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Abstract 
 

Without rigorous software development and main-
tenance, software tends to lose its original architec-
tural structure and become more difficult to under-
stand and modify. 

ArchJava, a recently proposed implementation lan-
guage which embeds a component-and-connector ar-
chitectural specification within Java implementation 
code, offers the promise of preventing the loss of archi-
tectural structure. 

We describe a case study in which we incrementally 
re-engineer an existing implementation with an eroded 
architecture to obtain an ArchJava implementation 
that more closely matches an idealized architecture. 
Building on results from similar case studies, we chose 
an application consisting of over 16,000 source lines 
of Java code and 80 classes that exhibited many char-
acteristics of real-world legacy applications. We de-
scribe our process, some lessons learned, as well as 
some perceived limitations with the tools, techniques 
and languages we used. 

 
 
 

1. Introduction 
 
A legacy system is defined as one that significantly 

resists modification and evolution to meet new and 
constantly changing business requirements, regardless 
of the technology from which it is built [BS95]. Such 
characteristics are partly due to architectural problems, 
including architectural erosion, i.e., “violations in the 
architecture that lead to increased system problems and 
brittleness” and architectural drift, i.e., “a lack of co-
herence and clarity of form which may lead to architec-
tural violation and increased inadaptability of the archi-
tecture” [PW92]. 

Missing or un-enforced architectural information is 
a key factor which contributes to architectural drift and 
erosion [JLL99]. The architecture of a software system 
is commonly described in documentation artifacts pro-

duced and maintained independently from source code 
implementations. Over time, the implemented system’s 
design begins to drift from its original architecture. 
Eventually, the architectural specification may become 
too inaccurate to be used, leading to further degrada-
tion of the system structure. 

Re-engineering is one way to correct architectural 
drift and erosion, i.e., “the examination and alteration 
of a software system to reconstitute it in a new form 
and the subsequent implementation of the new form” 
[CC90]. Re-engineering a legacy system can extend its 
lifetime, and delay the introduction of a new system 
built from scratch, resulting in cost savings. 

In this paper we describe a case study in which a 
legacy system was re-engineered using ArchJava, a 
programming language that enforces architectural 
structure at the implementation level. Using the re-
engineering paradigm of abstraction, transformation 
and re-implementation [JL91], we extract the architec-
tural intent in the form of a target architecture and re-
constitute the implementation in a form that we hope 
will limit future architectural drift. 

This paper makes several contributions. We refine 
some of the design principles illustrated in [ACN02b] 
and build on results from similar case studies in 
[ACN02a, ACN02b]. We chose an application that 
exhibits more of the characteristics of legacy systems: 
a) it was developed and maintained by several different 
junior programmers over the course of several years, 
unlike previous case studies where the subject system 
was developed and maintained by a single developer 
(Aphyds and Taprats in [ACN02b]); b) it is a realistic 
code base developed and maintained by novice pro-
grammers unlike other subject systems (e.g., the 
Taprats system in [ACN02b]) intended for an object-
oriented design competition; c) it did not have its origi-
nal architecture drawn by the original developers and 
we could not talk to the maintainers; and d) it is larger 
in size (source lines of code) than the similar case stud-
ies that have been previously attempted. Finally, as 



 

noted in [SP98], re-engineering expertise is lacking; so 
we hope that by documenting the difficulties likely to 
be encountered and the lessons we learned, we can 
provide insight into how this activity can be better sup-
ported by future languages, techniques and tools. 

The paper is organized as follows. Section 2 intro-
duces the subject system. Section 3 discusses the goals 
of the case study. Section 4 discusses the re-
engineering activity in detail and attempts to generalize 
from our experience. Section 5 discusses some lessons 
learned as well as some perceived limitations of the 
tools, techniques and languages we used. Finally, we 
discuss some limitations of this case study in Section 6, 
and conclude. 

 
2. The Case Study Application 

 
For our case study, we used a legacy system called 

HillClimber, which is part of CIspace, a collection of 
Java applications that graphically demonstrate artificial 
intelligence algorithms. 

CISpace applications are used as educational tools 
in undergraduate artificial intelligence courses at sev-
eral universities; they are created and maintained by 
undergraduate student interns during summer terms at 
the University of British Columbia (UBC). For several 
years, new students have contributed to the applications 
using only the source code as documentation of the 
systems’ design. Predictably, some developers made 
modifications that were not consistent with the original 
architecture of the system.  

