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ABSTRACT 

Sampling uniformity is one of the central issues for com-
puter experiments or metamodeling. Is it generally true that 
more uniformly distributed sampling leads to more accu-
rate prediction? A study was conducted to compare four 
designs for computer experiments, based on simulation 
tests and statistical analysis. Maximin Latin hypercube de-
sign (LHMm) nearly always generated more uniform sam-
pling in two- and three- dimensional cases than does ran-
dom sampling (Rd), Latin hypercube design (LHD), or 
Minimized centered L2 discrepancy Latin hypercube de-
sign (LHCL2). But often there was no significant differ-
ence among the means of the prediction errors by employ-
ing LHMm versus the other designs. Occasionally, even 
the opposite was seen. More uniform sampling did not 
generally lead to more accurate prediction unless sampling 
included extremely nonuniform cases, especially when the 
sample size was relatively small.   
 
1 INTRODUCTION 

It is generally agreed that, by intuition, sampling for com-
puter experiments should be uniformly distributed in the 
design region  (e.g. Koehler and Owen, 1996; Santner, et 
al, 2003). The more uniformly distributed the sampling, the 
better the experimental design. However, different or even 
opposite results were observed in a study to compare 
eighteen designs for computer experiments, based on simu-
lation tests and statistical analyses via ANOVA. The de-
sign types included random sampling (Rd), Latin hyper-
cube design (LHD), Maximin Latin hypercube design 
(LHMm) based on the Φq criterion, Minimized centered L2 
discrepancy Latin hypercube design (LHCL2), etc. The re-
sults showed that more often there was no significant dif-
ference between the approximation error means resulted 
from applying different designs for sampling. Where there 
were significant differences, LHD and LHCL2 often out-
performed LHMm. However, LHMm almost always gen-
erated more uniformly distributed samples in 2D and 3D 
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designs than other methods. For more details of the study, 
please see Liu (2004) and Liu (2005). 

It seems that the results are contrary to the general be-
lief that better designs should yield more uniformly dis-
tributed sampling. Since uniformity has been taken as one 
of the fundamental issues for experimental design in com-
puter experiments, and thus has significant impact on re-
search and application, more tests were conducted for fur-
ther investigation and are described below, in order to 
address the central research question that is the title.   

2 RESEARCH DESIGN 

NOMENCLATURE 

dij    the Euclidean distance between points i and j 
n (N)  the number of design variables  
m (M)  the number of runs or sample size 
q   a parameter to be determined 
Xij  the jth  component of the ith sampled point 
Uij          the jth element of ith independent random variable 

U [0, 1]  (uniform distribution in [0,1]), independ-
ent of the πij   

Φq  a design criterion  
πij           the jth  element of ith independent uniform random 

permutations of the integers 1 through n  
 

This section provides the test design, the measures for uni-
formity, the four design (sampling) types, and the twenty 
test functions. 

2.1 Test scheme 

There were two test groups. In the first group, the four de-
signs (LHMm, Rd, LHD, and LHCL2) were employed and 
compared simultaneously. Twenty test functions were ap-
proximated using each specific sampling. There were five 
levels of the sample size. The second group focused on one 
function, one level of sample size, and pairwise compari-
son each time.  
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 In the first group, for the same sample size, the four 
designs were employed for sampling as four different 
“treatments.” For each “treatment” that is a particular sam-
pling, there were 20 “observations” that corresponded to 
20 functions. For each function, a kriging model was built 
as the approximation model to fit the sampled points and 
the responses. To test the prediction accuracy, 10,000 vali-
dation points were generated by LHD within the domain [-
30,30; -30,30]. The same domain was also used for sam-
pling to build the models.  The domain is specified in the 
literature for some of the test functions and was applied to 
most of the functions in this study. At each point, the val-
ues of the test function and of the approximation model 
were compared to find the difference. From all the valida-
tion points, a relative error called relative root mean square 
error (RRMSE) was found by the following formula: 
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 Ft: function response; Fa: approximation response; ε = 
10-4: to guard against possible Ft = 0. 
 
