
A Case Study in Incremental Architecture-Based
Re-engineering of a Legacy Application

Marwan Abi-Antoun

Institute for Software Research Intl (ISRI),
Carnegie Mellon University

mabianto@cs.cmu.edu

Wesley Coelho
Department of Computer Science,

University of British Columbia
coelho@cs.ubc.ca

Abstract

Without rigorous software development and main-
tenance, software tends to lose its original architec-
tural structure and become more difficult to under-
stand and modify.

ArchJava, a recently proposed implementation lan-
guage which embeds a component-and-connector ar-
chitectural specification within Java implementation
code, offers the promise of preventing the loss of archi-
tectural structure.

We describe a case study in which we incrementally
re-engineer an existing implementation with an eroded
architecture to obtain an ArchJava implementation
that more closely matches an idealized architecture.
Building on results from similar case studies, we chose
an application consisting of over 16,000 source lines
of Java code and 80 classes that exhibited many char-
acteristics of real-world legacy applications. We de-
scribe our process, some lessons learned, as well as
some perceived limitations with the tools, techniques
and languages we used.

1. Introduction

A legacy system is defined as one that significantly

resists modification and evolution to meet new and
constantly changing business requirements, regardless
of the technology from which it is built [BS95]. Such
characteristics are partly due to architectural problems,
including architectural erosion, i.e., “violations in the
architecture that lead to increased system problems and
brittleness” and architectural drift, i.e., “a lack of co-
herence and clarity of form which may lead to architec-
tural violation and increased inadaptability of the archi-
tecture” [PW92].

Missing or un-enforced architectural information is
a key factor which contributes to architectural drift and
erosion [JLL99]. The architecture of a software system
is commonly described in documentation artifacts pro-

duced and maintained independently from source code
implementations. Over time, the implemented system’s
design begins to drift from its original architecture.
Eventually, the architectural specification may become
too inaccurate to be used, leading to further degrada-
tion of the system structure.

Re-engineering is one way to correct architectural
drift and erosion, i.e., “the examination and alteration
of a software system to reconstitute it in a new form
and the subsequent implementation of the new form”
[CC90]. Re-engineering a legacy system can extend its
lifetime, and delay the introduction of a new system
built from scratch, resulting in cost savings.

In this paper we describe a case study in which a
legacy system was re-engineered using ArchJava, a
programming language that enforces architectural
structure at the implementation level. Using the re-
engineering paradigm of abstraction, transformation
and re-implementation [JL91], we extract the architec-
tural intent in the form of a target architecture and re-
constitute the implementation in a form that we hope
will limit future architectural drift.

This paper makes several contributions. We refine
some of the design principles illustrated in [ACN02b]
and build on results from similar case studies in
[ACN02a, ACN02b]. We chose an application that
exhibits more of the characteristics of legacy systems:
a) it was developed and maintained by several different
junior programmers over the course of several years,
unlike previous case studies where the subject system
was developed and maintained by a single developer
(Aphyds and Taprats in [ACN02b]); b) it is a realistic
code base developed and maintained by novice pro-
grammers unlike other subject systems (e.g., the
Taprats system in [ACN02b]) intended for an object-
oriented design competition; c) it did not have its origi-
nal architecture drawn by the original developers and
we could not talk to the maintainers; and d) it is larger
in size (source lines of code) than the similar case stud-
ies that have been previously attempted. Finally, as

noted in [SP98], re-engineering expertise is lacking; so
we hope that by documenting the difficulties likely to
be encountered and the lessons we learned, we can
provide insight into how this activity can be better sup-
ported by future languages, techniques and tools.

The paper is organized as follows. Section 2 intro-
duces the subject system. Section 3 discusses the goals
of the case study. Section 4 discusses the re-
engineering activity in detail and attempts to generalize
from our experience. Section 5 discusses some lessons
learned as well as some perceived limitations of the
tools, techniques and languages we used. Finally, we
discuss some limitations of this case study in Section 6,
and conclude.

2. The Case Study Application

For our case study, we used a legacy system called

HillClimber, which is part of CIspace, a collection of
Java applications that graphically demonstrate artificial
intelligence algorithms.

CISpace applications are used as educational tools
in undergraduate artificial intelligence courses at sev-
eral universities; they are created and maintained by
undergraduate student interns during summer terms at
the University of British Columbia (UBC). For several
years, new students have contributed to the applications
using only the source code as documentation of the
systems’ design. Predictably, some developers made
modifications that were not consistent with the original
architecture of the system.

These applications provide an example of how the
loss of architectural information progressively leads to
the degradation of program structure.

Our case study application, HillClimber, demon-
strates stochastic local search algorithms for constraint
satisfaction problems. Though it is relatively small,
HillClimber is large and mature enough to contain
complex design issues. Furthermore, HillClimber is a
representative object-oriented application.

In the original design of HillClimber, the application
Window uses a Canvas to display Nodes and Edges of a
Graph in order to demonstrate the algorithms provided
by the Engine. Over time, this simple structural intent
(which was not documented but existed implicitly in
the source code, as is often the case) was damaged by
modifications performed by developers who were un-
aware of this intent and therefore unable to preserve it.
Figure 1 illustrates the structure after several years of
modification by new developers. Clearly, the architec-
tural intent has been lost: communication between
components now follows arbitrary paths with little
structure. This results in source code that is more diffi-
cult to understand and modify, less reusable, more

complex and more error-prone, all characteristics of
architectural drift and erosion [JLL99].

