A Case Study in Incremental Architecture-Based
Re-engineering of a Legacy Application

Marwan Abi-Antoun
Institute for Software Research Intl (ISRI),
Carnegie Mellon University
mabianto@cs.cmu.edu

Abstract

Without rigorous software development and main-
tenance, software tends to lose its original amtit
tural structure and become more difficult to under-
stand and modify.

ArchJava, a recently proposed implementation lan-

Wesley Coelho
Department of Computer Science,
University of British Columbia
coelho@cs.ubc.ca

duced and maintained independently from source code
implementations. Over time, the implemented system’
design begins to drift from its original architerdu
Eventually, the architectural specification may drae
too inaccurate to be used, leading to further diggra
tion of the system structure.

Re-engineering is one way to correct architectural

guage which embeds a Component_and_connector ar-driﬂ and erosion, i.e., “the examination and atem

chitectural specification within Java implementatio
code, offers the promise of preventing the losgdfi-
tectural structure.

of a software system to reconstitute it in a newnfo
and the subsequent implementation of the new form”
[CC90]. Re-engineering a legacy system can extend i

We describe a case study in which we incrementallylifetime, and delay the introduction of a new syste

re-engineer an existing implementation with an ed
architecture to obtain an ArchJava implementation
that more closely matches an idealized architecture
Building on results from similar case studies, Wwese

an application consisting of over 16,000 sourcesdin
of Java code and 80 classes that exhibited mang cha
acteristics of real-world legacy applications. We-d

built from scratch, resulting in cost savings.

In this paper we describe a case study in which a
legacy system was re-engineered using ArchJava, a
programming language that enforces architectural
structure at the implementation level. Using the re
engineering paradigm ofbstraction transformation
andre-implementatiojJL91], we extract the architec-

scribe our process, some lessons learned, as sell a tural intent in the form of a target architecturedae-

some perceived limitations with the tools, techagju
and languages we used.

1. Introduction

A legacy system is defined as one that signifigantl
resists modification and evolution to meet new and
constantly changing business requirements, regardle
of the technology from which it is built [BS95]. &u
characteristics are partly due to architecturabjems,
including architectural erosioni.e., “violations in the
architecture that lead to increased system probéerds
brittleness” andarchitectural drift i.e., “a lack of co-
herence and clarity of form which may lead to aedhi
tural violation and increased inadaptability of #rehi-
tecture” [PW92].

Missing or un-enforced architectural information is
a key factor which contributes to architecturaftdand
erosion [JLL99]. The architecture of a softwaretasys
is commonly described in documentation artifacts pr

constitute the implementation in a form that we éop
will limit future architectural drift.

This paper makes several contributions. We refine
some of the design principles illustrated in [ACKD2
and build on results from similar case studies in
[ACNO2a, ACNO2b]. We chose an application that
exhibits more of the characteristics of legacy exyst
a) it was developed and maintained by severalreifite
junior programmers over the course of several years
unlike previous case studies where the subjecesyst
was developed and maintained by a single developer
(Aphyds and Taprats in [ACNO2b]); b) it is a readis
code base developed and maintained by novice pro-
grammers unlike other subject systems (e.g., the
Taprats system in [ACNO2b]) intended for an object-
oriented design competition; c) it did not haveoitigi-
nal architecture drawn by the original developard a
we could not talk to the maintainers; and d) itaiger
in size (source lines of code) than the similaecstsd-
ies that have been previously attempted. Finalyy, a

noted in [SP98], re-engineering expertise is lagkso
we hope that by documenting the difficulties likety

be encountered and the lessons we learned, we ca

provide insight into how this activity can be betep-
ported by future languages, techniques and tools.

The paper is organized as follows. Section 2 intro-
duces the subject system. Section 3 discussestis g

of the case study. Section 4 discusses the re-

engineering activity in detail and attempts to geliee
from our experience. Section 5 discusses somergsso
learned as well as some perceived limitations ef th
tools, techniques and languages we used. Finally, w
discuss some limitations of this case study iniSed,
and conclude.

2. The Case Study Application

complex and more error-prone, all characteristits o
architectural drift and erosion [JLL99].

3. Architecture-Based Re-Engineering

There are many benefits to having a documented
software architecture [CBB+03], ideally, using afch
tecture description languages [MTO00]. However, hav-
ing a documented software architecture is often not
enough: when developers move from design to imple-
mentation, architectural information is often lost.

There are several factors that contribute to dispar
ties between architectural specification and thieiadc
implementation. During software development and
evolution, developers often do not consult indegand
architecture design documentation, even if it exastd
is reasonably up-to-date. New developers may also

For our case study, we used a legacy system callecchange or violate the intended architecture because

HillClimber, which is part of Clspace, a collectiof
Java applications that graphically demonstratéicti
intelligence algorithms.

they are unaware of the underlying architecturtrin

3.1 Enforcing Architectural Structure in Code

ClSpace applications are used as educational tools Programming languages that support architecture at

in undergraduate artificial intelligence coursessa-
eral universities; they are created and maintaiogd

the implementation level offer a promising solutimn
these problems. By introducing syntax for descgbin

undergraduate student interns during summer tetms aarchitecture, high-level design decisions can he-in

the University of British Columbia (UBC). For seaér
years, new students have contributed to the apijolita

using only the source code as documentation of the,
systems’ design. Predictably, some developers made

modifications that were not consistent with thegimal
architecture of the system.