 And, the maximum relative error was found by the fol-
lowing formula:    
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 With exactly the same sampling, nineteen more 
RRMSE observations and nineteen more Max-rel-error ob-
servations were generated by the same procedure for ap-
proximating nineteen more test functions. This process was 
repeated for the other three design methods or “treat-
ments.” In all, there were twenty observations per each 
specific sampling to compare RRMSE and Max-rel-error 
respectively. One-way ANOVA and error distribution were 
used to compare the designs by comparing the means of 
RRMSE and Max-rel-error respectively. The whole proc-
ess outlined above was repeated for another sample size.  
 The sample sizes tested were 8, 10, 12, 14, and 16 to 
allow for visual comparison of the distribution uniformity. 
With too few or too many points, it was difficult to tell if 
the distributions were uniform by visual inspection. The 
relative error was employed because it was likely to be 
more meaningful for prediction. Further, since twenty test 
functions were used, using RMSE might inflate within 
group variance, making it difficult to detect small differ-
ences in the error means resulted from different “treat-
ments.” 
 In the second group, many pairwise comparison tests 
between LHMm and one of the other three designs were 
conducted for one test function each time. After sampling, 
a kriging model was built and RMSE was calculated based 
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on 10,000 validation points. The same process was re-
peated four more times for the same design type and the 
same sample size. Then, the whole process was repeated 
for the other design type. Next, ANOVA was conducted 
with each treatment having five observations of RMSE. 
Finally, the whole process was repeated on another pair of 
designs and another function. 

2.2 Measure for Uniformity 

There seems to be no generally agreed upon definition for 
sampling uniformity. Many criteria have been proposed for 
reaching space filling or uniformly distributed designs, e.g. 
maximin, Fi (Φq) criterion, several discrepancy criteria, etc. 
We conducted many 2D and 3D tests with LHMm. Those 
tests showed that LHMm resulted in more uniformly distrib-
uted samplings than other Latin hypercube designs. Thus, 
for the purpose of comparing the sampling uniformity of dif-
ferent designs, the Fi criterion was used as an indirect meas-
ure for uniformity, as follows. The measure is called relative 
uniformity (UNIF) shown by Eq. 3. The larger the UNIF, the 
larger the sum of the distances between the points, which re-
sults in a more uniform distribution within a stratified sam-
pling domain such as LHD. It also seemed to be a good 
measure for Rd as well. More study is needed for the possi-
bly better definition of (relative) uniformity. 
 

MaxFIinviFIinviUNIF /)()( =        (3) 
 
UNIF: relative uniformity; FIinv (i): ith inversed Fi value 
corresponding to ith design; MaxFIinv: the maximum in-
versed Fi value among those of the designs under compari-
son. 

2.3 Four Types and Twenty Test Functions 

Four design types 
1. Random design (Rd) 
2. Latin hypercube design (LHD) (McKay, et al, 1979): 
The jth component of the ith sampled point is  
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3. Maximin Latin hypercube design (LHMm) 
 Criterion: Φq criterion (slightly modified in the form 
from that of Morris and Mitchell, 1995); q: Pilot tests show 
better values: 1 for most 2D cases, 75 or 45 for 5D cases, 
75 for most 10D cases; testing with q = 2 or other values 
were also conducted with similar or a little worse perform-
ance. 
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4. Minimized CL2 Latin hypercube design  (LHCL2). 
Criterion: Centered L2 discrepancy CL2 (Hickernell,1998): 
Eq.6. 
 

 
 Most of the functions tested are popular functions for 
testing global optimization methodologies. Many of them 
have high nonlinearity or multi-modes, whereas others are 
quite simple or smooth. The details of the functions are 
presented in the Appendix.   

3 RESULTS OF THE SIMULATION TESTS,  
ANOVA, AND ERROR RANGE ANALYSIS 

The test results for the 2D and 3D cases are listed here. 

3.1 Two-dimension Cases 

1. Comparing the four designs simultaneously: The sample 
sizes tested were: 8, 10, 12, 14, and 16. For validation, 
only one sampling group of 10,000 points was generated 
which was used by all the tests. The sampling plots and the 
ANOVA plots together with the p-values are shown in 
Figures 1-5. 
 
