Anatomy transfer. ACM Trans.
Graph., 32(6), Nov. 2013. 12

[4] B. Allen, B. Curless, and Z. Popović. Articulated body de-
formation from range scan data. In Proceedings of the 29th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, pages 612–619. ACM, 2002.
2

[5] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,
and J. Davis. Scape: Shape completion and animation of
people. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05,
pages 408–416, New York, NY, USA, 2005. ACM. 1, 2

[6] S. W. Bailey, D. Otte, P. Dilorenzo, and J. F. O’Brien. Fast
and deep deformation approximations. ACM Trans. Graph.,
37(4):119:1–119:12, July 2018. 2, 5, 14

[7] D. Baraff, A. Witkin, and M. Kass. Untangling cloth. In
ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 862–
870, New York, NY, USA, 2003. ACM. 1

[8] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image
inpainting. In Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’00, pages 417–424, New York, NY, USA, 2000.
4

[9] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Blender Institute,
Amsterdam, 2018. 10

[10] J. F. Blinn. Simulation of wrinkled surfaces. In Proceedings
of the 5th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’78, pages 286–292, New
York, NY, USA, 1978. ACM. 3

[11] J. F. Blinn and M. E. Newell. Texture and reflection in com-
puter generated images. Commun. ACM, 19(10):542–547,
Oct. 1976. 3

[12] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment
of collisions, contact and friction for cloth animation. ACM
Trans. Graph., 21(3):594–603, July 2002. 1

[13] R. Bridson, S. Marino, and R. Fedkiw. Simulation of cloth-
ing with folds and wrinkles. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA ’03, pages 28–36, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics Association. 1, 12

[14] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: going beyond eu-
clidean data. arXiv:1611.08097, 2016. 3

[15] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. Spectral net-
works and locally connected networks on graphs. In Interna-
tional Conference on Learning Representations (ICLR2014),
CBLS, April 2014, 2014. 3

[16] E. E. Catmull. A Subdivision Algorithm for Computer Dis-
play of Curved Surfaces. PhD thesis, 1974. AAI7504786.
3

15

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
http://physbam.stanford.edu/
http://physbam.stanford.edu/

[17] X. Chen, B. Zhou, F. Lu, L. Wang, L. Bi, and P. Tan. Gar-
ment modeling with a depth camera. ACM Trans. Graph.,
34(6):203:1–203:12, Oct. 2015. 1

[18] M. Cong, M. Bao, J. L. E, K. S. Bhat, and R. Fedkiw. Fully
automatic generation of anatomical face simulation models.
In Proceedings of the 14th ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, SCA ’15, pages 175–
183, New York, NY, USA, 2015. ACM. 12

[19] R. L. Cook. Shade trees. In Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’84, pages 223–231, New York, NY,
USA, 1984. ACM. 3

[20] R. Danecek, E. Dibra, A. C. Öztireli, R. Ziegler, and
M. Gross. Deepgarment : 3d garment shape estimation from
a single image. Computer Graphics Forum (Proc. Euro-
graphics), (2), 2017. 2

[21] E. de Aguiar, L. Sigal, A. Treuille, and J. K. Hodgins. Stable
spaces for real-time clothing. In ACM SIGGRAPH 2010 Pa-
pers, SIGGRAPH ’10, pages 106:1–106:9, New York, NY,
USA, 2010. ACM. 1, 2

[22] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral
filtering. In Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, NIPS’16,
pages 3844–3852, USA, 2016. 3

[23] Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou. Joint 3d
face reconstruction and dense alignment with position map
regression network. In Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XIV, pages 557–574, 2018. 2, 5

[24] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics (2Nd Ed. In C): Principles and Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1996. 3

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Informa-
tion Processing Systems 27, pages 2672–2680. Curran As-
sociates, Inc., 2014. 4

[26] P. Guan, L. Reiss, D. Hirshberg, A. Weiss, and M. J. Black.
DRAPE: DRessing Any PErson. ACM Trans. on Graphics
(Proc. SIGGRAPH), 31(4):35:1–35:10, July 2012. 1, 2