These applications provide an example of how the
loss of architectural information progressivelydsdo
the degradation of program structure.

Our case study application, HillClimber, demon-
strates stochastic local search algorithms for tcaims
satisfaction problems. Though it is relatively simal
HillClimber is large and mature enough to contain
complex design issues. Furthermore, HillClimbeais
representative object-oriented application.

In the original design of HillClimber, the applicat
Windowuses &anvasto displayNodesandEdgesof a
Graphin order to demonstrate the algorithms provided
by the Engine Over time, this simple structural intent
(which was not documented but existed implicitly in
the source code, as is often the case) was danigged
modifications performed by developers who were un-
aware of this intent and therefore unable to pres#r
Figure 1 illustrates the structure after severalryeof
modification by new developers. Clearly, the ambit
tural intent has been lost: communication between
components now follows arbitrary paths with little
structure. This results in source code that is nadfe

cult to understand and modify, less reusable, more

grated with source code. There are several advesitag
to this approach:

Since the architecture specification is captured in
the source code, there is no need to maintain a
separate artifact. The source code and its docu-
mentation will always be up-to-date.

Developers will be more aware of the architecture
because it is explicitly documented within the
source and not in external documents.

The architecture can be enforced using a type sys-
tem. In this case, the type system is extended to
prove that violations of the architecture do not ex
ist, enforcing communication integrity [LV95],
which means that two components in the imple-
mentation may communicate only if they are con-
nected in the architecture.

3.2 Re-engineering

Since architecture is determined during design of a
system, one would think that this is the ideal tifoe
even the only possible time) to encode these tagat
design decisions. However, backward compatible pro-
gramming languages that enforce architectural strec
can also be used on existing systems in order-o re
cover, formalize, and enforce the architecture, re-
engineer a legacy system to more effectively capitsr
architecture.

Using the re-engineering paradigm astraction
transformation(or reasoning about changes at a higher

abstraction level) ande-implementation[JL91], we
extract the architectural intent in the form ofamget
architecture and reconstitute the implementatiorain
form that we hope will limit future architecturatfifd.
Using higher-level information to reason about ¢xe
isting code as well as the target code (in thi®cas
chitectural information), truly qualifies the adtiv as
re-engineering. The abstraction and modificati@pst
help avoid ending up with the same tightly couple
architecture that’s very well enforced!

[Bri90] eloquently describes some advantages of r
engineering a legacy system instead of a compéete
write: “re-engineering takes advantage of the protb
effects of evolution. It preserves the functionahav-
ior of a system that had been specified, desigimed,
plemented, repaired, enhanced, verified, validaded,
most importantly, used over years, while improvirsg
quality”. For the purpose of this discussion, thelgy

The re-engineering process was iterative. For in-
stance, after we started re-engineering the code, w
realized that we had not been aggressive enougi in
structuring the original program, so we had to make
additional changes. Many of the steps above magl nee
to be repeated several times, since many changgs ma
be required to reach the desired target architectur

q 4-1 Identify the Source Architecture

The first step in re-engineering HillClimber was to
e-determine its current architecture and use this laasis
r for developing a target architecture to be expyicit
specified and enforced using ArchJava.
Although HillClimber has been maintained by sev-
eral developers over several years, there aretifiacts
other than source code that document its design. Fu
thermore, source code comments are sparse and some-
times out of date. It was therefore necessary ¢over

we are concerned with improving is the architedtura the source architecture by analyzing the source.cod

structure of the system.

The HillClimber application is one of several Cls-

For a re-engineering case study such as this onepace applications that share a commgeaphrrame-
backwards compatibility with the current implementa work package that includes abstract implementations of

tion language is essential. Incremental re-engingger
described in [BS95] as “take chicken little steps

key components. Components that are shared among
" several Clspace applications include tiendow,

avoids the complexity and the risks of big-bang re- graphcanvas, Graph, Node andEedge classes (See Fig-

engineering by transforming the system in smalfténc
ments and always having a running version.

3.3 ArchJava

ure 3). In the HillClimber application, another qoon
nent, Hi11engine, is tightly coupled with the key
graphFramework components. These components im-
plement the core functionality of the HillClimbepyai-

ArchJava [ACNO2a] is a recently proposed imple- cation and exhibit complex communication patterns.
mentation language that embeds a component-and- The HillClimber application is of sufficiently man-
connector (C&C) architectural specification within ageable size that the source architecture couldebe
Java implementation code. ArchJava’'s backward com-covered by manual inspection. We also used a tool t
patibility with Java and other software evoluticeaf generate UML class diagrams from an existing imple-
tures make it a suitable language for re-engingerin

existing real-world systems. | \L 3 Node
ArchJava allows architecture to be specified in - H H

source code by allowing programmers to define com- |W|ndow Q Canv;a\s Q Graph

ponents, ports, and the connections between them. T / Edge

ArchJava compiler enforces communication integrity,
i.e., that communication among components is censis

v
Engine }

tent with the explicit architecture.

