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Abstract 
 

This paper addresses the design of an ambient agent 
model that incorporates model-based reasoning 
methods for the analysis of internal causes of observed 
undesired behaviours of a human, and for 
determination of actions that remedy such causes. The 
models used are based on causal and dynamical 
relations and integrate numerical aspects.  By the 
model-based reasoning methods hypotheses, 
observations and actions are generated. Control 
parameters within these processes are described that 
allow the ambient agent to focus the reasoning. These 
control parameters are related to each other and to 
specific domain and situation characteristics, such as 
time pressure, or criticality of a situation. 
 

1. Introduction 
 

Within Ambient Intelligence software/hardware agents 
are developed that contribute to personal care; cf. 
[1;2;12]. Such agents can be based on possibilities to 
acquire sensor information about humans and their 
functioning, but more intelligent agents make use of 
knowledge for analysis of human functioning. If 
knowledge about human functioning is explicitly 
represented in the form of computational models in an 
ambient agent, it can (re)act by undertaking actions in a 
knowledgeable manner that improve the human’s 
wellbeing and performance. In recent years, human-
directed scientific areas such as cognitive science, 
psychology, neuroscience, and biomedical sciences 
have made substantial progress in providing an 
increased insight in the various physical and mental 
aspects involved in human functioning. Dynamic 
models have been developed and formalised for a 
variety of such aspects and the way in which humans 
(try to) manage or regulate them. Such models can be 

used in dedicated model-based reasoning methods that 
allow an agent to derive relevant analyses from these 
models and available sensor information, and generate 
intervention actions that make sense. 
 This paper addresses the design of an ambient 
intelligent agent that has knowledge about human 
behaviours and states in the form of explicitly 
represented models of the causal and dynamical 
relations involved. Such models are represented in a 
logical format that also integrates numerical aspects; cf. 
[6].  Reasoning methods are described making use of 
such models, to obtain an analysis of (internal) causes 
of observed undesired behaviours and actions that 
remedy such causes. The reasoning methods can 
generate larger sets of hypotheses, observations or 
actions. To obtain a more efficient reasoning pattern, 
control parameters are used to focus on specific 
hypotheses, observations or actions. It is shown how 
these control parameters relate to each other and to 
specific domain and situation characteristics, such as 
time pressure, or criticality. The reasoning methods 
addressed cover causal and numerical simulation, 
qualitative reasoning, and abductive reasoning [9].  
 Section 2 describes the (uncontrolled) model-based 
reasoning patterns that are used to relate problems to 
causes and causes to remedies. Next, in Section 3 the 
control parameters are discussed. Section 4 addresses 
how these control parameters can be related to domain 
and situation characteristics. Section 5 illustrates how 
these reasoning methods can be used, by performing 
simulation experiments in two example case studies. 
Section 6 concludes the paper with a discussion. 
 

2. Problems, Causes and Remedies 
 

The type of ambient intelligent agent considered in this 
paper has as its goal to monitor whether the human 
functions well, and if detected that he or she does not, 
to analyse what is the cause of the problem and how it 



 
 

can be remedied. To this end it is assumed that causal 
models are available (1) from possible causes to 
problems, and (2) from possible remedies to causes. In 
Figures 1 and 2 below, an example causal model of an 
operator (and environmental)’s process is shown. Here 
on the right hand side the observable aspects of the 
process are depicted: observations of the human’s 
actions performed, their results and sensor data on the 
human’s body state and environmental state. On the left 
hand side the aspects are depicted that can be changed 
from outside the process: input for the human and/or 
certain environmental aspects. In the case of problems, 
the reasoning pattern is as follows. The information 
indicating that there is a problem is located on the right 
hand side (a combination of properties). The causes, 
however, usually are in the middle area (as a 
combination of properties). Remedies have to be found 
(as a combination of properties) on the left hand side. 
 

Model-based reasoning from problems to causes 
By a model-based reasoning pattern the causes for 
problems observed are determined, by making use of 
the middle and right hand part of the model..  
 