3. Architecture-Based Re-Engineering

There are many benefits to having a documented

software architecture [CBB+03], ideally, using archi-
tecture description languages [MT00]. However, hav-
ing a documented software architecture is often not
enough: when developers move from design to imple-
mentation, architectural information is often lost.

There are several factors that contribute to dispari-
ties between architectural specification and the actual
implementation. During software development and
evolution, developers often do not consult independent
architecture design documentation, even if it exists and
is reasonably up-to-date. New developers may also
change or violate the intended architecture because
they are unaware of the underlying architectural intent.

3.1 Enforcing Architectural Structure in Code

Programming languages that support architecture at

the implementation level offer a promising solution to
these problems. By introducing syntax for describing
architecture, high-level design decisions can be inte-
grated with source code. There are several advantages
to this approach:
• Since the architecture specification is captured in

the source code, there is no need to maintain a
separate artifact. The source code and its docu-
mentation will always be up-to-date.

• Developers will be more aware of the architecture
because it is explicitly documented within the
source and not in external documents.

• The architecture can be enforced using a type sys-
tem. In this case, the type system is extended to
prove that violations of the architecture do not ex-
ist, enforcing communication integrity [LV95],
which means that two components in the imple-
mentation may communicate only if they are con-
nected in the architecture.

3.2 Re-engineering

Since architecture is determined during design of a

system, one would think that this is the ideal time (or
even the only possible time) to encode these high-level
design decisions. However, backward compatible pro-
gramming languages that enforce architectural structure
can also be used on existing systems in order to re-
cover, formalize, and enforce the architecture, i.e., re-
engineer a legacy system to more effectively capture its
architecture.

Using the re-engineering paradigm of abstraction,
transformation (or reasoning about changes at a higher

abstraction level) and re-implementation [JL91], we
extract the architectural intent in the form of a target
architecture and reconstitute the implementation in a
form that we hope will limit future architectural drift.
Using higher-level information to reason about the ex-
isting code as well as the target code (in this case, ar-
chitectural information), truly qualifies the activity as
re-engineering. The abstraction and modification steps
help avoid ending up with the same tightly coupled
architecture that’s very well enforced!

[Bri90] eloquently describes some advantages of re-
engineering a legacy system instead of a complete re-
write: “re-engineering takes advantage of the profound
effects of evolution. It preserves the functional behav-
ior of a system that had been specified, designed, im-
plemented, repaired, enhanced, verified, validated, and
most importantly, used over years, while improving its
quality”. For the purpose of this discussion, the quality
we are concerned with improving is the architectural
structure of the system.

For a re-engineering case study such as this one,
backwards compatibility with the current implementa-
tion language is essential. Incremental re-engineering,
described in [BS95] as “take chicken little steps”
avoids the complexity and the risks of big-bang re-
engineering by transforming the system in small incre-
ments and always having a running version.

3.3 ArchJava

ArchJava [ACN02a] is a recently proposed imple-

mentation language that embeds a component-and-
connector (C&C) architectural specification within
Java implementation code. ArchJava’s backward com-
patibility with Java and other software evolution fea-
tures make it a suitable language for re-engineering
existing real-world systems.

ArchJava allows architecture to be specified in
source code by allowing programmers to define com-
ponents, ports, and the connections between them. The
ArchJava compiler enforces communication integrity,
i.e., that communication among components is consis-
tent with the explicit architecture.

4. Architecture-Based Re-engineering

For our case study, we performed the following ac-

tivities to re-engineer the application:
• Identify the source architecture
• Identify a target architecture
• Analyze the original program (in Java)
• Restructure the original program (in Java)
• Re-engineer the original program (to ArchJava)
• Periodically check against the target architecture.

The re-engineering process was iterative. For in-
stance, after we started re-engineering the code, we
realized that we had not been aggressive enough in re-
structuring the original program, so we had to make
additional changes. Many of the steps above may need
to be repeated several times, since many changes may
be required to reach the desired target architecture.

4.1 Identify the Source Architecture

The first step in re-engineering HillClimber was to

determine its current architecture and use this as a basis
for developing a target architecture to be explicitly
specified and enforced using ArchJava.

Although HillClimber has been maintained by sev-
eral developers over several years, there are no artifacts
other than source code that document its design. Fur-
thermore, source code comments are sparse and some-
times out of date. It was therefore necessary to recover
the source architecture by analyzing the source code.

The HillClimber application is one of several CIs-
pace applications that share a common ����������	

��� package that includes abstract implementations of
key components. Components that are shared among
several CIspace applications include the
����
,
�����������, �����, ���� and ���� classes (See Fig-
ure 3). In the HillClimber application, another compo-
nent, ����������, is tightly coupled with the key
����������
��� components. These components im-
plement the core functionality of the HillClimber appli-
cation and exhibit complex communication patterns.