4. Architecture-Based Re-engineering

For our case study, we performed the following ac-

tivities to re-engineer the application:

Identify the source architecture

Identify a target architecture

Analyze the original program (in Java)
Restructure the original program (in Java)
Re-engineer the original program (to ArchJava)
Periodically check against the target architecture.

Figure 1: The Source Architecture.

|Window+—b| Canva |°—°| Grapt

<
/

Figure 2: The Target Architecture: the arrows indicate
unidirectional connections; i.e., the source comp@mt
(circle end) requires the services of the target oapo-
nent (arrowhead end) and the target component does
not initiate communication with the source componen
Two circle ends indicate bi-directional communicatbn.

mentation. However, such tools do not completely Unlike the original architecture, we desired a dimp
eliminate the need for a manual code inspectiom. Fo fied, minimal communication pattern with looselyueo
example, in Figure 3, the tool we used missed bw-0 pled components to improve component reusability an
ous association betweenillcraph and HillNode ease future maintenance of the system. We removed
since HillGraph was using an untyped container to unneeded communication paths. For example Eite
maintain references teillnode objects. Some tools gine component drives changes to fBeaph and it is
claim to not suffer from this limitation; howevesne not necessary for it to communicate directly witie t
we tried (Womble [JW99]) did not scale to handle th Canvas whose function is to display the contents of the
HillClimber application. Graph component. Similarly, th&/indow component
Given the key components, the relationships be-that implements the user interface does not need to
tween them were discovered by manually investigatin communicate directly with th&raph The resulting
the source code. Communication between componentstarget architecture is shown in Figure 2.
such as method calls, was recorded. Figure 1 stiwvs
key components and the arrows indicate the disealver
presence of communication between them; one can see The goal of this step is to consider the structural
that communication between components follows a properties of the original program that requireacbr-
nearly arbitrary pattern, with most components com- ing in preparation for re-engineering. For example,
municating with most other components. some object-oriented implementations are difficolt
re-engineer to ArchJava, because many object-edent
patterns involve passing object references and
Developing the target architecture involves the fol ArchJava restricts passing component references.
lowing steps: (a) Identify the architectural styiesise, Top-level Elements.The previously identified top-
if any; (b) Identify the top-level components ineth level elements are those that will become component
source architecture and re-use those componeti®in classes. At this point, it is important to consider
first iteration of the target architecture; (c) mdiéy whether the top-level elements being turned intm-co
which elements of the architecture are static ahithw ponent classes are conceptually part of the aathite
elements are dynamic; (d) Determine the desired-com rather than just data structures. Using component
munication pattern between the identified top-level classes as data structures is bound to be awkveard b
components. cause component classes are not really intendéHl to
For a graphical application such as HillClimber, we that role: data structures demand flexibility and
could have made the communication patterns betweenArchJava’s component classes impose more rigid con-
components conform to the Model-View-Controller straints (e.g., cannot be passed as referencasytdam
(MVC) architectural style [KP88]. However, to avad stored in arrays, etc.) In HillClimber, we initialtle-
significant departure from the source architectame cided to turn the following Java classes into Asstal
the resulting code rework, we chose roughly theesam component classes#illwindow, Hillcanvas, Hil-
top-level components as in the source architecture. 1Engine, HiTlGraph, Hi11Node andHillEdge.

4.3 Analyze the Original Program

4.2 ldentify the Target Architecture

| graphFramework::Edge | | graphFramework::Node | | graphFramework::Graph | | graphFramework::GraphCanvas |

Q Q - cuntlode " - hillGraph - hillC:
| © HillEdge | [D HillNode | — éﬁ HillGraph |- oreen - icamvas

0.1 g.1

4 - hilkinclone:

0.1

@ HillCanvas

0.1 # nocle

@ Search | 00L1 | ehifEmgine

% HillEngine |
| | |

| © GreRRSearch | | @ RandSearch | | ® SimpleSearch | | @ SimAnnealSearch | | @ SimRanSearch |

| © GreedySearch | | MCHSearch | | © RdWkSearch |

Figure 3: UML diagram retrieved from the original J ava implementation using the EclipseUML tool [Omo0bh

Object Sharing. Study the sharing of objects. As P“glfﬁi?3?%%3“52%2&55;

discussed in [ACNO2b], ArchJava does not allow a private Hill1Graph graph; _
. public int dt = 100; // delay time
component to be shared by two container components.

public Hill1Engine(HillGraph graph,
Thus, structures that are shared between components Hillcanvas canvasy {

should be left as ordinary objects, unless theishar this.graph = graph;
. . this.canvas = canvas;
can be easily replaced with method calls through th // Default heuristics
container component’s port. In HillClimberj 11Node Sl ew search(8]: _
and Hilledge are shared betweenillcanvas and searchAlgs[0] = new Randsearch(this);

HillGraph, so in the end, they were left as ordinary 3 ==~

classes, but they do declare ports. pubTic void step() {

_ Aialization ?r::etr(-)p'tlésv Important 10 diSCOVr the. ;1 inGau3Eaivas. parent . setsuttonssotved erue;

This information will be essential when construgtin }

the static architectural instances and their statimec- iy . .) .

tions: e.g., in HillClimberHillcanvas had to be ini- Figure 4: Original Java implementation of the Hi1l-

tialized before+i11araph. Engine _class. Note th_e uT-encapsqlate_d f!‘eldsand a
ki . . method implemented using “code navigation.