 
 
 
 
 
 
 
 

Figure 1. Reasoning from problems to causes 
 
Backward model-based abductive reasoning generates 
hypotheses for causes and forward deductive model-
based reasoning derives observable consequences by 
which such hypotheses can be tested 
 

Model-based reasoning from causes to solutions 
Next remedies for the causes of problems are 
determined, making use of the middle and left hand 
part of the model: backward model-based abductive 
reasoning to generate candidate remedies for causes 
and forward deductive model-based reasoning to test 
such candidate solutions.  
 
 
 
 
 
 
 
 
 

Figure 2. Reasoning from causes to remedies 

 

Model-based reasoning methods 
The model-based reasoning patterns sketched above 
are modelled using a model representation format 
leads_to_after(X, Y, D), which indicates that the 
occurrence of some state property X at some time point 
t will lead to the occurrence of state property Y within 
time duration D, i.e., at time point t+D. In [4] such 
methods have been described and formalised. 
 

3. Control Criteria for the Reasoning 
 

The model-based reasoning methods described in 
Section 2 may generate several options for causes and 
remedies. To make them more efficient, control 
parameters are built in that steer the reasoning process. 
 

Multi-criteria selection 
A selection strategy is used for choosing: 
• observations to be performed (to detect problems), 
• hypotheses to be evaluated (to determine the causes),  
• actions to be performed (to select one of the remedies). 
In order to do this effectively, a multi-criteria strategy 
is used for each part of the reasoning process. This 
means that for each observation, hypothesis and action 
values for a number of criteria are defined that may 
affect the desirability of its selection. The final 
desirability of selection is calculated as a weighed sum: 
      value = w1 · c1 + w2 · c2 + .... + wn · cn where Σ wk = 1 
The weights wk  of the criteria can be varied depending 
upon the domain (see Section 4). The following are 
examples of criteria that are distinguished in the model. 
 

Observation Determination 
• Time (time it takes to perform the observation). 
• Quality (how high is the quality of the observation) 
• Cost (associated with performing the observation). 
• Information gain (does the observation deliver a lot of 

possibilities to distinguish between hypotheses). 
 

Hypothesis Selection 
• Criticality (how urgently a hypothesis needs attention). 
• Impactability (in case the hypothesis holds, to what 

extent are there options for changing the situation, i.e. 
remedies). 

• Cost (to determine a hypothesis, e.g., computation). 
• Plausibility (is there information that makes it likely that 

the hypothesis is the case). 
 

Action Selection 
• Time (how long does it take to perform the action). 
• Cost (how much does it cost to perform the action). 
• Impact of success (if successful, what is the impact and 

what are the side effects of the action).  
• Likeliness of successfulness 

remedies causes 

problems causes 



 
 

4. Relating control criteria to situation   
characteristics 
 

Control of the reasoning process of the ambient agent 
has to fit to the situation in which the human functions. 
This implies that the weights for the different control 
criteria relate to the characteristics of the situation in 
which the human is functioning. One important aspect 
is the human’s task. Other aspects are the 
environmental circumstances, e.g. the availability of 
resources or externally imposed constraints. In the 
model the following characteristics are distinguished: 
time pressure (the situation requires that operations are 
done fast), criticality pressure (it is very important that 
the operations are done), quality pressure (the 
operations should be done very good), impact pressure 
(the effectiveness of the operations should be high), 
cost pressure (the costs of the operations should be 
minimal), and information quality (the operations 
should be based on reliable and valuable information). 
 The characteristics of the situation have 
implications for both the functioning of the ambient 
agent and of the human, and consequently for the view 
of the agent on the human.  Figure 3 indicates what the 
effect of the situation characteristic is on the weighting 
factors of the criteria that represent priorities for 
selection of the observations, hypotheses and actions 
(see the arrows starting from the left side of the figure). 
A minus next to an arrow indicates a negative 
influence, and a plus a positive influence. In addition to 