The HillClimber application is of sufficiently man-
ageable size that the source architecture could be re-
covered by manual inspection. We also used a tool to
generate UML class diagrams from an existing imple-

Window Canvas Graph

Engine

Node

Edge

Figure 2: The Target Architecture: the arrows indicate
unidirectional connections; i.e., the source component
(circle end) requires the services of the target compo-
nent (arrowhead end) and the target component does
not initiate communication with the source component.
Two circle ends indicate bi-directional communication.

Window Canvas Graph

Engine

Node

Edge

Figure 1: The Source Architecture.

mentation. However, such tools do not completely
eliminate the need for a manual code inspection. For
example, in Figure 3, the tool we used missed the obvi-
ous association between ��������� and ��������
since ��������� was using an untyped container to
maintain references to �������� objects. Some tools
claim to not suffer from this limitation; however, one
we tried (Womble [JW99]) did not scale to handle the
HillClimber application.

Given the key components, the relationships be-
tween them were discovered by manually investigating
the source code. Communication between components,
such as method calls, was recorded. Figure 1 shows the
key components and the arrows indicate the discovered
presence of communication between them; one can see
that communication between components follows a
nearly arbitrary pattern, with most components com-
municating with most other components.

4.2 Identify the Target Architecture

Developing the target architecture involves the fol-
lowing steps: (a) Identify the architectural styles in use,
if any; (b) Identify the top-level components in the
source architecture and re-use those components in the
first iteration of the target architecture; (c) Identify
which elements of the architecture are static and which
elements are dynamic; (d) Determine the desired com-
munication pattern between the identified top-level
components.

For a graphical application such as HillClimber, we
could have made the communication patterns between
components conform to the Model-View-Controller
(MVC) architectural style [KP88]. However, to avoid a
significant departure from the source architecture and
the resulting code rework, we chose roughly the same
top-level components as in the source architecture.

Unlike the original architecture, we desired a simpli-
fied, minimal communication pattern with loosely cou-
pled components to improve component reusability and
ease future maintenance of the system. We removed
unneeded communication paths. For example, the En-
gine component drives changes to the Graph and it is
not necessary for it to communicate directly with the
Canvas, whose function is to display the contents of the
Graph component. Similarly, the Window component
that implements the user interface does not need to
communicate directly with the Graph. The resulting
target architecture is shown in Figure 2.

4.3 Analyze the Original Program

The goal of this step is to consider the structural

properties of the original program that require refactor-
ing in preparation for re-engineering. For example,
some object-oriented implementations are difficult to
re-engineer to ArchJava, because many object-oriented
patterns involve passing object references and
ArchJava restricts passing component references.

Top-level Elements. The previously identified top-
level elements are those that will become component
classes. At this point, it is important to consider
whether the top-level elements being turned into com-
ponent classes are conceptually part of the architecture
rather than just data structures. Using component
classes as data structures is bound to be awkward be-
cause component classes are not really intended to fill
that role: data structures demand flexibility and
ArchJava’s component classes impose more rigid con-
straints (e.g., cannot be passed as references, cannot be
stored in arrays, etc.) In HillClimber, we initially de-
cided to turn the following Java classes into ArchJava
component classes: ����
����
, ����������, ���	
�������, ���������� �������� and ��������.

Figure 3: UML diagram retrieved from the original J ava implementation using the EclipseUML tool [Omo05].

Object Sharing. Study the sharing of objects. As
discussed in [ACN02b], ArchJava does not allow a
component to be shared by two container components.
Thus, structures that are shared between components
should be left as ordinary objects, unless the sharing
can be easily replaced with method calls through the
container component’s port. In HillClimber, ��������
and �������� are shared between ���������� and
���������, so in the end, they were left as ordinary
classes, but they do declare ports.

Initialization Order. It is important to discover the
order in which the top-level elements are initialized.
This information will be essential when constructing
the static architectural instances and their static connec-
tions: e.g., in HillClimber, ���������� had to be ini-
tialized before ���������.

Communication Patterns. At this point, one should
get a rough idea of the extent to which the original
code violates communication integrity rules. For in-
stance, if there are many cases of passing around com-
ponent objects or interfaces, this is an indication that
significant work may be needed to convert the design
to one that can be implemented in terms of ports and
connections. In HillClimber, this was indeed the case:
references of type ����
����
, ����������, ���	

�������, and ���������) were being passed as con-
structor arguments or as method arguments.

When examining communication patterns, identify
“Navigation Code” [DDN02], i.e., code that traverses a
series of object links before calling a method on the
final object. It is a well-known symptom of misplaced
behavior that violates the Law of Demeter [LH89],
leading to unnecessary dependencies between classes.
We used simple pattern matching to identify some
navigation code as explained in [DDN02]. We did not
use more advanced techniques, such as approaches
based on aspect-oriented programming (e.g.,
[LLW03]). In HillClimber, we found many occurrences
of navigation code in the component classes, e.g., class
����
����
 included code such as the following:
������������������������������
���������.

Encapsulation. Study how well fields are encapsu-
lated. In a modern integrated development environ-
ment, fields shown in a tree hierarchy are color-coded
based on visibility, making them easier to identify. It
would have been helpful to also have tool support to
query the implementation for such anomalies. In Hill-
Climber, as can be seen in Figure 4, there were many
un-encapsulated fields.

