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ABSTRACT  

The purpose of this paper is to discuss an object-oriented 
simulation framework/model for the US Navy that simu-
lates the behavior of ships in a combat environment. This 
model provides a framework which helps to improve threat 
recognition, undersea tactical awareness, countermeasure 
emissions, and counter-weapon fire control to enable sur-
face ships to survive a salvo of torpedo attacks. A Navy 
ship gathers information from all the sensors it carries and 
then fuses the information to make a judgment. An Object-
Oriented Programming (OOP) approach was adopted for 
designing and implementing our framework. With OOP, 
the framework can be easily modified and tested with so-
phisticated and classified algorithms that may be based on 
established physics principles. The model was developed 
by using multiple modeling approaches including hybrid, 
discrete and continuous systems and capturing complex 
phenomena. The model can be used to simulate different 
events in a combat environment. 

1 INTRODUCTION 

Today the US Navy faces many challenges in threat recog-
nition. Foreign Navy platforms are now harder to find and 
possess a wider array of weapons (Vining 1999).  With 
Navy ships operating closer to the littorals, more civilian 
objects such as yachts must be identified. These civilian 
objects add to the difficulties of quickly and precisely, de-
tecting threats which may be a danger to the survival of the 
ship.  
 The Navy also faces the challenge of solving the claim 
they are harassing or killing whales with their sonar. Re-
searchers and news organizations have reported that there 
is a connection between the sound produced by the sonar 
and that of the whales (Bressan 2004; Malakoff 2002; 
McCarthy 2002; Andre, Johansson, Delory, and van der 
Schaar 2005). For this reason it is also important for the 
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Navy to evaluate and document the environmental effects 
of their sonar. 
 Much research has been conducted on threat recogni-
tion and its related decision making (Blake and Hummel 
2004; Jeffers, Breed and Gallemore 2000; Totir, Radoi, 
and Quinquis 2005; Wilson 2003). The modeling algo-
rithms developed by the researchers have helped to im-
prove the effectiveness of the ship’s sensor systems. 
 Today’s budgetary, political, and above mentioned en-
vironmental concerns make it important to provide what 
the Navy calls “under way” training  (Colitti-Howell Con-
way, and Dorsch 1997; Yardley, Thie, Schank, Galegher, 
Riposo, and Thie 2005). With simulation, we not only train 
the sailor in a virtual combat environment, but we also 
provide a means to evaluate the effectiveness of the differ-
ent model algorithms and ship’s equipment (van Doesburg, 
Heuvelink, and van den Broek 2005). 
 Navy surface ships tow an array of sensors, some pas-
sive and some active.  These sensors are used to detect and 
classify all objects within a given detection range. The in-
formation from these sensors is then “fused” and a final 
decision to react or not to react is made. Many different 
sensor fusion technologies, such as using neural networks, 
have been developed (Boß, Diekmann, Jürgens, and 
Becker 2001), theory of evidence (Fabre, Appriou, and 
Briottet 2001), etc. 
 Today, more than ever, there is a need to use state-of-
the-art technology to model and simulate the information 
gathering-data fusion-countermeasure firing process to 
evaluate the effectiveness of the system. With today’s tech-
nology the Navy can decide which sensor or combat tech-
nologies to invest in and install on the current fleet. 
 This research team has designed and implemented a 
simulation model/framework at the University of Central 
Florida using Object-Oriented Programming. OOP was 
adopted because of its flexible benefits such as reusability, 
extensibility, and maintainability, and the fact that it has 
been proved to be efficient in modeling and simulation. 
(Berzins, Shing, Luqi, Saluto, and Williams 2000; Rida, 
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Boulmakoul, and Laurini 2003). The framework was im-
plemented in Java using a simulation tool named Any-
Logic™.  
 From the onset, we decided to implement the simula-
tion model using an object-oriented design approach. Ob-
ject-oriented design allows us to assign defined methods to 
do what they do to the different objects. For example, we 
may implement a detection method based in random num-
bers as follows: for each pair of sensors and threat we de-
fine a probability of detection at a given distance. We may 
even modify that probability as a function of the environ-
mental conditions. But nonetheless, our detection algo-
rithm essentially generates a random number and compares 
it to the stated value for the pair of sensors. If the generated 
random number is smaller than the specified threshold, it is 
concluded that this particular threat was detected by the 
sensor; otherwise, the threat was not detected. Object-
oriented modeling permits later substitution of these 
crudely defined methods by sophisticated and classified 
algorithms that may be based in established principles of 
physics. Other advantages of object-oriented design are 
that it allows for user definition of the model’s parameters 
and it can expand easily (for example, add different types 
of sensors and/or countermeasures as classes and objects in 
the model). 
 We also decided to implement our design in the Uni-
fied Modeling Language (UML), a tool designed for easy 
communications with third parties, while insisting on both 
a clarification of requirements and a glossary. As stated 
above, the simulation model itself was developed using 
AnyLogic by XJ Technologies, a professional simulation 
tool for accurately modeling complex hybrid, discrete and 
continuous systems and capturing complex phenomena by 
using multiple modeling approaches. 