the direct effect of the situation characteristics on the 
priorities for the criteria, there is also an effect of 
priorities of one criterion on the priorities of other 
criteria. These are also shown in Figure 3 (the solid 
lines starting from actions, observations or hypotheses). 
An example of such a relation is the following: 
between action criteria 
• if “chance of success”  pressure is high, then “side 
effect”  pressure is lower 
rational: if you want successful actions, then you don’ t 
bother too much about side effects 
These rules result in additional information as a basis 
for the weighting factors. 
 Finally, during the reasoning process there are also 
propagating effects of specific actions, hypotheses and 
observations on the weighting of the criteria. In Figure 
3 these are depicted as dashed arrows. An example is 
the following: 
 from hypothesis criteria to observation criteria 
•  if “urgency”  of an hypothesis is high, then “ time”  
pressure for observation is higher and “cost”  pressure 
for observation is lower (for all dimensions) 
urgent hypothesis have to be evaluated quickly, while 
the costs of  evaluation are less relevant (for this 
hypothesis only)  
 

5.  Detailed Design 
 

In order to demonstrate the approach, the ambient 
agent model described above has been formally 

Figure 3. Dependencies between weights of criteria (criteria explained in text) 
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specified and implemented using the component-based 
agent design method DESIRE and its software 
environment [7]. The architecture consists of two main 
components, namely hypothesis determination, in 
which the appropriate hypothesis are selected, and 
tested (from problems to causes), and plan 
determination, in which actions (from causes to 
remedies) to be performed are derived. Below, the key 
specifications for each of the subcomponents within 
hypothesis determination are described. 
 

Generate Possible Hypotheses 
This component takes care of the reasoning process 
specified in Section 2 concerning the model-based 
reasoning from problems to causes. It is activated in 
case a problem has been monitored. In that case, the 
component receives observation results. Based upon 
that information and the temporal leads_to_after 
relationships of the causal model (for an example, see 
Figure 4) it derives what hypotheses are possible given 
the current observations (using a temporal backward 
reasoning method, cf. [4]). In case a state is derivable, 
and it is an intermediate state within the model, then 
this is a possible hypothesis. The possible hypotheses 
are then forwarded to the components observation 
determination and calculate hypothesis values.  
 

Observation Determination 
In the component observation determination, for each 
of the possible hypotheses the predicted observations 
are determined. This is done using a temporal forward 
reasoning method. The predictions are then forwarded 
to the component calculate hypothesis values. 
 

Calculate Hypothesis Values 
In this component the mechanism using the criteria for 
hypothesis and observations in the form of a weighted 
sum as presented in Section 3 is used. Hereby, the 
weights for each of the criteria are forwarded from a 
coordination component that derives the weights from 
situation characteristics. In this case, the criteria for 
hypothesis and observations are both calculated. If a 
hypothesis has been rejected, the cost of this hypothesis 
will not be calculated, resulting in the hypothesis no 
longer being considered. The results of the calculations 
are forwarded to the component select best hypothesis. 
 

Select Best Hypothesis 
The hypothesis with the highest evaluation value is 
selected in this component, and in case there are 
multiple highest ones, an arbitrary hypothesis is 
chosen. This information is forwarded to the 
component test hypothesis. 
 

Test Hypothesis 
Within the test hypothesis component, the hypothesis 
with the best evaluation value (i.e. the one received 
from select best hypothesis is evaluated. The rules 
within the component are shown below. 
 

if      selected_hypothesis(at(S1:STATE, I1:integers)) 
 and predicted_for(at(S2:STATE, I2:integers), 
                              at(S1:STATE, I1:integers)) 
 and not observation_result_available(S2:STATE) 
then to_be_observed(S2:STATE); 
 

if      observation_result(at(S1:STATE, I1:integers), neg) 
 and selected_hypothesis(at(S2:STATE, I2:integers)) 
 and predicted_for(at(S1:STATE, I1:integers), 
                              at(S2:STATE, I2:integers)) 
then to_be_rejected(S2:STATE); 

 

In case a certain hypothesis has been selected, and a 
particular observation result is predicted given this 
hypothesis, and this has not been observed yet, then 
this will be observed. In case an observation result has 
been predicted for the selected hypothesis, and the 
opposite is observed, then the hypothesis is rejected  