Inheritance Hierarchy. Having identified the com-
ponent classes, verify that an ordinary class will not
have a superclass that is a component class.

ArchJava allows component classes to extend regu-
lar classes and interfaces, so that legacy libraries could
invoke the inherited methods of components through
references to the appropriate superclass. This enabled
us to avoid converting classes from the ����������	

��� package to components. However, we noticed that
the inherited methods of some these components were
being invoked arbitrarily through their inherited inter-
faces, threatening the desired communication integrity.
However, ArchJava guarantees that the new HillClim-
ber-specific methods introduced in the HillClimber
components can only be called through declared con-
nections in the architecture.

Object Construction and Destruction. Study how
the classes that are to become component classes are
being instantiated. For some components, it may be
preferable to make them static instances and use static
connections because ArchJava offers a more straight-
forward way to implement static components.

In HillClimber, ����
����
, ����������, �������	
���, and ��������� are static instances, whereas ����	

���� and �������� are dynamic instances.
Study the construction of objects: of particular in-

terest are non-default constructors. Component con-
structors may not have arguments of component type.
Also, examine methods that perform re-initialization of
objects; do they release and reallocate new objects, or
do they reuse existing objects, by resetting their state?
In HillClimber, a ��������� instance was being reallo-
cated, so we preferred to make it a static instance in-
stead, with static connections to the other components.

4.4 Restructure the Original Program

The goal of this step is to restructure (or refactor)

the original program in Java before re-engineering the
program into ArchJava. Converting a program to

�� ��!"!����"����������"#"
""�� ��!"����������"!�����$"
""�������"���������"�����$"
""�� ��!"���"��"%"&''$"(("����)"����"
"
""�� ��!"��������������������"������"""""" "
" " ����������"!������"#"
""""����������"%"�����$"
""""�����!�����"%"!�����$"
""""(("*�+����"��������!�"
""""���������"%"'$"
""""����!�,���"%"��
"-���!�./0$"
""""����!�,���.'0"%"��
"1���-���!�������$"
""""���"
""2"
""�� ��!"����"������"#"
""���""
""""�+"�3!�������������"#"
������
����
�!�����������������4������-�����������$"""
""���""
""2"
""���""
2"

Figure 4: Original Java implementation of the ����	
������ class. Note the un-encapsulated fields, and a
method implemented using “code navigation.”

ArchJava may involve significant restructuring if the
implementation does not match the target architecture
well. Refactoring will be inevitable because many ob-
ject-oriented patterns rely on passing references, and
ArchJava restricts that. We attempted to refactor proac-
tively all the potential trouble areas in the original pro-
gram. However, it is hard to determine when to stop;
since additional refactoring was likely to happen during
the actual conversion to ArchJava, we delayed many if
the difficult refactorings until they were necessary.

Refactoring the original program was also helpful
for becoming familiar with the code base, as in the
“ refactor to understand” re-engineering best practice
[DDN02]. We made heavy use of the built-in support
for refactoring in the Eclipse [Ecl03] development en-
vironment to avoid introducing defects during this
stage. However, we did not follow the best practice of
first having an extensive set of unit tests [FBB+09] and
rerunning the unit tests after each refactoring. Some of
the important refactorings are discussed next.

Rename. When enforcing architectural structure in
code, and recovering architectural structure from code,
names become important, since the ArchJava imple-
mentation will also serve as architectural specification:
for example, we assigned component instances more
meaningful names that clearly convey the architectural
intent, e.g., use ����*����� instead of ���. Other prac-
tical considerations included checking that none of the
identifiers used in HillClimber conflicted with new
keywords introduced by the ArchJava language exten-
sion (such as !����!�, ����, etc.). Similarly, since
ArchJava requires the Java programming language ver-
sion 1.5, we had to check that the code would compile
with Java 1.5. Refactoring tools can greatly assist in
renaming by performing capture-avoiding substitutions.

Encapsulate. All fields on classes that are intended
to become component classes should be encapsulated,
and be accessible only through accessor and modifier
methods; i.e., no fields should be public, static, tran-
sient, or volatile. Furthermore, all fields of super-
classes, even if the ones not intended to become com-
ponent classes, should be encapsulated as well, as one
may want to expose implementation methods from a
super class as a provided functionality on the compo-
nent sub-class. ArchJava will consider as illegal any
non-private and non-protected component fields: this is
one way that ArchJava enforces communication integ-
rity. In HillClimber, we encapsulated many fields in
many classes (including many in ����������
���).

Eliminate Constructor Arguments of Type Com-
ponent Classes. ArchJava does not allow for construc-
tor arguments having types of component classes. A
common object-oriented pattern involves passing of the

communicating objects as argument to a non-default
constructor to ensure that the references are set cor-
rectly. We found it useful to temporarily replace this
pattern with explicit calls to setters and getters in order
to facilitate converting the program to ArchJava. In
ArchJava, getters and setters taking component types
will be illegal, and these setters will have to be con-
verted into ArchJava !����!� statements). See Figure 5
for how the ���������� constructor was refactored.