Communication Patterns.At this point, one should
get a rough idea of the extent to which the origina
code violates communication integrity rules. Fof in
stance, if there are many cases of passing aroumd ¢
ponent objects or interfaces, this is an indicatioat
significant work may be needed to convert the desig
to one that can be implemented in terms of ports an
connections. In HillClimber, this was indeed thesea
references of typeHillwindow, Hillcanvas, Hil-
1Engine, and HillGraph) were being passed as con-
structor arguments or as method arguments.

When examining communication patterns, identify
“Navigation Code” [DDNO02], i.e., code that travesse
series of object links before calling a method ba t
final object. It is a well-known symptom of mispéat
behavior that violates the Law of Demeter [LH89],
leading to unnecessary dependencies between classe%"e_ cla_sses t_hat are to become component _classes ar
We used simple pattern matching to identify some eing instantiated. For some c_omponents, It may be
navigation code as explained in [DDN02]. We did not preferab_le to make them stafic instances and atie S.t
use more advanced techniques, such as approache%onnecnons be_cause ArchJaya offers a more straight
based on aspect-oriented programming (e.g”forward_ way to |mp!emgnt Stat'c_ comppnent;.

[LLWO3]). In HillClimber, we found many occurrences In HillClimber, wiTlwindow, Hil1Engine, Hillcan-
of navigation code in the component classes, elags vas, andHillcraph are static instances, whereg31-

Hillwindow included code such as the following: Nodg agdH:]HEdge are (.jynarfmcbl_nstaru;es. cular i
getCanvas() .getGraph(y. setLinewidehC. . . tudy the construction of objects:of particular in-

Encapsulation. Study how well fields are encapsu- terest are non-default constructors. Component con-
lated. In a modern integrated development environ- Structors may not have arguments of C_or_n_po_ner_lt type
ment, fields shown in a tree hierarchy are colatezb AIS_O’ examine methods that perform re"”'“a"ZBF“’f
based on visibility, making them easier to identity objects; do they 'Te'_ease gnd reallocate new Ob.JGCtS
would have been helpful to also have tool support t do they reuse existing objects, by resetting thtsite?

query the implementation for such anomalies. In-Hil In HillClimber, anillGraph instance was being reallo-

Climber, as can be seen in Figure 4, there wereyman cated, so we preferred to make it a static instamce
un-encapsulated fields stead, with static connections to the other coraptm

Inheritance Hierarchy. Having identified the com- 4 4 Restructure the Original Program
ponent classes, verify that an ordinary class nait) _
have a superclass that is a component class. The goal of this step is to restructure (or refgcto
the original program in Java before re-engineetirey

program into ArchJava. Converting a program to

ArchJava allows component classes to extend regu-
lar classes and interfaces, so that legacy litsariild
invoke the inherited methods of components through
references to the appropriate superclass. Thisleshab
us to avoid converting classes from thephFrame-
work package to components. However, we noticed that
the inherited methods of some these components were
being invoked arbitrarily through their inheriteater-
faces, threatening the desired communication irttegr
However, ArchJava guarantees that the new HillClim-
ber-specific methods introduced in the HillClimber
components can only be called through declared con-
nections in the architecture.

Object Construction and Destruction. Study how

ArchJava may involve significant restructuring fifet ~ Public class HillEngine {
implementation does not match the target architectu g;w:z: ?111g1ngovlvovgjnd?»f/v;de1ay e
well. Refactoring will be inevitable because maiy o ’

ject-oriented patterns rely on passing referenaes, P e pinet) t

ArchJava restricts that. We attempted to refactoag- :ES?S‘QX?;SZO ew search[8]:

tively all the potential trouble areas in the amigi pro- Randsearch randsearch = new RandsearchQ);
gram. However, it is hard to determine when to stop L e e e oo ect stmt

since additional refactoring was likely to happemirly)
the actual conversion to ArchJava, we delayed nifany public void setbt(int dt) { this.dt = dt;}
the difficult refactorings until they were necessar public int getbt() { return dt; }
Refactoring the original program was also helpful éﬁdﬁ;’?om??CJ?XM“;Z&?SSOJ&)?EZE?X&‘Mndow; }
for becoming familiar with the code base, as in the public void setwindow(Hillwindow window) {
“refactor to understand’re-engineering best practice this.window = window; 3
[DDN02]. We made heavy use of the built-in support I . : :
for refactoring in the Eclipse [EclO3] developmemt- Figure 5: Refactored HillEngine Java class.
vironment to avoid introducing defects during this
stage. However, we did not follow the best practite
first having an extensive set of unit tests [FBB}+&&d

communicating objects as argument to a non-default

constructor to ensure that the references are et ¢

: _ ; rectly. We found it useful to temporarily repladest

rerunning the unit tests after each refactoringn&of pattern with explicit calls to setters and gettarsrder

the important refactorings are discussed next. _ to facilitate converting the program to ArchJava. |
Rename.When .enforcm.g architectural structure in - prcp Java, getters and setters taking componenstype

code, and recovering architectural structure frames will be illegal, and these setters will have to dmn-

names become important, since the ArchJava if'”ple'verted into ArchJavaonnect statements). See Figure 5
mentation will also serve as architectural speaffan: for how thei11Engine constructor was refactored.