2. Pairwise comparison between LHMm and Rd: The pair-
wise comparison between LHMm and one of the other 
three designs showed that again, in most cases, there was 
no significant difference in the RMSE means resulting 
from using LHMm versus another design. To show less 
uniformly distributed sampling can sometimes result in 
higher prediction accuracy, one pairwise comparison be-
tween LHMm and Rd is provided in Fig. 6. The test func-
tion was AC. The sample size was 10. In Rd sampling, the 
points cluster around one corner one time, around another 
corner at another time. In spite of this, “bad” Rd sampling 
still outperformed “better” LHMm sampling.   

3.2 Three-dimension Cases 

The sample sizes tested were 12, 15, 18, 21, and 24. For 
validation, only one sampling group of 10,000 points was 
generated which was used by all the tests. The sampling 
plots, shown as the projections onto XY, XZ, ZY planes, 
and the ANOVA plots together with the p-values are 
shown in Fig. 7 and many more are available upon request.  
 It has been shown that LHMm generated more uni-
formly distributed sampling than did RD, LHD, or LHCL2. 
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In most cases, however, there was no statistically signifi-
cant difference in the means of RRMSE, Max-rel-error, or 
RMSE, regardless of the critical p-value selected as 0.01 or 
0.05. In some cases, most of the points were along one 
straight line or cluster in a corner, but still there was no 
significant difference in the RRMSE means. Occasionally, 
LHMm was significantly worse than Rd despite its being 
more uniformly distributed. Note that in the first group, 
twenty different functions, instead of only one function, 
were approximated using exactly the same specific sam-
pling.  
 In terms of the variance or the range of the data, it 
seemed that uniformity did not have large impact either, 
but sample size did matter. As the sample size increased, 
the range usually decreased, as shown in Figures 1-5. Note 
that the figures have different axis limits for the errors. It is 
noticed in Fig.5 when the size was relatively large, the 
least-uniform sampling did resulted in relatively larger 
range and higher level of errors.  

4 SOME EXTREME CASES WITH A VERY 
NONUNIFORM SAMPLING: PROPORTIONAL 
SAMPLING (PS) 

Santner, Williams, and Notz (2003) described a sampling 
along a straight line, resulting in higher accuracy at the line 
but poor prediction elsewhere. It is possible for Rd or LHD 
to end up with some very nonuniform designs like this one. 
We refer to such a sampling as "proportional sampling" 
(PS) ⎯ one in which all sample points uniformly distribute 
along the diagonal line of the space. Some comparison re-
sults among PS, LHD, LHMm, and LHCL2 are shown in 
Figures 8-12. The test scheme was the same as mentioned 
in Section 3, but with PS replacing Rd.  
 When the sample size was relatively small, there were 
not apparent differences in the error means and ranges by 
employing different designs. When the size increased, 
however, while other designs produced more widely spread 
samplings and decreasing levels of errors, PS stayed along 
the diagonal line and kept the error level almost unchanged 
or even higher in many cases. In the latter cases when the 
error level increased as the sample size increased, the 
kriging models were misled by "over-fitting." It is shown 
in ANOVA plots that, when the size was relatively large, 
the error range by PS was much larger and the error level 
was higher than those by other design types. The results for 
even larger sizes (not shown) presented larger differences.  
 It is clear that very nonuniform designs should be 
avoided. Since it is possible for Rd and LHD to create such 
extreme samples, it is necessary to check the resulting de-
sign to guard against such extreme cases. The author 
evaluated the Fi criterion as a possible measure for per-
forming this check. When its inverse FIINV was very low, 
the sampling was quite nonuniform. The FIINV values for 
sampling are shown in Table 1. 
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 In most cases, FIINV values by PS were lower than 
those by other design types.  Unfortunately, FIINV became 
smaller when the sample size became larger. After some 
experimentation, it was determined that FIINV*m2.5 re-
25
sulted in relatively stable values vs. sample sizes, as is 
shown in Table 2. It appears that SFIINV = FIINV*m2.5 
might be a better tentative measure for “absolute” uniform-
ity (vs. UNIF as described in Section 5).  
 