Split Initialization Code from Constructor Code.
Object-oriented programmers often perform all the
initialization aggressively in a class constructor. How-
ever, care should be taken to not have initialization
code in the construction that relies on calling port
methods, since those ports would still be unconnected
in the constructor. The ArchJava compiler will stati-
cally warn about possibly unconnected ports in a con-
structor. In HillClimber, there were many such in-
stances. We followed the same pattern in all cases: we
kept the constructor minimal, and moved initialization
code into a separate ������ method. This seems a com-
mon pattern in component programming: e.g., in Mi-
crosoft’s ATL library for COM component program-
ming [ATL], a ������������!��� method is provided,
where the rest of the initialization can be completed,
such as aggregating other objects, and the library guar-
antees that ������������!��� is called after the con-
structor. In this case, we had to be very careful to not
introduce new defects into the program, by making sure
that the ������ method is actually called on all instan-
tiated objects. Unfortunately, we had little tool support
for this type of refactoring.

Eliminate Constructor Calls to Overridable
Methods. [Blo01] explains why constructors must not
call overridable methods: the superclass constructor
runs before the subclass constructor, so the overriding
method in the subclass will get invoked before the sub-
class constructor has run. If the overriding method de-

�� ��!"!����"����������"#"
""���"
""�������"����
����
"
����
$"
""�������"���"��"%"&''$""(("����)"����"
"""
""�� ��!"������������"#"
""""(("*�+����"��������!�"
""""���������"%"'$"
""""����!�,���"%"��
"-���!�./0$"
""""1���-���!�"����-���!�"%"��
"1���-���!���$"
""""(("56*67"�������"����"��"!����!�"����"
""""����-���!�����
����
�
����
�$"
""""���"
""2"
""�� ��!"����"���*�����"���"#"�������"%"��$2"
""�� ��!"���"���*���"#"������"��$"2"
"
""(("56*67"1�����"����"��!�"��",�!�8���"
""�� ��!"����
����
"���
����
��#������"
����
$"2"
""�� ��!"����"���
����
�����
����
"
����
�"#"
""""" �����
����
"%"
����
$"2"
""""���"
2
Figure 5: Refactored HillEngine Java class.

pends on initialization performed by the subclass con-
structor, then the method will not behave as expected.
If these calls remain when the program is converted to
ArchJava, runtime exceptions occur if the overriding
methods depend on ports having already been con-
nected. To make things worse, by default (i.e., non-
final) all public or protected methods in Java are vir-
tual. Currently, ArchJava does not statically warn about
calls to overridable methods which may be accessing
ports. A sophisticated linear type system to check for
all disconnected ports would be required for static
checking and is not currently implemented. We actually
found one such instance in the HillClimber application:
the constructor of the ����������
�������� class was
calling a virtual ������-�9��� method, which was
overridden inside the subclass �������� and where it
was accessing the !����� port.

Eliminate Navigation Code. [ACN02a] reports
how navigation code is often a significant problem
when converting to ArchJava: being proactive and e-
liminating as much as possible of it will not be wasted
effort. In HillClimber, for instance, we replaced
������
����
�!�����������������-�����������$
by declaring a field window, making sure that the field
is initialized and changing the call to

����
����-������������"

Extract Interfaces. This refactoring is not essential,
but we found it helpful. For some HillClimber classes,
(e.g., ����������), we extracted all the public methods
available on a class, including methods inherited from
the base classes, into interfaces.

4.5 Re-Engineer the Program

From this point onwards, we had to switch over to

the ArchJava environment, and could not use the
Eclipse Java development environment anymore. Since
ArchJava is backwards compatible with the Java pro-
gramming language, the first step when re-engineering
to ArchJava is to rename the :�;���" files to :���!�;
and recompile using the ArchJava compiler.

As long as no program identifiers are using any re-
served keywords, the ArchJava development environ-
ment will be able to compile HillClimber without fur-
ther modification or error, but at this point, the
ArchJava typesystem will not be enforcing any com-
munication integrity.

ArchJava can be applied incrementally to convert
key communication relationships from standard method
invocations to the port communication construct. Sev-
eral relationships between objects were converted to
ArchJava using the re-engineering patterns described in
great detail in [ACN02b], summarized here:

• Change class to component class: this often re-
quires many additional changes to pass communi-
cation integrity checks.

• Change a field link into a connection: in many
cases, this is simply converting an instance vari-
able to a port. If the port is given the same name as
the deleted instance variable, statements that pre-
viously called the server object will not need to be
modified because the port call syntax will be iden-
tical. This is only possible if there are no direct
calls to public fields (this is where encapsulating
all the fields pays off). For each method that was
previously called on the callee, we declare its sig-
nature as a required method in the new port that
now represents the provider (See Figure 6).

• Move creation to container component: this pattern
required the most changes to the architecture. In
retrospect, this step should have been addressed
during the re-structuring step, [ACN02b] discusses
in greater detail how this can problem be ad-
dressed.

• Finally, we used ArchJava’s dynamic constructs
(connect patterns and expressions) discussed in
[ACN02a] for �������� and ��������.