 

Besides selecting the appropriate hypothesis, another 
element is to determine what action to undertake, 
performed by plan determination (see Figure 2). This 
process follows the same line of reasoning as the 
selections of hypotheses, and is therefore only briefly 
explained. In the sub-component generate possible 
actions temporal reasoning methods are applied to 
generate what action could potentially solve the cause 
of the problem (i.e., the “from causes to solutions” part 
specified in Section 2). Thereafter, the possible actions 
are sent to the component calculate action values that 
performs calculations using a weighed sum of the 
various criteria for selecting the actions (following 
Section 3). Finally, in the component select best action 
the action with the highest evaluation value is chosen. 

 

6. Case Study 
 

The formally specified and implemented model has 
been evaluated by means of a case study. For this, the 
causal model that is shown in Figure 4 is used. This 
model describes the relation between stress of a human, 
his experience, and the quality of the task execution. It 
specifies that there are two starting points: the level of 
the task, and support provided for the task. These two 
situations can be modified by an ambient agent offering 
explicit task support, or taking away tasks of the human 
using a task allocation agent. In case there is a high 
task level, and no task support for a human, this leads 
to a potentially stressful situation. In case the human 
does not have experience and such a situation occurs, 
this results in a stressful situation without experience. 
This situation can be observed (i.e., a problem is 



 
 

detected) by indicators measuring stress, and a sloppy 
task execution. In the case where the human does have 
experience, the state stressful situation with experience 
occurs, resulting in indicators measuring stress, but not 
in sloppy task execution. 
 

Table 1. Deriving weights from situation 
 

 criterion imposed 
by 
situation 

consequ- 
ences 

final 
criteria 

quan
titati
ve 

time   low 0 
cost medium high high 0.5 
quality  medium medium 0.25 

ob
s.

 

information 
gain 

 medium medium 0.25 

urgency   low 0 
plausibility   low 0 
cost medium  medium 1 hy

p.
 

changeability    low 0 
cost medium  medium 1 
time   low 0 
chance of 
success 

  low 0 

impact of 
success 

  low 0 ac
ti

on
s 

side effects   low 0 

 
Table 2. State characteristics 

 State Characteristic 
indicators_measure_stress cost = 1 

information gain = 0.1 
quality = 0.2 

o
b

se
rv

at
io

n
s 

sloppy_task_execution cost = 0.1 
information gain = 1 
quality = 0.5 

stressful_situation_without_
experience 

cost = 1 

stressful_situation_with_ 
experience 

cost = 0.2 

potentially_stressful_ 
situation 

cost = 0.3 

h
yp

o
th

es
es

 

experience cost = 0.1 
time_pressure cost = 1 

ac
ti

o
n

s guidance_by_pda cost = 0.1 

This causal model has been used to analyse the 
reasoning process in the following scenario. The 
relations in Figure 3 are used to determine the weights 
of the criteria in the reasoning process. The scenario 
starts with a situation in which there is a high cost 
pressure. By default, all weights of the criteria are set 
low. Applying knowledge as described in Table 1 
results in the cost factor for observations, hypotheses, 
and actions being set to medium, as shown in the third 
column of Table 1. Also the indirect effects described 
in Section 4, are taken into account for a number of 
criteria (fourth column). Eventually, this results in 
priorities for the criteria (listed in the fifth column). 
These priorities are translated into weight to order the 
actual observation, hypotheses and actions, thus 
forming a selection strategy. Here the qualitative 
measure is translated into a quantitative measure, the 
outcome of which is shown in the last column. 

The value of the states in the case study, for each of 
the non-zero criteria the value for these criteria are 
specified in Table 2. Note that in case the cost 
indicated are higher, this means that they comply better 
with the cost criterion. 