These applications provide an example of how the 
loss of architectural information progressively leads to 
the degradation of program structure. 

Our case study application, HillClimber, demon-
strates stochastic local search algorithms for constraint 
satisfaction problems. Though it is relatively small, 
HillClimber is large and mature enough to contain 
complex design issues. Furthermore, HillClimber is a 
representative object-oriented application. 

In the original design of HillClimber, the application 
Window uses a Canvas to display Nodes and Edges of a 
Graph in order to demonstrate the algorithms provided 
by the Engine. Over time, this simple structural intent 
(which was not documented but existed implicitly in 
the source code, as is often the case) was damaged by 
modifications performed by developers who were un-
aware of this intent and therefore unable to preserve it. 
Figure 1 illustrates the structure after several years of 
modification by new developers. Clearly, the architec-
tural intent has been lost: communication between 
components now follows arbitrary paths with little 
structure. This results in source code that is more diffi-
cult to understand and modify, less reusable, more 

complex and more error-prone, all characteristics of 
architectural drift and erosion [JLL99]. 
 
3. Architecture-Based Re-Engineering 

 
There are many benefits to having a documented 

software architecture [CBB+03], ideally, using archi-
tecture description languages [MT00]. However, hav-
ing a documented software architecture is often not 
enough: when developers move from design to imple-
mentation, architectural information is often lost. 

There are several factors that contribute to dispari-
ties between architectural specification and the actual 
implementation. During software development and 
evolution, developers often do not consult independent 
architecture design documentation, even if it exists and 
is reasonably up-to-date. New developers may also 
change or violate the intended architecture because 
they are unaware of the underlying architectural intent. 

 
3.1 Enforcing Architectural Structure in Code 

 
Programming languages that support architecture at 

the implementation level offer a promising solution to 
these problems. By introducing syntax for describing 
architecture, high-level design decisions can be inte-
grated with source code. There are several advantages 
to this approach: 
• Since the architecture specification is captured in 

the source code, there is no need to maintain a 
separate artifact. The source code and its docu-
mentation will always be up-to-date. 

• Developers will be more aware of the architecture 
because it is explicitly documented within the 
source and not in external documents. 

• The architecture can be enforced using a type sys-
tem. In this case, the type system is extended to 
prove that violations of the architecture do not ex-
ist, enforcing communication integrity [LV95], 
which means that two components in the imple-
mentation may communicate only if they are con-
nected in the architecture. 

 
3.2 Re-engineering 

 
Since architecture is determined during design of a 

system, one would think that this is the ideal time (or 
even the only possible time) to encode these high-level 
design decisions. However, backward compatible pro-
gramming languages that enforce architectural structure 
can also be used on existing systems in order to re-
cover, formalize, and enforce the architecture, i.e., re-
engineer a legacy system to more effectively capture its 
architecture. 

Using the re-engineering paradigm of abstraction, 
transformation (or reasoning about changes at a higher 



 

abstraction level) and re-implementation [JL91], we 
extract the architectural intent in the form of a target 
architecture and reconstitute the implementation in a 
form that we hope will limit future architectural drift. 
Using higher-level information to reason about the ex-
isting code as well as the target code (in this case, ar-
chitectural information), truly qualifies the activity as 
re-engineering. The abstraction and modification steps 
help avoid ending up with the same tightly coupled 
architecture that’s very well enforced! 

[Bri90] eloquently describes some advantages of re-
engineering a legacy system instead of a complete re-
write: “re-engineering takes advantage of the profound 
effects of evolution. It preserves the functional behav-
ior of a system that had been specified, designed, im-
plemented, repaired, enhanced, verified, validated, and 
most importantly, used over years, while improving its 
quality”. For the purpose of this discussion, the quality 
we are concerned with improving is the architectural 
structure of the system. 

For a re-engineering case study such as this one, 
backwards compatibility with the current implementa-
tion language is essential. Incremental re-engineering, 
described in [BS95] as “take chicken little steps” 
avoids the complexity and the risks of big-bang re-
engineering by transforming the system in small incre-
ments and always having a running version. 

 
3.3 ArchJava 

 
ArchJava [ACN02a] is a recently proposed imple-

mentation language that embeds a component-and-
connector (C&C) architectural specification within 
Java implementation code. ArchJava’s backward com-
patibility with Java and other software evolution fea-
tures make it a suitable language for re-engineering 
existing real-world systems. 