�� ��!"!��������!��������!��������!��������"!����"����������"#"
""(("<����"
""�� ��!"����������������"(:"����������":("!�����""#"
""""��=�������=�������=�������=�����" ������"��>�������$"
""""���"2"
""�� ��!"����������������"(:"���������":("�����""#"
""""��=�����"���"����������$"
""""���"2"
""�� ��!"����������������"(:"����
����
":("
����
""#"
""""��=�������=�������=�������=�����"����"���4������-������ ������"�������$"
""""���"2"
""�������"����������������"(:"����
����
":("�?
����
"#"
""""��������������������������������",�����"���,�������"#"
""""������"
����
����,�������$"2"
""""���"2"
""(("����"��������"����"��"�@������"����"
""�������"����������������"(:"���������":("�?�����"#"
""""��������������������������������"���"����������"#"
""""""������"����������������$2"
""""���"2"
""�� ��!"����������������"(:"����������":("������"#"
""""��������������������������������"����"���*�����"���$"
""""��������������������������������"���"���*���$"
""""���"2"
""(("�����"!���������"
""�������"+����"1���-���!�"����-���!�"%"��
"
" 1���-���!���$"
""���"
"""(("-����!"!����!�����"
"""!����!�!����!�!����!�!����!�"�������"����-���!���������""���"
"""!����!�!����!�!����!�!����!�"�?������"����-���!��������"���"
""���" "
""�� ��!"������������"#"
""""���" "
""""(("����7"*�"����"�+"��������9�����"��"������"
""2"
""�� ��!"����"������"#"
""""���" "
""2"
""�� ��!"����"������"#"
""""���""
""""�+"�3!��������>�������"�"#"
"""""""""
����
����4������-�����������$"
""""���""
""2"
""���""
2"

Figure 6: HillEngine component class in ArchJava.

4.6 Check against the Target Architecture

To guide the re-engineering activity toward the tar-

get architecture, we periodically checked the state of
the implementation against the target architecture by
recovering an up-to-date architectural component-and-
connector (C&C) view from the implementation using
available ArchJava tool support [AAG05].

The recovered C&C views contained purely struc-
tural information, such as components, ports, and their
connections. Architectural styles and types were manu-
ally supplied since ArchJava does not currently repre-
sent that information. For instance, assigning port types
(based on whether a port only provides methods, only
requires methods, or does both) was used to check the
directionality of the communication (See Figure 7).

The C&C-views were useful for quickly assessing
the current state of the implementation and determining
how far it was from the desired target architecture. The
snapshots helped produce a cleaner design, since ex-
posing the control flow information can highlight spa-
ghetti style connections. Second, they helped the actual
migration effort: as long as the code compiled, the ex-
tracted C&C view quickly showed which ports were
not connected (including those on dynamic instances).
Finally, they helped visualize object sharing issues
(e.g., by having �������� and �������� instances ap-
pear as contained by both ���������� and ���������).

5. Lessons Learned

In this section, we describe some of the lessons we

learned during the case study, in the hope that a wish
list will provide impetus for improving currently avail-
able tool support.

5.1 Hints for Language and Tool Designers.

Keep It Iterative. The activities that seemed to

make the process harder were precisely the ones that
interfered with the iterative nature of the process: e.g.,
once a program is converted to ArchJava, refactoring
support available for a Java program is no longer avail-
able, even if the ArchJava program still has many
classes that are still plain Java classes. For instance,
after we started migrating the code to ArchJava, we
discovered that we had forgotten to encapsulate several
fields in the base classes in the ����������
��� pack-
age. Even though none of the classes in that package
had been converted to component classes or declared
ports, we could not use refactoring tool support.

Fowler offers an additional insight: “[...] irreversi-
bility [is] one of the prime drivers of complexity. And
agile methods […] contain complexity by reducing

irreversibility” [Fow03]. Turning a Java program into
an ArchJava program is an irreversible transformation.

Keep It Incremental. Having the ability to incre-
mentally convert the program to ArchJava was ex-
tremely valuable. For instance, turning a class into a
component class can suddenly generate many ArchJava
compile errors (e.g., if that type was used as a construc-
tor argument). However, there was always an easy
workaround: non-component classes can have ports as
well. So in some cases, we resorted to first adding ports
and then converting the class to a component class after
we better understood the dependencies.

Tolerate Incompleteness. Even development envi-
ronments are moving towards tolerating incomplete-
ness. For example, the Eclipse Java Development Tool-
ing [JDT] allows running and debugging code which
still contains unresolved errors. The ability to tempo-
rarily tolerate incompleteness and errors is even more
critical for a language such as ArchJava. During a re-
engineering activity, mixing the two concerns (i.e., the
implementation and the architecture) is hard if one
wants to first codify the desired architecture, yet main-
tain a running system.

Some Architecture Description Languages require
declaring ports but do not require declaring the pro-
vided and required functionality on the ports. ArchJava
always requires both. ArchJava currently elegantly
supports architectural design with abstract components
and ports, which allow an architect to specify and
typecheck an architecture before beginning program
implementation. However, it does not easily support
the ability to incrementally enforce architectural con-
formance checking. Some possible options could in-
clude having different warning levels, or having a set-
ting to relax some of the checks for required and pro-
vided functionality, at least temporarily.