for example, we assigned component instances more gpit |njtialization Code from Constructor Code.
meaningful names that clearly convey the architettu Object-oriented programmers often perform all the

intent, e.g., usedgenialog instead ofi1g. Other prac- jpjtialization aggressively in a class constructéow-
tical considerations included checking that non¢hef ever, care should be taken to not have initiakmati

identifiers .used in HillClimber conflicted with new .q4e in the construction that relies on calling tpor
keywords introduced by the ArchJava language exten-methods, since those ports would still be uncomect

sion (such asconnect, port, etc). Similarly, sincé iy the constructor. The ArchJava compiler will stat
ArchJava requires the Java programming language Ver c4|ly warn about possibly unconnected ports in @ co
sion 1.5, we had to check that the code would clempi gt ctor. In HillClimber, there were many such in-

with Java 1.5. Refactoring tools can greatly assist giances. We followed the same pattern in all cases:
renaming by performing capture-avoiding substitsio ent the constructor minimal, and moved initialiaat

Encapsulate.All fields on classes that are intended gge into a separateit() method. This seems a com-
to become component classes should be encapsulategy,n, pattern in component programming: e.g., in Mi-
and be accessible only through accessor and modifie orgsoft's ATL library for COM component program-
methods; i.e., no fields should be public, staian- ming [ATL], a Finalconstruct() method is provided,
sient, or volatile. Furthermore, all fields of stpe \ynere the rest of the initialization can be comgdet

classes, even if the ones not intended to become co such as aggregating other objects, and the lilyasy-
ponent classes, should be encapsulated as walheas 4ntees thatinalconstruct() is called after the con-

may want to expose implementation methods from agiryctor. In this case, we had to be very carefutdt
super class as a provided functionality on the @mp jntroduce new defects into the program, by making s
nent sub-class. ArchJava will consider as illeg® a that theinit() method is actually called on all instan-

non-private and non-protected component fields: 8 jated objects. Unfortunately, we had little toapport
one way that ArchJava enforces communication integ-qy this type of refactoring.

rity. In HillClimber, we encapsulated many fields i Eliminate Constructor Calls to Overridable
many classes (including manygnaphrramework). Methods. [Blo01] explains why constructors must not
Eliminate Constructor Arguments of Type Com- call overridable methods: the superclass constructo

ponent ClassesArchJava does not allow for construc- ,ns pefore the subclass constructor. so the alveqi
tor arguments having types of component classes. Amethod in the subclass will get invoked beforestie-
common object-oriented pattern involves passint@f ¢|ass constructor has run. If the overriding metted

pends on initialization performed by the subclass-c
structor, then the method will not behave as exgkct

If these calls remain when the program is conveited
ArchJava, runtime exceptions occur if the overigdin
methods depend on ports having already been con-
nected. To make things worse, by default (i.e.,-non
final) all public or protected methods in Java wire

tual. Currently, ArchJava does not statically wabout
calls to overridable methods which may be accessing
ports. A sophisticated linear type system to chieck

all disconnected ports would be required for static
checking and is not currently implemented. We dbtua
found one such instance in the HillClimber applimat

the constructor of thgraphFramework.Node class was
calling a virtual updatesize() method, which was
overridden inside the subclassl1node and where it
was accessing thenvas port.

Eliminate Navigation Code. [ACNO2a] reports
how navigation code is often a significant problem
when converting to ArchJava: being proactive and e-
liminating as much as possible of it will not bestexd

effort. In HillClimber, for instance, we replaced
((Hi11window) canvas.parent).setSolved(true);

by declaring a fieldvindow, making sure that the field

is initialized and changing the call to
window.setSolved(true).

Extract Interfaces. This refactoring is not essential,
but we found it helpful. For some HillClimber class
(e.g.,Hi11ENngine), we extracted all the public methods
available on a class, including methods inheriteadnf
the base classes, into interfaces.

4.5 Re-Engineer the Program

From this point onwards, we had to switch over to °
the ArchJava environment, and could not use the
Eclipse Java development environment anymore. Since
ArchJava is backwards compatible with the Java pro-
gramming language, the first step when re-engingeri
to ArchJava is to rename thejava files to *.archj
and recompile using the ArchJava compiler.

As long as no program identifiers are using any re-
served keywords, the ArchJava development environ-
ment will be able to compile HillClimber withoutrfu
ther modification or error, but at this point, the
ArchJava typesystem will not be enforcing any com-
munication integrity.