ArchJava allows architecture to be specified in 
source code by allowing programmers to define com-
ponents, ports, and the connections between them. The 
ArchJava compiler enforces communication integrity, 
i.e., that communication among components is consis-
tent with the explicit architecture.  

 
4. Architecture-Based Re-engineering 

 
For our case study, we performed the following ac-

tivities to re-engineer the application: 
• Identify the source architecture 
• Identify a target architecture  
• Analyze the original program (in Java) 
• Restructure the original program (in Java) 
• Re-engineer the original program (to ArchJava) 
• Periodically check against the target architecture. 

The re-engineering process was iterative. For in-
stance, after we started re-engineering the code, we 
realized that we had not been aggressive enough in re-
structuring the original program, so we had to make 
additional changes. Many of the steps above may need 
to be repeated several times, since many changes may 
be required to reach the desired target architecture. 
 
4.1 Identify the Source Architecture 

 
The first step in re-engineering HillClimber was to 

determine its current architecture and use this as a basis 
for developing a target architecture to be explicitly 
specified and enforced using ArchJava. 

Although HillClimber has been maintained by sev-
eral developers over several years, there are no artifacts 
other than source code that document its design. Fur-
thermore, source code comments are sparse and some-
times out of date. It was therefore necessary to recover 
the source architecture by analyzing the source code. 

The HillClimber application is one of several CIs-
pace applications that share a common ����������	


��� package that includes abstract implementations of 
key components. Components that are shared among 
several CIspace applications include the 
����
, 
�����������, �����, ���� and ���� classes (See Fig-
ure 3). In the HillClimber application, another compo-
nent, ����������, is tightly coupled with the key 
����������
��� components. These components im-
plement the core functionality of the HillClimber appli-
cation and exhibit complex communication patterns. 

The HillClimber application is of sufficiently man-
ageable size that the source architecture could be re-
covered by manual inspection. We also used a tool to 
generate UML class diagrams from an existing imple-
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Figure 2: The Target Architecture: the arrows indicate 
unidirectional connections; i.e., the source component 
(circle end) requires the services of the target compo-
nent (arrowhead end) and the target component does 
not initiate communication with the source component. 
Two circle ends indicate bi-directional communication. 
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Figure 1: The Source Architecture. 



 

mentation. However, such tools do not completely 
eliminate the need for a manual code inspection. For 
example, in Figure 3, the tool we used missed the obvi-
ous association between ��������� and �������� 
since ��������� was using an untyped container to 
maintain references to �������� objects. Some tools 
claim to not suffer from this limitation; however, one 
we tried (Womble [JW99]) did not scale to handle the 
HillClimber application. 

Given the key components, the relationships be-
tween them were discovered by manually investigating 
the source code. Communication between components, 
such as method calls, was recorded. Figure 1 shows the 
key components and the arrows indicate the discovered 
presence of communication between them; one can see 
that communication between components follows a 
nearly arbitrary pattern, with most components com-
municating with most other components. 
 
4.2 Identify the Target Architecture 
 

Developing the target architecture involves the fol-
lowing steps: (a) Identify the architectural styles in use, 
if any; (b) Identify the top-level components in the 
source architecture and re-use those components in the 
first iteration of the target architecture; (c) Identify 
which elements of the architecture are static and which 
elements are dynamic; (d) Determine the desired com-
munication pattern between the identified top-level 
components. 

For a graphical application such as HillClimber, we 
could have made the communication patterns between 
components conform to the Model-View-Controller 
(MVC) architectural style [KP88]. However, to avoid a 
significant departure from the source architecture and 
the resulting code rework, we chose roughly the same 
top-level components as in the source architecture. 

Unlike the original architecture, we desired a simpli-
fied, minimal communication pattern with loosely cou-
pled components to improve component reusability and 
ease future maintenance of the system. We removed 
unneeded communication paths. For example, the En-
gine component drives changes to the Graph and it is 
not necessary for it to communicate directly with the 
Canvas, whose function is to display the contents of the 
Graph component. Similarly, the Window component 
that implements the user interface does not need to 
communicate directly with the Graph. The resulting 
target architecture is shown in Figure 2. 
 
4.3 Analyze the Original Program 

 
The goal of this step is to consider the structural 

properties of the original program that require refactor-
ing in preparation for re-engineering. For example, 
some object-oriented implementations are difficult to 
re-engineer to ArchJava, because many object-oriented 
patterns involve passing object references and 
ArchJava restricts passing component references. 