[27] F. Hahn, B. Thomaszewski, S. Coros, R. W. Sumner, F. Cole,
M. Meyer, T. DeRose, and M. Gross. Subspace cloth-
ing simulation using adaptive bases. ACM Trans. Graph.,
33(4):105:1–105:9, July 2014. 2

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv:1512.03385, 2015. 1

[29] P. S. Heckbert. Survey of texture mapping. IEEE Computer
Graphics and Applications, 6(11):56–67, Nov 1986. 3

[30] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional net-
works on graph-structured data. arXiv:1506.05163, 2015. 3

[31] A. Hilsmann and P. Eisert. Tracking and retexturing cloth
for real-time virtual clothing applications. In Computer Vi-
sion/Computer Graphics Collaboration Techniques, pages
94–105. Springer Berlin Heidelberg, 2009. 1

[32] D. A. Hirshberg, M. Loper, E. Rachlin, and M. J. Black.
Coregistration: Simultaneous alignment and modeling of ar-
ticulated 3d shape. In Computer Vision – ECCV 2012, pages
242–255. Springer Berlin Heidelberg, 2012. 2

[33] A. Jacobson and O. Sorkine. Stretchable and twistable bones
for skeletal shape deformation. In Proceedings of the 2011
SIGGRAPH Asia Conference, SA ’11, pages 165:1–165:8.
ACM, 2011. 2

[34] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin.
The affine particle-in-cell method. ACM Trans. Graph.,
34(4):51:1–51:10, July 2015. 3

[35] N. Jin, W. Lu, Z. Geng, and R. P. Fedkiw. Inequality cloth. In
Proceedings of the ACM SIGGRAPH / Eurographics Sympo-
sium on Computer Animation, SCA ’17, pages 16:1–16:10,
New York, NY, USA, 2017. ACM. 5

[36] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Skinning
with dual quaternions. In Proceedings of the 2007 Sympo-
sium on Interactive 3D Graphics and Games, I3D ’07, pages
39–46. ACM, 2007. 1, 2

[37] L. Kavan, D. Gerszewski, A. W. Bargteil, and P.-P. Sloan.
Physics-inspired upsampling for cloth simulation in games.
In ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pages
93:1–93:10, New York, NY, USA, 2011. ACM. 1

[38] L. Kavan and J. Žára. Spherical blend skinning: A real-time
deformation of articulated models. In Proceedings of the
2005 Symposium on Interactive 3D Graphics and Games,
I3D ’05, pages 9–16. ACM, 2005. 1, 2

[39] D. Kim, W. Koh, R. Narain, K. Fatahalian, A. Treuille, and
J. F. O’Brien. Near-exhaustive precomputation of secondary
cloth effects. ACM Trans. Graph., 32(4):87:1–87:8, July
2013. 1, 2

[40] T.-Y. Kim, N. Chentanez, and M. Müller-Fischer. Long
range attachments - a method to simulate inextensible cloth-
ing in computer games. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
SCA ’12, pages 305–310. Eurographics Association, 2012.
1

[41] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. 6

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012. 1

[43] P. G. Kry, D. L. James, and D. K. Pai. Eigenskin: Real time
large deformation character skinning in hardware. In Pro-
ceedings of the 2002 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’02, pages 153–159.
ACM, 2002. 2

[44] T. Kurihara and N. Miyata. Modeling deformable human
hands from medical images. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA ’04, pages 355–363. Eurographics Associ-
ation, 2004. 2

[45] Z. Lähner, D. Cremers, and T. Tung. Deepwrinkles: Accu-
rate and realistic clothing modeling. In Computer Vision –
ECCV 2018, pages 698–715, 2018. 2

[46] J. Lander. Skin them bones: Game programming for the web
generation. Game Developer Magazine, May 1998. 2

16

[47] B. H. Le and J. K. Hodgins. Real-time skeletal skinning
with optimized centers of rotation. ACM Trans. Graph.,
35(4):37:1–37:10, July 2016. 2

[48] J. P. Lewis, M. Cordner, and N. Fong. Pose space deforma-
tion: A unified approach to shape interpolation and skeleton-
driven deformation. In Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’00, pages 165–172, 2000. 2