ArchJava can be applied incrementally to convert
key communication relationships from standard metho
invocations to the port communication constructv-Se
eral relationships between objects were converted t
ArchJava using the re-engineering patterns destiibe
great detail in [ACNO2b], summarized here: °

public component class HillEngine {

// Ports
public port /* HillCanvas */ canvas {
requires boolean isInline();

public port /* HillGraph */ graph {
requires int numedges();

public port /* Hillwindow */ window {
requires void setButtonsSolved(boolean solved);
}

private port /* Hillwindow */ p_window {
provides Applet getApplet() {
return window.getApplet(); }

...}
// Glue internal port to external port
private port /* HillGraph */ p_graph {
provides int numedges() {
return graph.numedges();}

pubilic port /* HillEngine */ engine {
provides void setDt(int dt);
provides int getdt();

//.&ﬁi1d components
private final RandSearch randsearch =
RandSearch();

new

.)) Static connections
connect engine, randSearch.engine, ...
connect p_graph, randsSearch.graph, ...
public HillEngine() {
)).Note: Do most of initialization in init(Q)

public void init(Q) {

}
public void step() {

i%.(!canvas.isln1ine()) {
window.setButtonsSolved(true);

Figure 6: HillEngine component class in ArchJava.

Change class to component class: this often re-
quires many additional changes to pass communi-
cation integrity checks.

Change a field link into a connection: in many
cases, this is simply converting an instance vari-
able to a port. If the port is given the same name
the deleted instance variable, statements that pre-
viously called the server object will not need ® b
modified because the port call syntax will be iden-
tical. This is only possible if there are no direct
calls to public fields (this is where encapsulating
all the fields pays off). For each method that was
previously called on the callee, we declare its sig
nature as a required method in the new port that
now represents the provider (See Figure 6).

Move creation to container component: this pattern
required the most changes to the architecture. In
retrospect, this step should have been addressed
during the re-structuring step, [ACNO2b] discusses
in greater detail how this can problem be ad-
dressed.

Finally, we used ArchJava’'s dynamic constructs
(connect patterns and expressions) discussed in
[ACNO2a] forHi11node andHillEdge.

4.6 Check against the Target Architecture

hillGraph

To guide the re-engineering activity toward the tar
get architecture, we periodically checked the stdte
the implementation against the target architectye

. X Port Types
recovering an up-to-date architectural componedtan © useT
connector (C&C) view from the implementation using |¢emponents Types :P:ngﬂ
available ArchJava tool support [AAGO5]. [Terodet Role Types

The recovered C&C views contained purely struc- Connectors Types N Gk
tural information, such as components, ports, &ed t L A ST ; hth

connections. Architectural styles and types werauma Figure 7: Intermediate recovered C&C view: port types
ally supplied since ArchJava does not currentlyeep (manually assigned) encode the directionality.
sent that information. For instance, assigning parés . L , .
(based on whether a port only provides methods; onl Ireversibility” [Fow03]. Turning a Java programtan
requires methods, or does both) was used to check t " ArchJava program is an irreversible transforomati
directionality of the communication (See Figure 7). Keep It Incremental. Having the ability to incre-
The C&C-views were useful for quickly assessing Mentally convert the program to ArchJava was ex-
the current state of the implementation and detgni tremely valuable. For instance, turning a clase it
how far it was from the desired target architectiitee ~ COMPONent class can suddenly generate many ArchJava
snapshots helped produce a cleaner design, since ex©mPpile errors (e.g., if that type was used asnstroc-
posing the control flow information can highlighges 7 argument). However, there was always an easy
ghetti style connections. Second, they helped theah workaround: non-component classes can have ports as
migration effort: as long as the code compiled, gke well. So in some cases, we resorted to first addorts
tracted C&C view quickly showed which ports were @nd then converting the class to a component efiess
not connected (including those on dynamic instgnces W€ better understood the dependencies. _
Finally, they helped visualize object sharing issue 'olerate IncompletenessEven development envi-
(e.g., by havingii11Node andwilledge instances ap- ronments are moving towards tolerating incomplete-

pear as contained by bath1canvas andwillcraph). ness. For example, the Eclipse Java Development Too
ing [JDT] allows running and debugging code which
5. Lessons Learned still contains unresolved errors. The ability tonfeo-

. . . rarily tolerate incompleteness and errors is evenem
In this section, we describe some of the lessons We_ itical for a lanquage such as ArchJava. During-a
learned during the case study, in the hope thaish w guag i g

) ; 2 . . . engineering activity, mixing the two concerns (ithe

list will provide impetus for improving currentlyvail- ;
implementation and the architecture) is hard if one

able tool support.

wants to first codify the desired architecture, yetin-
5.1 Hints for Language and Tool Designers. tain a running system.
: i Some Architecture Description Languages require

Keep It Iterative. The activities that seemed to declaring ports but do not require declaring the- pr
make the process _hard_er were precisely the oneés thajgeq ang required functionality on the ports. Ataha
interfered with the_z iterative nature of the process., _always requires both. ArchJava currently elegantly
once a program IS converted to ArchJava, refa_cgorln supports architectural design with abstract comptsne
support avall_able for a Java program is no longaila and ports, which allow an architect to specify and
able, even if the ArchJava program still has many typecheck an architecture before beginning program

classes that are St_'" pl_aln Java classes. Foaros implementation. However, it does not easily support
after we started migrating the code to ArchJava, we o ability to incrementally enforce architectucain-

o_Iiscov_ered that we had forgotten to encapsulaterabv ¢ o0 q checking. Some possible options could in-
fields in the base classes in thephFramework pack- clude having different warning levels, or havinge-

age. Even though none of the classes in that packagting to relax some of the checks for required arat p
had been converted to component classes or declareg;y.q functionality, at least temporarily

ports, we could not use refactoring tool support.
Fowler offers an additional insight: “[...] irresy