Top-level Elements. The previously identified top-
level elements are those that will become component 
classes. At this point, it is important to consider 
whether the top-level elements being turned into com-
ponent classes are conceptually part of the architecture 
rather than just data structures. Using component 
classes as data structures is bound to be awkward be-
cause component classes are not really intended to fill 
that role: data structures demand flexibility and 
ArchJava’s component classes impose more rigid con-
straints (e.g., cannot be passed as references, cannot be 
stored in arrays, etc.) In HillClimber, we initially de-
cided to turn the following Java classes into ArchJava 
component classes: ����
����
, ����������, ���	
�������, ���������� �������� and ��������. 

 
Figure 3: UML diagram retrieved from the original J ava implementation using the EclipseUML tool [Omo05]. 



 

Object Sharing. Study the sharing of objects. As 
discussed in [ACN02b], ArchJava does not allow a 
component to be shared by two container components. 
Thus, structures that are shared between components 
should be left as ordinary objects, unless the sharing 
can be easily replaced with method calls through the 
container component’s port. In HillClimber, �������� 
and �������� are shared between ���������� and 
���������, so in the end, they were left as ordinary 
classes, but they do declare ports. 

Initialization Order. It is important to discover the 
order in which the top-level elements are initialized. 
This information will be essential when constructing 
the static architectural instances and their static connec-
tions: e.g., in HillClimber, ���������� had to be ini-
tialized before ���������. 

Communication Patterns. At this point, one should 
get a rough idea of the extent to which the original 
code violates communication integrity rules. For in-
stance, if there are many cases of passing around com-
ponent objects or interfaces, this is an indication that 
significant work may be needed to convert the design 
to one that can be implemented in terms of ports and 
connections. In HillClimber, this was indeed the case: 
references of type ����
����
, ����������, ���	

�������, and ���������) were being passed as con-
structor arguments or as method arguments. 

When examining communication patterns, identify 
“Navigation Code” [DDN02], i.e., code that traverses a 
series of object links before calling a method on the 
final object. It is a well-known symptom of misplaced 
behavior that violates the Law of Demeter [LH89], 
leading to unnecessary dependencies between classes. 
We used simple pattern matching to identify some 
navigation code as explained in [DDN02]. We did not 
use more advanced techniques, such as approaches 
based on aspect-oriented programming (e.g., 
[LLW03]). In HillClimber, we found many occurrences 
of navigation code in the component classes, e.g., class 
����
����
 included code such as the following:  
������������������������������
���������. 

Encapsulation. Study how well fields are encapsu-
lated. In a modern integrated development environ-
ment, fields shown in a tree hierarchy are color-coded 
based on visibility, making them easier to identify. It 
would have been helpful to also have tool support to 
query the implementation for such anomalies. In Hill-
Climber, as can be seen in Figure 4, there were many 
un-encapsulated fields. 

Inheritance Hierarchy. Having identified the com-
ponent classes, verify that an ordinary class will not 
have a superclass that is a component class. 

ArchJava allows component classes to extend regu-
lar classes and interfaces, so that legacy libraries could 
invoke the inherited methods of components through 
references to the appropriate superclass. This enabled 
us to avoid converting classes from the ����������	


��� package to components. However, we noticed that 
the inherited methods of some these components were 
being invoked arbitrarily through their inherited inter-
faces, threatening the desired communication integrity. 
However, ArchJava guarantees that the new HillClim-
ber-specific methods introduced in the HillClimber 
components can only be called through declared con-
nections in the architecture. 

Object Construction and Destruction. Study how 
the classes that are to become component classes are 
being instantiated. For some components, it may be 
preferable to make them static instances and use static 
connections because ArchJava offers a more straight-
forward way to implement static components.  

In HillClimber, ����
����
, ����������, �������	
���, and ��������� are static instances, whereas ����	

���� and �������� are dynamic instances.  
Study the construction of objects: of particular in-

terest are non-default constructors. Component con-
structors may not have arguments of component type. 
Also, examine methods that perform re-initialization of 
objects; do they release and reallocate new objects, or 
do they reuse existing objects, by resetting their state? 
In HillClimber, a ��������� instance was being reallo-
cated, so we preferred to make it a static instance in-
stead, with  static connections to the other components. 
 
4.4 Restructure the Original Program 

 
The goal of this step is to restructure (or refactor) 

the original program in Java before re-engineering the 
program into ArchJava. Converting a program to 
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Figure 4: Original Java implementation of the ����	
������ class. Note the un-encapsulated fields, and a 
method implemented using “code navigation.” 