Automate as Much as Possible. It would have been
helpful to have a set of tools to further automate the
process of re-structuring the original program. Identify-
ing program code in need of refactoring is still mostly a
manual exercise. However, we believe that for this kind

Figure 7: Intermediate recovered C&C view: port types
(manually assigned) encode the directionality.

of re-engineering, where the rules are relatively well
known, automated support would be particularly useful.
For instance, a tool could take a list of the intended
component classes, look for known problems (such as
public fields of those types or constructor arguments of
those types), suggest a list of refactoring (e.g., encapsu-
late fields, identify navigation code), automatically
construct some of the refactorings, and finally give the
user the opportunity to preview the proposed changes
and accept or reject them.

5.2 Perceived ArchJava Limitations

There are limitations to the currently available tool

support for the ArchJava language that affect the vi-
ability of the re-engineered HillClimber application.
The ArchJava development environment offers only
basic features, and does not provide support for debug-
ging and refactoring. However, there are more funda-
mental issues that we encountered during this case
study that we would like to see addressed in future ver-
sions of ArchJava.

Runtime Exceptions. ArchJava is designed on the
premise that if the type checker terminates successfully,
the match between the implementation and specified
architecture is guaranteed. Unfortunately, certain
classes of architectural errors are only caught at run-
time. For instance, since a component instance can still
be freely passed between components as an expression
of type ;���������6 ;�!�, an exception is thrown if
an expression is downcast to a component type outside
the scope of its parent component instance. Similarly, a
runtime exception is thrown when accessing a port that
is not connected. Extensive testing is still needed to
verify that no serious defects are introduced into a pro-
gram when re-engineering it into an ArchJava program.

Missing Port Types. ArchJava does not have ex-
plicit port types. We resorted to using comments next
to the port name to specify the type of the port. The
absence of port types in ArchJava imposes some
amount of code duplication for declaring required
methods. On the other hand, this allows having a nar-
rower interface available to a port.

Missing Port Directionality. ArchJava does not
currently allow developers to restrict the architectural
intent that can be expressed with the component and
port model, e.g., to express that a port can only have
required methods or only provided methods. There is
no way to distinguish cases where this happens by
chance or where the architect’s intent is that the port is
unidirectional.

Missing Final Constructor. As discussed earlier, it
would be helpful if ArchJava provided a better mecha-
nism for completing the initialization of a component,

and guarantee that the initialization method would al-
ways be called.

Missing Explicit Interfaces. Having a feature simi-
lar to C# explicit interfaces [C#02] would be useful, for
similar reasons:
• Explicit interface member implementations allow

interface implementations to be excluded from the
public interface of a class when a class implements
an internal interface that is of no interest to a con-
sumer of that class.

• Explicit interface member implementations allow
disambiguation of interface members with the
same signature; otherwise, it would be impossible
to have different implementations of interface
members with the same signature and return type,
or with the same signature but with different return
types.

Relaxing Architectural Constraints. In many real-
world architectures, it is often necessary to make ex-
ceptions to architectural constraints. For example, in a
layered architecture with strict performance require-
ments, it may be necessary to tunnel between layers so
that calls skip one or more layers in order to follow
more direct routes, as explained in [GN95]. Embedded
architecture description languages such as ArchJava
currently have no mechanism for handling these excep-
tions. For instance, some programming languages, such
as C#, allow programmers to mark code blocks as �����	�	�	�	

��+���+���+���+� [C#02] and perform low-level operations that are
normally not available.

Tightening Architectural Constraints. Even when
architecture is specified in source code and enforced by
the compiler, there are still methods of circumventing
the imposed architectural structure. For example, com-
ponents that are intended to be unrelated could still
communicate via shared memory, shared files, or net-
work messages. Although architecture descriptions in
source code reduce the need to maintain documenta-
tion, developers are still required to devote resources to
maintaining the embedded architectural description. In
a degenerate case, it is still possible to circumvent ar-
chitectural constraints by defining an entire program as
internal to a single architecture-level component, for
example. Therefore, effort must be devoted to ensuring
that the coded architecture specification is appropriate
and up-to-date. Having the ability to externally visual-
ize the architecture can help avoid such scenarios.

6. Case Study Limitations

This case study did not demonstrate that the re-

engineered ArchJava HillClimber implementation is
actually easier to understand and evolve than the origi-
nal Java implementation. It would be ideal if we could

have junior programmers (e.g., UBC summer interns)
co-evolve the ArchJava implementation to see if the
system architecture is preserved better than it would
have been if left in pure Java, and to see if the main-
tainers are able to avoid the architectural violations
discussed in the latter part of Section 5.2. However, the
current level of tool support for ArchJava does not
make this an attractive proposition.

In addition, this case study did not address the com-
plex issues that are likely to arise when re-engineering
an application that relies heavily on middleware (e.g.,
Enterprise Java Beans [EJB]). Additional case studies
are an important element of future work in this area.