bility [is] one of the prime drivers of complexitnd

agile methods [...] contain complexity by reducing

Automate as Much as Possibldt would have been
helpful to have a set of tools to further automte
process of re-structuring the original programnlifg-
ing program code in need of refactoring is stillstiypa
manual exercise. However, we believe that for lthig

of re-engineering, where the rules are relativeil w
known, automated support would be particularly uisef
For instance, a tool could take a list of the idtsth

and guarantee that the initialization method waalld
ways be called.
Missing Explicit Interfaces. Having a feature simi-

component classes, look for known problems (such aslar to C# explicit interfaces [C#02] would be udefar

public fields of those types or constructor argutseri
those types), suggest a list of refactoring (@gcapsu-
late fields, identify navigation code), automatigal
construct some of the refactorings, and finallyegikie

similar reasons:

Explicit interface member implementations allow
interface implementations to be excluded from the
public interface of a class when a class implements

an internal interface that is of no interest tooa-c
sumer of that class.

» Explicit interface member implementations allow
disambiguation of interface members with the
same signature; otherwise, it would be impossible
to have different implementations of interface

user the opportunity to preview the proposed chsinge
and accept or reject them.

5.2 Perceived ArchJava Limitations

There are limitations to the currently availablelto
support for the ArchJava language that affect the v
ability of the re-engineered HillClimber applicatio members with the same signature and return type,
The ArchJava development environment offers only or with the same signature but with different ratur
basic features, and does not provide support fougle types.
ging and refactoring. However, there are more funda Relaxing Architectural Constraints. In many real-
mental issues that we encountered during this caseworld architectures, it is often necessary to meke
study that we would like to see addressed in furere ceptions to architectural constraints. For examipley
sions of ArchJava. layered architecture with strict performance reeuir

Runtime Exceptions.ArchJava is designed on the ments, it may be necessary to tunnel between lagers
premise that if the type checker terminates sufaigss that calls skip one or more layers in order todll
the match between the implementation and specifiedmore direct routes, as explained in [GN95]. Embedde
architecture is guaranteed. Unfortunately, certain architecture description languages such as ArchJava
classes of architectural errors are only caughuat currently have no mechanism for handling these gxce
time. For instance, since a component instancestithn tions. For instance, some programming languages, su
be freely passed between components as an expressicas C#, allow programmers to mark code blockams
of type java.lang.object, an exception is thrown if safe [C#02] and perform low-level operations that are
an expression is downcast to a component typedsutsi normally not available.
the scope of its parent component instance. Sikpilar Tightening Architectural Constraints. Even when
runtime exception is thrown when accessing a att t architecture is specified in source code and esfbly
is not connected. Extensive testing is still neeted the compiler, there are still methods of circumiremnt
verify that no serious defects are introduced afaro- the imposed architectural structure. For exampiey-c
gram when re-engineering it into an ArchJava pnogra ponents that are intended to be unrelated could sti

Missing Port Types ArchJava does not have ex- communicate via shared memory, shared files, or net
plicit port types. We resorted to using commentstne work messages. Although architecture descriptions i
to the port name to specify the type of the polte T source code reduce the need to maintain documenta-
absence of port types in ArchJava imposes sometion, developers are still required to devote resesito
amount of code duplication for declaring required maintaining the embedded architectural description.
methods. On the other hand, this allows havingra na a degenerate case, it is still possible to circurhae-
rower interface available to a port. chitectural constraints by defining an entire pesgras

Missing Port Directionality. ArchJava does not internal to a single architecture-level componédat,
currently allow developers to restrict the arcHiteal example. Therefore, effort must be devoted to eémgur
intent that can be expressed with the component andhat the coded architecture specification is appate
port model, e.g., to express that a port can oaleh and up-to-date. Having the ability to externallgual-
required methods or only provided methods. There isize the architecture can help avoid such scenarios.
no way to distinguish cases where this happens by
chance or where the architect’s intent is thatpbe is

unldlregt|onql. . o This case study did not demonstrate that the re-
Missing Final Constructor. As discussed earlier, it engineered ArchJava HillClimber implementation is

would be helpful if ArchJava provided a better mech actually easier to understand and evolve than tige o

nism for completing the initialization of a compoie | Java implementation. It would be ideal if weilco

6. Case Study Limitations

have junior programmers (e.g., UBC summer interns) [Bri90] Britcher, R. Re-engineering Software: A €&5tudy.

co-evolve the ArchJava implementation to see if the

system architecture is preserved better than itldvou
have been if left in pure Java, and to see if tlaénm
tainers are able to avoid the architectural violagi
discussed in the latter part of Section 5.2. Howethe

In IBM Systems Journal, vol.29, No.4, 1990.

[BS95] Brodie, M. L., and Stonebraker, M. Migratihgg-
acy Systems: Gateways, Interfaces and the Incraent
Approach. Morgan-Kaufman Publishers, 1995.

[C#02] Wiltamuth, S. and Hejlsberg, A. C# Langu&peci-
fication. Standard ECMA-334, 2nd edition, 2002.

current level of tool support for ArchJava does not [cBB+03] Clements, P., Bachman, F., Bass, L., @aD.,

make this an attractive proposition.