 

ArchJava may involve significant restructuring if the 
implementation does not match the target architecture 
well. Refactoring will be inevitable because many ob-
ject-oriented patterns rely on passing references, and 
ArchJava restricts that. We attempted to refactor proac-
tively all the potential trouble areas in the original pro-
gram. However, it is hard to determine when to stop; 
since additional refactoring was likely to happen during 
the actual conversion to ArchJava, we delayed many if 
the difficult refactorings until they were necessary. 

Refactoring the original program was also helpful 
for becoming familiar with the code base, as in the 
“ refactor to understand” re-engineering best practice 
[DDN02]. We made heavy use of the built-in support 
for refactoring in the Eclipse [Ecl03] development en-
vironment to avoid introducing defects during this 
stage. However, we did not follow the best practice of 
first having an extensive set of unit tests [FBB+09] and 
rerunning the unit tests after each refactoring. Some of 
the important refactorings are discussed next. 

Rename. When enforcing architectural structure in 
code, and recovering architectural structure from code, 
names become important, since the ArchJava imple-
mentation will also serve as architectural specification: 
for example, we assigned component instances more 
meaningful names that clearly convey the architectural 
intent, e.g., use ����*����� instead of ���. Other prac-
tical considerations included checking that none of the 
identifiers used in HillClimber conflicted with new 
keywords introduced by the ArchJava language exten-
sion (such as !����!�, ����, etc.). Similarly, since 
ArchJava requires the Java programming language ver-
sion 1.5, we had to check that the code would compile 
with Java 1.5. Refactoring tools can greatly assist in 
renaming by performing capture-avoiding substitutions.  

Encapsulate. All fields on classes that are intended 
to become component classes should be encapsulated, 
and be accessible only through accessor and modifier 
methods; i.e., no fields should be public, static, tran-
sient, or volatile. Furthermore, all fields of super-
classes, even if the ones not intended to become com-
ponent classes, should be encapsulated as well, as one 
may want to expose implementation methods from a 
super class as a provided functionality on the compo-
nent sub-class. ArchJava will consider as illegal any 
non-private and non-protected component fields: this is 
one way that ArchJava enforces communication integ-
rity. In HillClimber, we encapsulated many fields in 
many classes (including many in ����������
���). 

Eliminate Constructor Arguments of Type Com-
ponent Classes. ArchJava does not allow for construc-
tor arguments having types of component classes. A 
common object-oriented pattern involves passing of the 

communicating objects as argument to a non-default 
constructor to ensure that the references are set cor-
rectly. We found it useful to temporarily replace this 
pattern with  explicit calls to setters and getters in order 
to facilitate converting the program to ArchJava. In 
ArchJava, getters and setters taking component types 
will be illegal, and these setters will have to be con-
verted into ArchJava !����!� statements). See Figure 5 
for how the ���������� constructor was refactored. 

Split Initialization Code from Constructor Code. 
Object-oriented programmers often perform all the 
initialization  aggressively in a class constructor. How-
ever, care should be taken to not have initialization 
code in the construction that relies on calling port 
methods, since those ports would still be unconnected 
in the constructor. The ArchJava compiler will stati-
cally warn about possibly unconnected ports in a con-
structor. In HillClimber, there were many such in-
stances. We followed the same pattern in all cases: we 
kept the constructor minimal, and moved initialization 
code into a separate ������ method. This seems a com-
mon pattern in component programming: e.g., in Mi-
crosoft’s ATL library for COM component program-
ming [ATL], a ������������!��� method is provided, 
where the rest of the initialization can be completed, 
such as aggregating other objects, and the library guar-
antees that ������������!��� is called after the con-
structor. In this case, we had to be very careful to not 
introduce new defects into the program, by making sure 
that the ������ method is actually called on all instan-
tiated objects. Unfortunately, we had little tool support 
for this type of refactoring. 