      LHMm: UNIF=100%                          Rd: UNIF=66%                             LHD: UNIF=81%                   LHCL2: UNIF=91%
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Figure 1: Comparing four designs based on comparing RRMSE, m=8 (m: sample size), p-v = 0.3975 
 
       LHMm: UNIF=100%                          Rd: UNIF=46%                             LHD: UNIF=82%                   LHCL2: UNIF=90%
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Figure 2: Comparing four designs based on comparing RRMSE, m=10 (m: sample size), p-v = 0.3974 
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        LHMm: UNIF=100%                          Rd: UNIF=32%                             LHD: UNIF=90%                   LHCL2: UNIF=85%
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Figure 3: Comparing four designs based on comparing RRMSE, m=12 (m: sample size), p-v = 0.4104 

 
 
      LHMm: UNIF=100%                          Rd: UNIF=66%                             LHD: UNIF=92%                   LHCL2: UNIF=75%
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Figure 4: Comparing four designs based on comparing RRMSE, m=14 (m: sample size), p-v = 0.5340 
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       LHMm: UNIF=100%                          Rd: UNIF=70%                             LHD: UNIF=89%                   LHCL2: UNIF=86%
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Figure 5: Comparing four designs based on comparing RRMSE, m=16 (m: sample size), p-v = 0.4634 
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2) Random sampling (Rd) 
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3) ANOVA Plot and p-value 
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P-value = 0.00624. 

Figure 6: Comparing LHMm and Rd based on comparing RMSE, m=10 (m: sample size), function= AC 
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XY   XZ    ZY        XY    XZ    ZY      

LHMm: UNIF=100%         Rd: UNIF=76% 
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LHD: UNIF = 88%                LHCL2:UNIF=90%
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Figure 7:  Comparing 4 designs by comparing RRMSE and Max-error, 3D, m =24, p-v = 0.5313 
 

LHMm: UNIF=100%       Rd: UNIF=75%       LHD: UNIF=90%           LHCL2:UNIF=74% 
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Figure 8:  Comparing LHMm, PS, LHD, and LHCL2; 2D, m (sample size) =8, p-v = 0.2664 
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LHMm: UNIF=100%    Rd: UNIF=72%      LHD: UNIF=96%            LHCL2: UNIF=89%  
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Figure 9:  Comparing LHMm, PS, LHD, and LHCL2; 2D, m (sample size) = 10, p-v = 0.4887 
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Figure 10:  Comparing LHMm, PS, LHD, and LHCL2; 2D, m (sample size) = 12, p-v = 0.5653 
 

2568



Liu and Wakeland 
LHMm: UNIF=100%             Rd: UNIF=66%              LHD: UNIF=88%            LHCL2: UNIF=93%         
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Figure 11:  Comparing LHMm, PS, LHD, and LHCL2; 2D, m (sample size) = 14, p-v = 0.7135 
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Figure 12:  Comparing LHMm, PS, LHD, and LHCL2; 2D, m (sample size) = 14, p-v = 0.6474 

 

Table 1:  FIINV values for samplings in Figures 8-12  
(m: sample size) 

m LHMm PS LHD LHCL2 
8 1.1738    0.8820 1.0551 0.8632 
10 0.6743 0.4888 0.6485 0.6011 
12 0.4348 0.3056 0.4113 0.3934 
14 0.3133 0.2071 0.2761 0.2904 
16 0.2298 0.1485 0.1878 0.1886 

 

256
Table 2:  SFIINV values for samplings in Figures 8-12  
(m: sample size) 

m LHMm PS LHD LHCL2 
8 212.5    159.7 191.0 156.3 
10 213.2 154.6 205.1 190.1 
12 216.9 152.4 205.2 196.2 
14 229.8 151.9 202.5 213.0 
16 235.3 152.1 192.3 193.1 
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 In Table 2, the SFIINV values by PS were much lower 
than most other values by other design types. When 
SFIINV is quite low, another LHD can be generated and 
checked, until a higher SFIINV is obtained. Based on our 
simulation, the likelihood of obtaining an extreme sam-
pling is very small. We conducted thousands of LHD sam-
plings and did not see a single extreme case that was even 
close to the PS case. It was much more likely to obtain 
much better designs than the extreme designs. Much more 
and deeper study is needed to find a very reliable measure 
for absolute uniformity check. 