2 MODEL DETAILS 

2.1 The Environment 

The ocean is represented as a vast area without land 
masses. Distances are kept in nautical miles. Speeds are 
expressed in knots (1 knot = 1 nautical mile per hour). A 
ship’s speed is modeled as changing according to an as-
sumed distribution (see Figure 1). 

2.2 Ship Model 

The ship model defines the characteristics of a Navy sur-
face ship and includes attributes such as number of anti-
torpedo torpedoes (ATTs) carried, speed, location, bearing 
and patrol route. The ship patrols the ocean towing an ar-
ray of sensors. 
67
 
Figure 1: Ship Speed Distribution 

 
 Other vessels travel in the same general area. Their in-
ter-arrival time, heading, speed, and type follow probabil-
ity distributions. These vessels make noise and the mod-
eled ship sensors may detect them if they are within their 
detection range. 

2.3 Sensor Model 

Sensors vary in their sensitivity (the ability to detect a 
threat) and their specificity (the ability to react to real 
threats only). For each sensor type, there exist curves (see 
Figure 2) that specify the probability of detection (in range 
and bearing) and of classification as a function of the threat 
type and distance.  
 We had no access to the data needed to fit these 
curves. Thus, we decided to create a set of Excel files 
which are easily modifiable by the user with the appropri-
ate values. Table 1 illustrates this concept. According to 
the values provided in this table, the probability that a pas-
sive sonar will detect a civilian vessel type “1” at a dis-
tance of 30 [nm] is estimated at 0.80. The passive sonar 
will detect and correctly identify four out of every five 
(80%) civilian vessels of that type at this stated distance. 
Note that the probability increases to 19 out of every 20 
(95%) when the distance decreases to 5 [nm]. Similar files 
are provided for other sensors and threats. In real life these 
probabilities change with the temperature, humidity, pres-
sure, wind, and other factors. For the purpose of the model, 
the impact of these disturbances may be modeled with yet 
another hypothetical factor. 

Table 1:  Probability of Detection (by Type of Sensor) File 
Distance Civilian1 Civilian2 Civilian3 Civilian4 

5 0.95 0.87 0.85 0.82 
10 0.90 0.82 0.80 0.77 
15 0.85 0.77 0.75 0.72 
20 0.80 0.72 0.70 0.67 
25 0.80 0.72 0.70 0.67 
30 0.80 0.72 0.70 0.67 
3
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Figure 2:  Probability of Detection (by Type of Sensor) Curves 
 

2.4 Threat and Encounter Models 

The threat and encounter models define the relative geo-
metric relationships and likelihoods for threats encounter-
ing the modeled ship. A threat sub-model defines threat 
characteristics for motion and detection. There are civilian 
ships and marine animals among the threats in the detec-
tion range. Ships have a size, bearing, and speed (not nec-
essarily constant). Marine animals (or natural phenomena 
that may be large enough so a sensor reacts to them) will 
occur at random and have a random path. 
 The threat model generates false and actual threats, 
and the range at which they occur. This is done through 
distributions whose parameters can be user-specified.  
 The encounter sub-model differentiates among en-
counter types within the detection range. Harmless threat 
encounters (blue icons are used with a numbered ID on top 
of the icon to display the threat type) are random ships or 
animals that cross the path of the modeled ship. Threat en-
counters are enemy ships (yellow icons) or torpedoes (red 
icons) launched from hostile ships. There is a small chance 
that the passive sonar will fail to detect a signal. As dis-
cussed in the previous example, the probability that, at 30 
[nm], a type “1” civilian ship will be missed is 20%. 
674
 Ships have the ability to detect other vessels in their 
path and maneuver accordingly. We assume marine ani-
mals know how to avoid collisions with vessels.  

2.5 ATT Effectiveness 

ATT effectiveness is limited by the ability of the ship’s 
sensors to recognize a threat attacking the ship and to react 
in time to prevent damage to the modeled ship. The detec-
tion and classification ranges are determined by the attack 
geometry of the threat weapons. 