Eliminate Constructor Calls to Overridable 
Methods. [Blo01] explains why constructors must not 
call overridable methods: the superclass constructor 
runs before the subclass constructor, so the overriding 
method in the subclass will get invoked before the sub-
class constructor has run. If the overriding method de-

�� ��!"!����"����������"#"
""���"
""�������"����
����
"
����
$"
""�������"���"��"%"&''$""(("����)"����"
"""
""�� ��!"������������"#"
""""(("*�+����"��������!�"
""""���������"%"'$"
""""����!�,���"%"��
"-���!�./0$"
""""1���-���!�"����-���!�"%"��
"1���-���!���$"
""""(("56*67"�������"����"��"!����!�"����"
""""����-���!�����
����
�
����
�$"
""""���"
""2"
""�� ��!"����"���*�����"���"#"�������"%"��$2"
""�� ��!"���"���*���"#"������"��$"2"
"
""(("56*67"1�����"����"��!�"��",�!�8���"
""�� ��!"����
����
"���
����
��#������"
����
$"2"
""�� ��!"����"���
����
�����
����
"
����
�"#"
""""" �����
����
"%"
����
$"2"
""""���"
2 
Figure 5: Refactored HillEngine Java class. 



 

pends on initialization performed by the subclass con-
structor, then the method will not behave as expected. 
If these calls remain when the program is converted to 
ArchJava, runtime exceptions occur if the overriding 
methods depend on ports having already been con-
nected. To make things worse, by default (i.e., non-
final) all public or protected methods in Java are vir-
tual. Currently, ArchJava does not statically warn about 
calls to overridable methods which may be accessing 
ports. A sophisticated linear type system to check for 
all disconnected ports would be required for static 
checking and is not currently implemented. We actually 
found one such instance in the HillClimber application: 
the constructor of the ����������
�������� class was 
calling a virtual ������-�9��� method, which was 
overridden inside the subclass �������� and  where it 
was accessing the !����� port. 

Eliminate Navigation Code. [ACN02a] reports 
how navigation code is often a significant problem 
when converting to ArchJava: being proactive and e-
liminating as much as possible of it will not be wasted 
effort. In HillClimber, for instance, we replaced  
������
����
�!�����������������-�����������$ 
by declaring a field window, making sure that the field 
is initialized and changing the call to  

����
����-������������"

Extract Interfaces. This refactoring is not essential, 
but we found it helpful. For some HillClimber classes, 
(e.g., ����������), we extracted all the public methods 
available on a class, including methods inherited from 
the base classes, into interfaces. 

 
4.5 Re-Engineer the Program 

 
From this point onwards, we had to switch over to 

the ArchJava environment, and could not use the 
Eclipse Java development environment anymore. Since 
ArchJava is backwards compatible with the Java pro-
gramming language, the first step when re-engineering 
to ArchJava is to rename the :�;���" files to :���!�; 
and recompile using the ArchJava compiler.  

As long as no program identifiers are using any re-
served keywords, the ArchJava development environ-
ment will be able to compile HillClimber without fur-
ther modification or error, but at this point, the 
ArchJava typesystem will not be enforcing any com-
munication integrity. 

ArchJava can be applied incrementally to convert 
key communication relationships from standard method 
invocations to the port communication construct. Sev-
eral relationships between objects were converted to 
ArchJava using the re-engineering patterns described in 
great detail in [ACN02b], summarized here: 

• Change class to component class: this often re-
quires many additional changes to pass communi-
cation integrity checks. 

• Change a field link into a connection: in many 
cases, this is simply converting an instance vari-
able to a port. If the port is given the same name as 
the deleted instance variable, statements that pre-
viously called the server object will not need to be 
modified because the port call syntax will be iden-
tical. This is only possible if there are no direct 
calls to public fields (this is where encapsulating 
all the fields pays off). For each method that was 
previously called on the callee, we declare its sig-
nature as a required method in the new port that 
now represents the provider (See Figure 6). 

• Move creation to container component: this pattern 
required the most changes to the architecture. In 
retrospect, this step should have been addressed 
during the re-structuring step, [ACN02b] discusses 
in greater detail how this can problem be ad-
dressed. 

• Finally, we used ArchJava’s dynamic constructs 
(connect patterns and expressions) discussed in 
[ACN02a] for �������� and ��������. 
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Figure 6: HillEngine component class in ArchJava. 



 

4.6 Check against the Target Architecture 
 
To guide the re-engineering activity toward the tar-

get architecture, we periodically checked the state of 
the implementation against the target architecture by 
recovering an up-to-date architectural component-and-
connector (C&C) view from the implementation using 
available ArchJava tool support [AAG05]. 

The recovered C&C views contained purely struc-
tural information, such as components, ports, and their 
connections. Architectural styles and types were manu-
ally supplied since ArchJava does not currently repre-
sent that information. For instance, assigning port types 
(based on whether a port only provides methods, only 
requires methods, or does both) was used to check the 
directionality of the communication (See Figure 7). 