5  CONCLUSIONS AND DISCUSSION 

In general, more uniformly distributed sampling did not 
lead to more accurate modeling in computer experiments in 
most of the 2D and 3D cases shown here, unless the de-
signs included extremely nonuniform cases. This result 
seems likely to be true for higher dimensions as well. Thus, 
it may not be appropriate to use uniformity as the sole cri-
terion to compare different experimental designs or as the 
only goal to be pursued in the search for better designs, al-
though it is true that very nonuniform samplings should be 
avoided. Much research effort has been devoted to finding 
“better” designs with more uniformly distributed sampling. 
It seems that other goals besides uniformity need to be 
studied. What is more important than uniformity or “better 
designs,” at least when prediction accuracy is important, is 
to assure that sample size is large enough, as was discussed 
by Liu2 (2005). Sample size determination and the devel-
opment of good sequential design methods may warrant 
additional attention. 

Because of very limited resources, this study was lim-
ited to Kriging models, twenty test functions, four designs. 
Larger design domain may be necessary to make general 
conclusions. Comparison for uniformity for higher dimen-
sions than 3D has not been done. The interaction between 
sample size and uniformity needs to be studied. It seems 
that when the sample size was relatively large, the error 
range was larger for less uniform samplings. More and 
deeper study is needed beyond this preliminary investiga-
tion. Nevertheless, the research has revealed that uniform-
ity may not be as important for prediction as previously 
thought. Since sampling uniformity has been taken as a 
fundamental issue for computer experiments, the results of 
this research might be useful to users as well as researchers 
regarding their choice or development of  experimental de-
signs.  
 We close this paper with a comment from a private 
communication from William Notz that we received on an 
earlier version of the manuscript in which he provided ad-
ditional observations and a thoughtful analysis. 

“The results you have found agree with what we have 
observed.  Our experience is that any design that is rea-
sonably uniform seems to work well.  Only very nonuni-
2

form designs (for example, designs that take most of their 
observations on the boundary) seem to perform poorly.  

We believe the reason is that interesting features of 
response surfaces (locations of maxima, minima, regions 
where the response surface varies greatly) generated by 
simulations tend to be "uniformly" spread out over the de-
sign region. The variation in the location of these interest-
ing features is larger than subtle variations in the uniform-
ity of designs.  Thus, only designs that take observations in 
a very limited portion of the design space perform poorly.” 
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APPENDIX: TEST FUNCTIONS REFERENCES  

Note: x in f(x) is a vector with coordinates x1,…,xn.; xi ∈ [-
30,30] (unless otherwise specified). 
 
1. Function 1 (AC): Ackley's path function 

2. Function 2  (AX): Axis parallel hyper-ellipsoid function 
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4. Function 4  (RB): Rosenbrock's valley (De Jong's func-   
tion 2) 
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5. Function 5  (RY): rotated hyper-ellipsoid function 
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7. Function 7  (BR): Branins's rcos function 
 

10cos)1(10
)6(),(

1

2
1

2
1221

+−+
−+−=

xf
cxbxxxxf  

 b=5.1/(4·pi^2), c=5/pi, f=1/(8·pi);  
 -5 ≤  x1 ≤ 10, 0 ≤ x2 ≤ 15.  
8. Function 8  (GD): Goldstein-Price's function 
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 -2 ≤ x(i) ≤2, i=1:2.  
9. Function 9  (SX): Six-hump camel back function 
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 -3 ≤ x1 ≤ 3, -2 ≤x2 ≤2.  
10. Function 10  (PK): Peaks function 
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 -3 ≤ x1 ≤ 3, -3 ≤ x2 ≤ 3. 
11. Froth function 

f(x1, x2) = -13 + x1 + ((5 - x2) x2 - 2) x2  
- 29+ x1 + (( x2 + 1) x2 - 14) x2;  

12. Helix2 function 
)1(10),( 2

2
2

121 −+= xxxxf  
13. Rose function:  f(x1, x2) =  10(x2 - x1

2) 
14. Sing2 function: f(x1, x2)  =  5 ( x1 - x2); 
15. Sing3 function: f(x1, x2)  =  (x1 - 2 x2)2; 
16. Sing4 function: f(x1, x2)  = 10 (( x1 - x2)2) ; 
17. Wood1 function: f(x1, x2)  =    10*( x2 - x1

2); 
18. Wood3 function: f(x1, x2)  =   90 ( x2 - x1

2); 
19. Wood5 function: f(x1, x2) =  10 ( x1 + x2 - 2); 
20. Wood6 function: f(x1, x2) = (x1 - x2)/ 10  
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