Below, a selection of the output of the components is 
shown for this scenario ordered on time. First, the 
component generate possible hypotheses derives the 
hypotheses that are possible given the observation: 
 

generate_possible_hypotheses 
Input: 
observation_result(at(indicators_measure_stress, 10), pos) 
Output: possible_hypothesis(X)   with 
X = at(and(potential_stress, experience), 8), at(and (potential_ 
stress, not(experience)), 8), at(experience, 8), at(not(experien 
ce), 8), at(potential_stress, 8), at(stressful_with_experience, 
9), at(stressful_without_experience, 9)) 
 

Thereafter, observation determination derives the 
predictions for the observations. 
 

observation_determination 
Input: (see output previous component) 
Output: predicted_for(at(sloppy_task_execution, 10),  
                       at(and(potential_stress, not(experience)), 8)) 
etc. 
 

Now the cheapest hypothesis is calculated, given the 
costs specified before. In this case the hypothesis 
stressful_without_experience is evaluated as the best: 
 

calculate_hypothesis_values 
Input: (see output previous two components) 
Output: best_hypothesis(stressful_without_experience) 
 

Since there is only one best hypothesis, this is selected 
in the component select best hypothesis: 
 

select_best_hypothesis 
Input: (see previous component) 
Output:  selected_hypothesis(stressful_without_experience) 
 

In the component test hypothesis it is determined Figure 4. Case Study Causal Graph 
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whether observations need to be derived. In this case, 
the sloppy_task_execution is derived as an observation 
that needs to be performed: 
 

test_hypothesis 
Input: (see output previous component) 
Output: to_be_observed(sloppy_task_execution) 
 

As a result a new observation arrives from the world, 
which specifies that the state sloppy_task_execution is the 
case at time point 10. Since this fully complies with the 
predictions, the hypothesis is confirmed, and the plan 
determination component is activated. Within the 
component, the subcomponent generate possible 
actions generates the actions that would result in a 
change of the current unwanted situation: 
 

generate_possible_actions 
Input: active_hypothesis(at(stressful_without_experience, 9)) 
Ouput: possible_action(change(at(high_task_level, 7))) 
possible_action(change(at(not(task_support), 7))) 
 

Since the cost of changing the high_task_level are a lot 
better than changing the task_support, this action is 
eventually selected. 
 

6. Discussion 
 

The agent model described is a basis for agent-based 
ambient intelligence applications aimed at assisting 
humans in critical or demanding tasks. The model has 
been designed and formally specified using the 
component-based agent design method DESIRE cf. [7]. 
The prototype application has been developed within 
the DESIRE software environment. Within the agent 
model reasoning processes were specified that make 
use of causal, dynamical models of the human’s 
functioning. The latter models were specified in 
LEADSTO format (cf. [5]). To use such causal models 
in reasoning processes within an agent model, a formal 
mapping has been made of the language LEADSTO 
into the language DESIRE. This mapping comprises 
(1) a mapping of the representation format, using a 
leads_to_after predicate introduced in DESIRE, and (2) 
a mapping of temporal reasoning methods that can be 
applied to LEADSTO specifications into DESIRE 
rules. In this way a kind of (meta-)interpreter for 
LEADSTO specifications has been explicitly 
represented in a logical manner within the language 
DESIRE. The resulting intelligent agent model has a 
high representational and reasoning power, where, e.g., 
also the reasoning can be controlled based on domain 
and situation characteristics, as has been shown. 

The main process performed by the agent described 
in this paper  is model-based diagnosis [8;10]: causes 
of malfunctioning are determined and remedies are 
proposed, using a model of system to be diagnosed. 

This paper focuses on the implementation of diagnosis 
in an ambient agent, which controls the process based 
on characteristics of the situation. 

Within agent-systems, several personal assistant 
agents which maintain user-models, and utilize them, 
have been proposed. In [3] a virtual secretary agent is 
shown that incorporates a user-model to enable a more 
dedicates assistance. The reasoning process of the 
model is however not tailored towards the situation, 
such as addressed in this paper. Furthermore, agents 
have also been developed that learn the user models 
(see e.g. [11]). Such a learned model could be the input 
of the agent architecture proposed in this paper. 
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