2.6 Sensor Sensitivity and Specificity 

The goal of this project is to show how simulation can be 
used to assess the effectiveness of individual sensors and 
of the sensor system as a whole. 
 For any given sensor, the probability of detection and 
the probability of correct classification are rarely 1. There 
is always a chance that the sensor will not detect a signal 
and there is also a chance that, even if detected, the signal 
is misclassified.  
 There are two possible important errors: a harmless 
signal classified as a threat (risk of harming innocents and 
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wasting an ATT) and a signal from a threatening source 
classified as harmless (risk of being sunk). The simula-
tion’s objective is to model these occurrences and yield es-
timates of each sensor’s (and the whole ship seen as a bat-
tery of sensors) effectiveness. To model this we have 
borrowed concepts of test sensitivity and specificity from 
the field of Public Health (Loong 2003). Figure 3 defines 
the different situations that may occur in the context of so-
nar and radar interaction with external signals and defines 
sensor sensitivity and specificity. 

 
Figure 3: Sensor Sensitivity and Specificity 

 
 Around the ship, any potential threat occurring within 
a sensor’s detection area should be detected, classified, and 
localized. A passive sonar “listens” for signals and classi-
fies the sound-emitting source as harmless or potentially 
threatening. This type of sensor detects most signals but 
may interpret a significant number of harmless signals as 
potential threats. 
 If a signal is detected, the sensor will classify it as 
threat (“positive” classification by the sensor) or harmless 
(“negative” classification by the sensor). If a signal classi-
fied as “positive” turns out to come from a threat source, 
the outcome for the situation is “TP” or “True positive” 
(positive because the sensor indicated a threat, true because 
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the classification turned out to be correct). By the same to-
ken, a “TN” or “true negative” is the outcome that occurs 
when the sensor classifies a signal as harmless and its 
source turns out to be so. In both of these situations the 
sensor behaved as desired.  
 There are two possible wrong conclusions by the sen-
sor: a harmless signal classified as a threat (FP or false 
positives) and a signal from a threatening source classified 
as harmless (FN or false negatives). 
 Sensor sensitivity (the proportion of signals from a 
threatening source correctly classified as threats) and sen-
sor specificity (the proportion of signals from a harmless 
source correctly classified as harmless) are important 
measures that would allow the Navy to decide whether a 
particular sensor device is worth deployment. The concepts 
may be extended to a set of multiple devices (passive so-
nar, active sonar, and radar) working as a coordinated set 
of devices (e.g., the decisions made in the ship’s fire con-
trol room). 

2.7 UML Diagrams 

A UML diagram is a graphical representation of the ele-
ments of a system. Different diagrams allow you to view 
the system from multiple perspectives.  
 Figures 4 is an example of a UML class diagram, 
shown here to illustrate the concepts. Figure 4 displays 
some of the classes developed for the simulation, their at-
tributes and the methods they use to communicate with 
other classes. All classes are drawn as a rectangle divided 
into three areas. The top area shows the class name, the 
middle area shows the class attributes (data associated to 
each object in this class), and the lower area shows the 
methods e.g., the coding for the exact sequence of steps the 
class uses to send messages to other classes or to respond 
to messages sent by other classes. For example, most 
classes inherit AquaticEntity from the parent class. A Ship 
is an AquaticEntity as it has (among other attributes) a 
speed and a heading and knows how to (e.g, has a method 
to do this) avoid a collision. An ArmedShip is a ship (has a 
speed, a heading and knows how to avoid a collision) but is 
different from a CivilianShip in that it carries torpedoes 
and anti-torpedoes. Similarly, a NavyShip inherits all the 
attributes and methods of an ArmedShip and adds a few 
other attributes and/or methods to their implementation: 
The NavyShip carries sensors that have methods to detect, 
classify and locate signals emitted by an EnemyShip, by 
marine animals, or by neutral vessels. It also has the ability 
to fuse the detected signals, realize that it is under attack 
and engage an attacking torpedo with an Anti-torpedo 
(ATT). 
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Figure 4: Class Diagram 
2.8 Simulation Logic 

The simulation model activates one ship and defines the 
available sensors and their corresponding sensitivity and 
specificity for each threat type. It also assigns to each ship 
a patrol route (heading and speed) and a complement of 
ATT. The ship patrols while scanning within its detection 
range. 
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 The simulation then creates harmless objects and 
threat objects at random according to user-specified prob-
ability distributions. Most of the objects will be false 
threats, neutral ships or large marine animals or natural 
phenomena. Neutral ships have a heading and a speed, ani-
mals have random behavior. 