The C&C-views were useful for quickly assessing 
the current state of the implementation and determining 
how far it was from the desired target architecture. The 
snapshots helped produce a cleaner design, since ex-
posing the control flow information can highlight spa-
ghetti style connections. Second, they helped the actual 
migration effort: as long as the code compiled, the ex-
tracted C&C view quickly showed which ports were 
not connected (including those on dynamic instances). 
Finally, they helped visualize object sharing issues 
(e.g., by having �������� and �������� instances ap-
pear as contained by both ���������� and ���������). 

 
5. Lessons Learned 

 
In this section, we describe some of the lessons we 

learned during the case study, in the hope that a wish 
list will provide impetus for improving currently avail-
able tool support. 

 
5.1 Hints for Language and Tool Designers. 

 
Keep It Iterative. The activities that seemed to 

make the process harder were precisely the ones that 
interfered with the iterative nature of the process: e.g., 
once a program is converted to ArchJava, refactoring 
support available for a Java program is no longer avail-
able, even if the ArchJava program still has many 
classes that are still plain Java classes. For instance, 
after we started migrating the code to ArchJava, we 
discovered that we had forgotten to encapsulate several 
fields in the base classes in the ����������
��� pack-
age. Even though none of the classes in that package 
had been converted to component classes or declared 
ports, we could not use refactoring tool support. 

Fowler offers an additional insight: “[...] irreversi-
bility [is] one of the prime drivers of complexity. And 
agile methods […] contain complexity by reducing 

irreversibility” [Fow03]. Turning a Java program into 
an ArchJava program is an irreversible transformation. 

Keep It Incremental. Having the ability to incre-
mentally convert the program to ArchJava was ex-
tremely valuable. For instance, turning a class into a 
component class can suddenly generate many ArchJava 
compile errors (e.g., if that type was used as a construc-
tor argument). However, there was always an easy 
workaround: non-component classes can have ports as 
well. So in some cases, we resorted to first adding ports 
and then converting the class to a component class after 
we better understood the dependencies. 

Tolerate Incompleteness. Even development envi-
ronments are moving towards tolerating incomplete-
ness. For example, the Eclipse Java Development Tool-
ing [JDT] allows running and debugging code which 
still contains unresolved errors. The ability to tempo-
rarily tolerate incompleteness and errors is even more 
critical for a language such as ArchJava. During a re-
engineering activity, mixing the two concerns (i.e., the 
implementation and the architecture) is hard if one 
wants to first codify the desired architecture, yet main-
tain a running system. 

Some Architecture Description Languages require 
declaring ports but do not require declaring the pro-
vided and required functionality on the ports. ArchJava 
always requires both. ArchJava currently elegantly 
supports architectural design with abstract components 
and ports, which allow an architect to specify and 
typecheck an architecture before beginning program 
implementation. However, it does not easily support 
the ability to incrementally enforce architectural con-
formance checking. Some possible options could in-
clude having different warning levels, or having a set-
ting to relax some of the checks for required and pro-
vided functionality, at least temporarily. 

Automate as Much as Possible. It would have been 
helpful to have a set of tools to further automate the 
process of re-structuring the original program. Identify-
ing program code in need of refactoring is still mostly a 
manual exercise. However, we believe that for this kind 

 
Figure 7: Intermediate recovered C&C view: port types 
(manually assigned) encode the directionality. 



 

of re-engineering, where the rules are relatively well 
known, automated support would be particularly useful. 
For instance, a tool could take a list of the intended 
component classes, look for known problems (such as 
public fields of those types or constructor arguments of 
those types), suggest a list of refactoring (e.g., encapsu-
late fields, identify navigation code), automatically 
construct some of the refactorings, and finally give the 
user the opportunity to preview the proposed changes 
and accept or reject them. 

 
5.2 Perceived ArchJava Limitations 

 
There are limitations to the currently available tool 

support for the ArchJava language that affect the vi-
ability of the re-engineered HillClimber application. 
The ArchJava development environment offers only 
basic features, and does not provide support for debug-
ging and refactoring. However, there are more funda-
mental issues that we encountered during this case 
study that we would like to see addressed in future ver-
sions of ArchJava. 

Runtime Exceptions. ArchJava is designed on the 
premise that if the type checker terminates successfully, 
the match between the implementation and specified 
architecture is guaranteed. Unfortunately, certain 
classes of architectural errors are only caught at run-
time. For instance, since a component instance can still 
be freely passed between components as an expression 
of type ;���������6 ;�!�, an exception is thrown if 
an expression is downcast to a component type outside 
the scope of its parent component instance. Similarly, a 
runtime exception is thrown when accessing a port that 
is not connected. Extensive testing is still needed to 
verify that no serious defects are introduced into a pro-
gram when re-engineering it into an ArchJava program. 

