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Abstract—This paper considers maximizing throughput util-
ity in a multi-user network with partially observable Markov
ON/OFF channels. Instantaneous channel states are never known,
and all control decisions are based on information provided
by ACK/NACK feedback from past transmissions. This system
can be viewed as a restless multi-armed bandit problem with
a concave objective function of the time average reward vector.
Such problems are generally intractable. However, we provide an
approximate solution by optimizing the concave objective over
a non-trivial inner bound on the network performance region,
where the inner bound is constructed by randomizing well-
designed stationary policies. Using a new frame-based Lyapunov
drift argument, we design a policy of admission control and chan-
nel selection that stabilizes the network with throughput utility
that can be made arbitrarily close to the optimal in the inner
performance region. Our problem has applications in limited
channel probing in wireless networks, dynamic spectrum access
in cognitive radio networks, and target tracking of unmanned
aerial vehicles. Our analysis generalizes the MaxWeight-type
scheduling policies in stochastic network optimization theory
from time-slotted systems to frame-based systems that have
policy-dependent frame sizes.

I. INTRODUCTION

This paper studies a multi-user wireless scheduling problem
in a partially observable environment. We consider a base
station serving N users via N independent Markov ON/OFF
channels (see Fig. 1). Time is slotted with normalized slots
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Fig. 1. The Markov ON/OFF model for channel n € {1,2,...,N}.

t € Z7%. Channel states are fixed in every slot, and can
only change at slot boundaries. Suppose the base station has
unlimited data to send for all users. In every slot, the channel
states are unknown, and the base station selects at most one
user to which it blindly transmits a packet. The transmission
succeeds if the used channel is ON, and fails otherwise. At
the end of a slot, an error-free ACK is fed back from the
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served user to the base station over an independent control
channel (absence of an ACK is considered as a NACK).
Since channels are ON/OFF and correlated over time, the
ACK/NACK feedback provides partial information of future
channel states, and can improve future scheduling decisions
for better performance. The goal is to design a control policy
that maximizes a concave utility function of the throughput
vector from all channels. Specifically, let y,,(¢) be the number
of packets delivered to user n € {1,..., N} in slot ¢. Define
Up 2 limy o 1 Zt;:loE[yn(T)] as the throughput of user
n. Let A denote the network capacity region, defined as
the closure of the set of all achievable throughput vectors

¥ = (y,,)N_,. The goal is to solve:

maximize: ¢(y), subjectto: Y€ A, (1)

where ¢(-) is a concave, continuous, nonnegative, and nonde-
creasing function.

The interest in the above problem comes from its many
applications. One application is limited channel probing over
wireless networks. Consider the same wireless downlink as
stated above, except that at most one channel is explicitly
probed in every slot. A packet is served over the probed
channel if the state is ON. This setup is essentially the same
as our original problem, except that channels are probed
differently (implicit probing by ACK/NACK feedback versus
probing by explicit signaling). The motivation for studying
limited channel probing is that, in a fast-changing environment
where full channel probing may be infeasible due to timing
overhead, we shall probe channels wisely and exploit channel
memory to improve network performance. As an example
of (1), we may additionally provide fairness to all users, such
as a variant of rate proportional fairness [1], [2] by solving:

N
maximize: ¢(g) = Z log (14+79,), subjectto:y e A. (2)
n=1

In cognitive radio networks [3], [4], a secondary user has
access to a collection of Markov ON/OFF channels. Every
channel reflects the occupancy of a spectrum by a primary
user, and the secondary user opportunistically transmits data
over unused spectrums for better spectrum efficiency. In target
tracking of unmanned aerial vehicles (UAVs) [5], a UAV
detects one of the many targets in every slot. Every Markov
channel reflects the movement of a target; a channel is ON if
its associated target moves to a hotspot, and OFF otherwise.
Delivering a packet over a channel represents gaining a
reward by locating a target at its hotspot. In the above two
applications, possible goals include maximizing a weighted
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sum ¢(y) = 25:1 ¢n¥, of throughputs/time-average rewards,
where c¢,, are given constants, or providing fairness to different
spectrums/targets by solving (2).

The problem (1) is challenging because the current in-
formation available for each channel depends on the past
transmission decisions. This problem belongs to the class of
restless multi-armed bandit (RMAB) problems [6], which are
generally intractable [7]. In addition, the network capacity
region A in (1) does not seem to have a closed form expression
(see [8] for more discussions). Therefore we must resort to
approximation methods to solve (1). In this paper, we propose
an achievable region approach to construct an approximate
solution to (1). There are two steps: (i) we construct a good
inner performance region A,y C A for the original problem,
then (ii) we solve the constrained problem:

maximize: ¢(y), subjectto: Y E Ay, 3)

which serves as an approximation to the original problem (1).

In previous work [8], we have constructed a non-trivial inner
performance region Aj, using the rich structure of Markov
channels (see Section III for details). The inner performance
region Ay, is rendered as a convex hull of performance vectors
of a well-designed collection of round robin policies. The
tightness of the inner region A, (see Fig. 2 for an example) is
analyzed in [8] when channels are statistically identical. In this
special case we show that the gap between the boundary of
the inner region Ay, and that of the full performance region A
decreases to zero geometrically fast as the reference direction
moves closer to the 45-degree angle.!