Objects are disposed of when they exit the system 
boundaries. Information is written to an Excel file indicat-
ing whether the object traveled through a detection zone 
and, if so, if it was detected by the passive sensor. 
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 Also occasionally a simulated enemy tries to get 
within range and launch a torpedo attack. The passive so-
nar should detect and correctly classify the threat. If the 
passive sonar fails to detect the enemy ship, there is still a 
chance that it will detect the incoming torpedo. In either 
case, the active sensor is engaged and should confirm the 
presence of a threat and activate the radar. If the radar con-
firms an underwater threat, the ship’s fire control room en-
gages the attacking torpedo when it gets within the re-
sponse range. 
 The simulation will keep track (for each sensor and for 
the ship itself) of the false positives (no torpedo attack but 
sensor indicated the presence of a torpedo), true negatives 
(harmless signal and sensor classified it as harmless), true 
positives (attack detected by the sensor), and false nega-
tives (attack classified as harmless by the sensor).  
 The simulation ends after all of the available ATTs are 
exhausted or all present ships are hit by a torpedo. The user 
can end the simulation at any time by using the “stop” but-
ton provided. 
 In addition to providing the sensitivity and specificity 
of each sensor, the same Measures of Performance are pro-
vided for the ship.  

2.9 Simulation Parameters 

As indicated, some of the simulation parameters are user 
definable. There is one Navy ship in the model. The re-
gion’s patrolling area is about 1800 by 1200 nautical miles 
[nm]). There are no land masses in this area. The ship’s 
average speed is 25 knots. Other vessel’s average speed is 
modeled as a uniform distribution [3, 25] [knots]. The pas-
sive sonar’s detection range radius is 30 [nm] and the re-
sponse range radius is 10 [nm]. The torpedo (and ATT) 
speed are set at 45 [knots]. The ship starts with a comple-
ment of 20 ATTs. 
 Neutral vessels inter arrival time is modeled as a Pois-
son process with an arrival rate of three ships per hour. En-
emy ships are modeled at the same rate while two animals 
are randomly generated per hour. The vessel origins is dis-
tributed as U [0, 360 degrees] (e.g., they can arrive to the 
region from any direction) and the vessels destination is 
modeled as U [origin + 45, origin + 270]. 

3 RESULTS 

3.1 Output Screens 

Figures 5 and 6 show typical simulation screens. In figure 
6 the simulation ends when the ship was destroyed; An-
other cause for the simulation ending (not shown) occurs 
when the ship runs out of ATTs or when the user stops it 
(clicking on the Stop button in the screen’s lower left cor-
ner). 
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 The screen displays the main parameters for the run 
(they can be changed during the run) and a summary of the 
main observed results for each sensor and for the system as 
a whole. The number of undetected harmless and threat ob-
jects and the total number of ATTs left are also displayed 
and updated as they change throughout the simulation run.  
 In Figure 5 we see a routinely produced table at the 
end of the simulation. It summarizes the numbers reported 
in the simulation. We print to an Excel file each object’s 
details and then summarize the results in a second file 
where all important statistics and observations are summa-
rized.  

4 CONCLUSIONS  

A mathematical object-oriented simulation model that 
evaluates the effectiveness of alternative sensor configura-
tions by providing measures of sensitivity (the ability to 
detect a threat) and specificity (the ability to react to real 
threats only) for each sensor and for the system (ship) as a 
whole was developed. This model used multiple modeling 
approaches to capture complex phenomena combining dis-
crete and continuous systems and adding the possibility of 
implementing sensor fusion algorithms through agent-
based modeling (Hoogendoom, Jonker, Schut, and Treur 
2006). 
 This is a platform that integrates the simulation with 
legacy software (Excel spreadsheets or databases used to 
specify sensor and threat-related probabilities) as it exe-
cutes a simulation run. The model also produces a number 
of Excel files that record the individual observations made 
for each object generated during the simulation runs. 

5 FUTURE RESEARCH DIRECTIONS  

A more advanced model would have land masses and 
navigational hazards which vessels must avoid (land 
masses may affect the sensor’s capabilities). Therefore a 
geographical Information system (GIS) can be incorpo-
rated to the current simulation model to make the model 
more realistic. 

Factors that impact critical ranges can be included in 
the model, for instance, the number of weapons, the pres-
ence of nearby ships, enemy and friendly countermeasures, 
the enemy’s stealth ability, and the ship speed. 
In the model we have mainly used Bayes’ Theory. Adap-
tive Fuzzy Logic, Dempster Shafer algorithm, and a hybrid 
of Bayesian with Artificial Intelligence, Extended Kalman 
Filtering, and Neural Networks can be investigated as al-
ternative algorithms to improve sensor fusion related cal-
culations.  
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Figure 5:  Simulation Results Per Simulation Run 

 

 
Figure 6:  Simulation Ends with the Ship Destroyed 
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