Missing Port Types. ArchJava does not have ex-
plicit port types. We resorted to using comments next 
to the port name to specify the type of the port. The 
absence of port types in ArchJava imposes some 
amount of code duplication for declaring required 
methods. On the other hand, this allows having a nar-
rower interface available to a port. 

Missing Port Directionality. ArchJava does not 
currently allow developers to restrict the architectural 
intent that can be expressed with the component and 
port model, e.g., to express that a port can only have 
required methods or only provided methods. There is 
no way to distinguish cases where this happens by 
chance or where the architect’s intent is that the port is 
unidirectional. 

Missing Final Constructor. As discussed earlier, it 
would be helpful if ArchJava provided a better mecha-
nism for completing the initialization of a component, 

and guarantee that the initialization method would al-
ways be called. 

Missing Explicit Interfaces. Having a feature simi-
lar to C# explicit interfaces [C#02] would be useful, for 
similar reasons: 
• Explicit interface member implementations allow 

interface implementations to be excluded from the 
public interface of a class when a class implements 
an internal interface that is of no interest to a con-
sumer of that class. 

• Explicit interface member implementations allow 
disambiguation of interface members with the 
same signature; otherwise, it would be impossible 
to have different implementations of interface 
members with the same signature and return type, 
or with the same signature but with different return 
types. 

Relaxing Architectural Constraints. In many real-
world architectures, it is often necessary to make ex-
ceptions to architectural constraints. For example, in a 
layered architecture with strict performance require-
ments, it may be necessary to tunnel between layers so 
that calls skip one or more layers in order to follow 
more direct routes, as explained in [GN95]. Embedded 
architecture description languages such as ArchJava 
currently have no mechanism for handling these excep-
tions. For instance, some programming languages, such 
as C#, allow programmers to mark code blocks as �����	�	�	�	

��+���+���+���+� [C#02] and perform low-level operations that are 
normally not available. 

Tightening Architectural Constraints. Even when 
architecture is specified in source code and enforced by 
the compiler, there are still methods of circumventing 
the imposed architectural structure. For example, com-
ponents that are intended to be unrelated could still 
communicate via shared memory, shared files, or net-
work messages. Although architecture descriptions in 
source code reduce the need to maintain documenta-
tion, developers are still required to devote resources to 
maintaining the embedded architectural description. In 
a degenerate case, it is still possible to circumvent ar-
chitectural constraints by defining an entire program as 
internal to a single architecture-level component, for 
example. Therefore, effort must be devoted to ensuring 
that the coded architecture specification is appropriate 
and up-to-date. Having the ability to externally visual-
ize the architecture can help avoid such scenarios. 

 
6. Case Study Limitations 

 
This case study did not demonstrate that the re-

engineered ArchJava HillClimber implementation is 
actually easier to understand and evolve than the origi-
nal Java implementation. It would be ideal if we could 



 

have junior programmers (e.g., UBC summer interns) 
co-evolve the ArchJava implementation to see if the 
system architecture is preserved better than it would 
have been if left in pure Java, and to see if the main-
tainers are able to avoid the architectural violations 
discussed in the latter part of Section 5.2. However, the 
current level of tool support for ArchJava does not 
make this an attractive proposition. 

In addition, this case study did not address the com-
plex issues that are likely to arise when re-engineering 
an application that relies heavily on middleware (e.g., 
Enterprise Java Beans [EJB]). Additional case studies 
are an important element of future work in this area. 
 
7. Conclusions 
 

Architectural specifications are often not sufficiently 
maintained along with the actual implementation. Lan-
guages such as ArchJava effectively enforce architec-
tural structure in source code and promise to help pre-
vent the loss of architectural information, and the re-
sulting architectural drift and erosion. Although such 
languages are best applied during the initial develop-
ment phases, they can be applied to existing systems to 
re-engineer, document, and enforce the desired struc-
ture. By eliciting and refining some of the underlying 
re-engineering principles, such as those outlined in 
[ACN02b], we hope to make the re-engineering activity 
seem less daunting, less painful and less error prone. 
We also pointed out several limitations of the lan-
guages and the tools we used that will need to be over-
come before they can be used effectively in production 
software development. 
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