In addition, this case study did not address thma-co
plex issues that are likely to arise when re-ergging
an application that relies heavily on middlewarey.(e
Enterprise Java Beans [EJB]). Additional case studi
are an important element of future work in thisaare

7. Conclusions

Architectural specifications are often not suffitig
maintained along with the actual implementatiom-La
guages such as ArchJava effectively enforce archite
tural structure in source code and promise to pedp
vent the loss of architectural information, and tke
sulting architectural drift and erosion. Althoughchk
languages are best applied during the initial dgvel
ment phases, they can be applied to existing sgstem
re-engineer, document, and enforce the desired-stru
ture. By eliciting and refining some of the undarty
re-engineering principles, such as those outlined i
[ACNO2b], we hope to make the re-engineering atgtivi
seem less daunting, less painful and less erranepro
We also pointed out several limitations of the lan-
guages and the tools we used that will need tovee o
come before they can be used effectively in pradoct
software development.

8. Acknowledgements

We thank Jonathan Aldrich for his helpful hints and
technical support on the ArchJava compiler durimg t
case study, and for detailed comments that sigmiflg
improved the paper. We also thank Alan Mackworth
for granting us the permission to use the HillClenb
code base and publish details of the case study.

9. References

[AAGO5] Abi-Antoun, M., Aldrich, J., Garlan, D., &merl,
B., Nahas, N., and Tseng, T. Improving System Ddpen
ability by Enforcing Architectural Intent. WADS, 26.

[ACNO2a] Aldrich, J., Chambers, C. and Notkin, D.
ArchJava: Connecting Software Architecture to Imple
mentation. In Proc. ICSE, 2002.

[ACNO2b] Aldrich, J., Chambers, C. and Notkin, Drchi-
tectural Reasoning in ArchJava. In Proc. ECOOP2200

[ATL] Microsoft Active Template Library (ATL) for ©OM
http://msdn.microsoft.com/library/default.asp?uibrar
yl/en-us/vclib/html/_atl_CComObjectRootEx.asp

[Blo01] Bloch, J. Effective Java. Addison-Wesle@02.

Ivers, J., Little, R., Nord, R. and Stafford, J.dbment-
ing Software Architecture: View and Beyond, Addison
Wesley, 2003.

[CC90] Chikofsky, E. and Cross, J. Reverse Engingeand
Design Recovery: A Taxonomy. In IEEE Software, 1990

[DDNO2] Demeyer, S., Ducasse, S., and Nierstrasz2O
ject-Oriented Reengineering Patterns, Morgan Kaofma
Publishers, 2002.

[EclO3] Object Technology International, Inc. Edé Plat-
form Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overvigd

[EJB] Sun Microsystems. Enterprise JavaBeans.

http://java.sun.com/products/ejb/docs.html

[FBB+99] Fowler, M., Beck, K., Brant, J., Opdyke, ViRob-
erts, D. Refactoring: Improving the Design of Eixigt
Programs. Addison-Wesley, 1999.

[Fow03] Fowler, M. Who needs an architect? In |E&®t-
ware, 20(5): p. 11, 2003.

[GN95] Griswold, W. G., Notkin, D. Architectural adeoffs
for a Meaning-Preserving Program Restructuring Tool
In IEEE Transactions of Software Engineering, 1995.

[JDT] Eclipse Java Development Tooling (JDT) core.
http://dev.eclipse.org/viewcvs/index.cgi/jdt-core-
home/main.html?rev=1.97

[JL91] Jacobson, I, and Lindstrém. F. Reengingedhold
systems to an object-oriented architecture. In FogaP-
SLA, Vol. 26, No. 11, 1991.

[JLL99] Jaktman, C. B., Leaney, J. and Liu, M. Stual
Analysis of the Software Architecture - A Mainteoan
Assessment Case Study. In Proc. of WICSA1, 1999.

[JW99] Jackson, D. and Waingold, A. Lightweight i&xt
tion of Object Models from Bytecode. Proc. ICSE 999

[KP88] Krasner, G.E. and Pope, S.T. A CookbookUsing
the Model-View-Controller User Interface Paradigm i
Smalltalk-80. In JOOP 1(3), 1988.

[LH89] Lieberherr, K. and Holland, I. Assuring Go&dyle
for Object-Oriented Programs. In IEEE Software, 4.98

[LLWO3] Lieberherr, K., D.H. Lorenz, and P. Wu, Aa€e
for Statically Executable Advice: Checking the Lafv

Demeter with AspectJ. In Proc.AOSD, 2003.

[LV95] Luckham, D.C., and Vera, J. An Event Basadh-
tecture Definition Language. In IEEE TSE 21(6), 399

[MTOO0] Medvidovic, N., and Taylor, R. N. A Clasgifition
and Comparison Framework for Software Architecture
Description Languages. In IEEE TSE 26(1), 2000.

[OmMo95] Omondo EclipseUML. http://www.omondo.com/

[PW92] Perry, D. E., and Wolf, A. L. Foundationg fine
Study of Architecture. ACM SIGSOFT Software Engi-
neering Notes, 17(4), pp. 40-52, 1992.

[SP98] Stevens, P., Pooley, R. Systems Reengimge&at-
terns. In Proc FSE, 1998.