7. Conclusions

Architectural specifications are often not sufficiently
maintained along with the actual implementation. Lan-
guages such as ArchJava effectively enforce architec-
tural structure in source code and promise to help pre-
vent the loss of architectural information, and the re-
sulting architectural drift and erosion. Although such
languages are best applied during the initial develop-
ment phases, they can be applied to existing systems to
re-engineer, document, and enforce the desired struc-
ture. By eliciting and refining some of the underlying
re-engineering principles, such as those outlined in
[ACN02b], we hope to make the re-engineering activity
seem less daunting, less painful and less error prone.
We also pointed out several limitations of the lan-
guages and the tools we used that will need to be over-
come before they can be used effectively in production
software development.

8. Acknowledgements

We thank Jonathan Aldrich for his helpful hints and

technical support on the ArchJava compiler during the
case study, and for detailed comments that significantly
improved the paper. We also thank Alan Mackworth
for granting us the permission to use the HillClimber
code base and publish details of the case study.

9. References

[AAG05] Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl,

B., Nahas, N., and Tseng, T. Improving System Depend-
ability by Enforcing Architectural Intent. WADS, 2005.

[ACN02a] Aldrich, J., Chambers, C. and Notkin, D.
ArchJava: Connecting Software Architecture to Imple-
mentation. In Proc. ICSE, 2002.

[ACN02b] Aldrich, J., Chambers, C. and Notkin, D. Archi-
tectural Reasoning in ArchJava. In Proc. ECOOP, 2002.

[ATL] Microsoft Active Template Library (ATL) for COM
http://msdn.microsoft.com/library/default.asp?url=/librar
y/en-us/vclib/html/_atl_CComObjectRootEx.asp

[Blo01] Bloch, J. Effective Java. Addison-Wesley. 2001.

[Bri90] Britcher, R. Re-engineering Software: A Case Study.
In IBM Systems Journal, vol.29, No.4, 1990.

[BS95] Brodie, M. L., and Stonebraker, M. Migrating Leg-
acy Systems: Gateways, Interfaces and the Incremental
Approach. Morgan-Kaufman Publishers, 1995.

[C#02] Wiltamuth, S. and Hejlsberg, A. C# Language Speci-
fication. Standard ECMA-334, 2nd edition, 2002.

[CBB+03] Clements, P., Bachman, F., Bass, L., Garlan, D.,
Ivers, J., Little, R., Nord, R. and Stafford, J. Document-
ing Software Architecture: View and Beyond, Addison-
Wesley, 2003.

[CC90] Chikofsky, E. and Cross, J. Reverse Engineering and
Design Recovery: A Taxonomy. In IEEE Software, 1990.

[DDN02] Demeyer, S., Ducasse, S., and Nierstrasz, O. Ob-
ject-Oriented Reengineering Patterns, Morgan Kaufmann
Publishers, 2002.

[Ecl03] Object Technology International, Inc. Eclipse Plat-
form Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[EJB] Sun Microsystems. Enterprise JavaBeans.
http://java.sun.com/products/ejb/docs.html

[FBB+99] Fowler, M., Beck, K., Brant, J., Opdyke, W., Rob-
erts, D. Refactoring: Improving the Design of Existing
Programs. Addison-Wesley, 1999.

[Fow03] Fowler, M. Who needs an architect? In IEEE Soft-
ware, 20(5): p. 11, 2003.

[GN95] Griswold, W. G., Notkin, D. Architectural Tradeoffs
for a Meaning-Preserving Program Restructuring Tool.
In IEEE Transactions of Software Engineering, 1995.

[JDT] Eclipse Java Development Tooling (JDT) core.
http://dev.eclipse.org/viewcvs/index.cgi/jdt-core-
home/main.html?rev=1.97

[JL91] Jacobson, I., and Lindström. F. Reengineering of old
systems to an object-oriented architecture. In Proc. OOP-
SLA, Vol. 26, No. 11, 1991.

[JLL99] Jaktman, C. B., Leaney, J. and Liu, M. Structural
Analysis of the Software Architecture - A Maintenance
Assessment Case Study. In Proc. of WICSA1, 1999.

[JW99] Jackson, D. and Waingold, A. Lightweight Extrac-
tion of Object Models from Bytecode. Proc. ICSE 1999.

[KP88] Krasner, G.E. and Pope, S.T. A Cookbook for Using
the Model-View-Controller User Interface Paradigm in
Smalltalk-80. In JOOP 1(3), 1988.

[LH89] Lieberherr, K. and Holland, I. Assuring Good Style
for Object-Oriented Programs. In IEEE Software, 1989.

[LLW03] Lieberherr, K., D.H. Lorenz, and P. Wu, A Case
for Statically Executable Advice: Checking the Law of
Demeter with AspectJ. In Proc.AOSD, 2003.

[LV95] Luckham, D.C., and Vera, J. An Event Based Archi-
tecture Definition Language. In IEEE TSE 21(6), 1995.

[MT00] Medvidovic, N., and Taylor, R. N. A Classification
and Comparison Framework for Software Architecture
Description Languages. In IEEE TSE 26(1), 2000.

[Omo95] Omondo EclipseUML. http://www.omondo.com/
[PW92] Perry, D. E., and Wolf, A. L. Foundations for the

Study of Architecture. ACM SIGSOFT Software Engi-
neering Notes, 17(4), pp. 40–52, 1992.

[SP98] Stevens, P., Pooley, R. Systems Reengineering Pat-
terns. In Proc FSE, 1998.