[49] J. P. Lewis, K. ichi Anjyo, T. Rhee, M. Zhang, F. H. Pighin,
and Z. Deng. Practice and theory of blendshape facial mod-
els. In Eurographics, 2014. 2

[50] Y. Li, S. Liu, J. Yang, and M.-H. Yang. Generative face
completion. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017. 4

[51] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2015. 1

[52] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black. SMPL: A skinned multi-person linear model. ACM
Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–
248:16, Oct. 2015. 1, 2

[53] N. Magnenat-Thalmann, F. Cordier, H. Seo, and G. Papa-
gianakis. Modeling of bodies and clothes for virtual environ-
ments. In 2004 International Conference on Cyberworlds,
pages 201–208, Nov 2004. 1

[54] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann.
Joint-dependent local deformations for hand animation and
object grasping. In Proceedings on Graphics Interface ’88,
pages 26–33, 1988. 1, 2

[55] L. Margolin. Introduction to “an arbitrary lagrangian-
eulerian computing method for all flow speeds”. J. Comput.
Phys., 135(2):198–202, Aug. 1997. 3

[56] J. Masci, D. Boscaini, M. M. Bronstein, and P. Van-
dergheynst. Geodesic convolutional neural networks on rie-
mannian manifolds. In Proceedings of the 2015 IEEE In-
ternational Conference on Computer Vision Workshop (IC-
CVW), ICCVW ’15, pages 832–840. IEEE Computer Soci-
ety, 2015. 3

[57] M. Müller and N. Chentanez. Wrinkle meshes. In Proceed-
ings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’10, pages 85–92, Goslar Ger-
many, Germany, 2010. Eurographics Association. 1

[58] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Po-
sition based dynamics. J. Vis. Comun. Image Represent.,
18(2):109–118, Apr. 2007. 1

[59] A. Neophytou and A. Hilton. A layered model of human
body and garment deformation. In Proceedings of the 2014
2Nd International Conference on 3D Vision - Volume 01,
3DV ’14, pages 171–178, Washington, DC, USA, 2014.
IEEE Computer Society. 1, 2

[60] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. 2017. 6

[61] G. Pons-Moll, S. Pujades, S. Hu, and M. J. Black. Clothcap:
Seamless 4d clothing capture and retargeting. ACM Trans.
Graph., 36(4):73:1–73:15, July 2017. 1, 2

[62] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 39(6):1137–1149, June 2017. 1

[63] N. Robertini, E. De Aguiar, T. Helten, and C. Theobalt. Ef-
ficient multi-view performance capture of fine-scale surface
detail. In Proceedings - 2014 International Conference on
3D Vision, 3DV 2014, pages 5–12, 02 2015. 1

[64] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical Image Computing and Computer-Assisted Intervention
(MICCAI), volume 9351 of LNCS, pages 234–241. Springer,
2015. 1

[65] J. Sethian. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision, and Materials Science. Cam-
bridge Monographs on Applied and Computational Mathe-
matics. Cambridge University Press, 1999. 5

[66] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In arXiv
1409.1556. 09 2014. 1

[67] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia. Variational autoen-
coders for deforming 3d mesh models. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 3

[68] H. Wang, F. Hecht, R. Ramamoorthi, and J. F. O’Brien.
Example-based wrinkle synthesis for clothing animation.
In ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10, pages
107:1–107:8, New York, NY, USA, 2010. ACM. 1, 2

[69] M. Whitmore, J. Boyer, and K. Holubec. Nasa-std-3001,
space flight human-system standard and the human integra-
tion design handbook. 2012. 11

[70] W. Xu, N. Umentani, Q. Chao, J. Mao, X. Jin, and X. Tong.
Sensitivity-optimized rigging for example-based real-time
clothing synthesis. ACM Trans. Graph., 33(4):107:1–
107:11, July 2014. 1, 2

[71] J. Yang, J.-S. Franco, F. Hetroy-Wheeler, and S. Wuhrer.
Analyzing clothing layer deformation statistics of 3d human
motions. In The European Conference on Computer Vision
(ECCV), September 2018. 1, 2, 5

[72] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Gen-
erative image inpainting with contextual attention. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 4

17