The main contribution of this paper is with respect to
the second step of the achievable region approach: Given
an inner performance region Ay, we construct a policy
that solves (3) using Lyapunov drift theory. Lyapunov drift
theory is originally developed for throughput optimal control
over time-slotted wireless networks [9], [10], later extended
to optimize various performance objectives such as average
power [11] or rate utility functions [1], [12], [13] in wireless
networks, and recently generalized to optimize dynamic sys-
tems that have a renewal structure [14]-[16]. The intuition is
the following. Since the performance region Aj, is a convex
hull of performance vectors of the round robin policies we
design, the problem (3) is solved by some random mixture of
these policies. Using Lyapunov drift theory (see more details
in Section IV), we greedily construct a sequence of round
robin policies whose long-term time sharing can approximate
the optimal solution as close as desired, with some tradeoffs
discussed later.

Our control policy that solves (3) has two components. To
facilitate the solution to (3), we keep an infinite-capacity queue
for every user at the base station, and design an admission

'We remark that the tightness of the inner region Aj, is difficult to
check in general cases, although the region is intuitively large by the nature
of its construction. The bottomline is, constructing an intuitively good and
easily achievable inner performance region is of practical interest, because
satisfying performance outside the inner region may inevitably involve solving
much more complicated partially observable Markov decision processes.
From this view, in intractable RMAB problems, we may regard an inner
performance region as an operational performance region, which shall be
gradually improved by a deeper investigation into the problem structure.

control algorithm that admits data into the queues for eventual
transmissions. In every slot, the amount of data admitted for
every user is decided by solving a simple convex program.? In
addition, the base station deploys a sequence of round robin
policies implemented frame by frame, where every frame is
one round of execution by a round robin policy. The round
robin policy used in every frame is selected by maximizing an
average “drift minus reward” ratio over the average frame size
(cf. (18)). We emphasize that this new ratio rule generalizes
the MaxWeight-type policies [1], [10] for stochastic network
optimization from time-slotted wireless networks to frame-
based systems in which the distribution of the random frame
size is policy-dependent. We prove that the above policy of
admission control and channel scheduling yields a throughput
vector Y satisfying

9@W) 29W") - )

where g(gy*) is the optimal objective of problem (3), B > 0
is a finite constant, V' > 0 is a predefined control parameter,
and we temporarily assume that all limits exist. By choosing
V sufficiently large in (4), the performance utility g(y) can be
made arbitrarily close to the optimal g(g*), with the tradeoff
that the average queue size at the base station grows linearly
with V. We remark that the proof of (4) does not require the
knowledge of the optimal utility g(g™*).

In the literature, stochastic utility maximization over wire-
less networks is solved in [1], [12], assuming that channel
states are i.i.d. over slots and are known perfectly and instantly.
Limited channel probing in wireless networks is studied in
different contexts in [17]-[22], also assuming that channel
states are i.i.d. over time. This paper generalizes the framework
in [1] to wireless networks with limited channel probing and
time-correlated channels, and uses channel memory to improve
performance.

RMAB problems with Markov ON/OFF projects are pre-
viously studied in [23]-[28] for the maximization of sum of
time average or discounted rewards. In particular, work [23]-
[25] shows that greedy round robin policies are optimal in
some special cases; we modify these policies in [8] for the
construction of a tractable inner performance region Aj,. Index
policies such Whittle’s index [6] are constructed in [26], [27],
and are shown to have good performance by simulations. A
(2 + €)-approximate algorithm is derived in [28] based on
duality methods.

This paper provides a new mathematical programming
method for optimizing nonlinear objective functions of time
average rewards in RMAB problems. In the literature RMAB
problems are mostly studied with linear objective functions.
The two popular methods for linear RMABs — Whittle’s in-
dex [6] and (partially observable) Markov decision theory [29]
— seem difficult to apply to nonlinear RMABs because they
are based on dynamic programming ideas. Extensions of our
new method in this paper to other RMAB problems with
general project state space are left for future research.

2The admission control decision decouples into separable one-dimensional
convex programs that are easily solved in real time when the throughput utility
g(y) is a sum of one-dimensional utility functions.
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In the rest of the paper, the detailed network model is in
the next section. Section III introduces the inner performance
region Ay constructed in [8]. Our dynamic control policy is
motivated and given in Section IV, followed by performance
analysis.

II. DETAILED NETWORK MODEL

Beside the network model introduced in the previous sec-
tion, we suppose that every Markov ON/OFF channel n €
{1,..., N} changes states at slot boundaries by the transition
probability matrix

p _ |:Pn,00

Pn,Ol
Pn,lO ’

Pn,ll

where state ON is represented by 1 and OFF by 0, and P,, ;;
denotes the transition probability from state ¢ to j. Assume that
the matrices P,, are known. We assume that every channel is
positively correlated over time, so that an ON state is more
likely followed by the same state. An equivalent mathematical
definition is P, g1 + Py 10 < 1 for all n.

We suppose that every user has a higher-layer data source of
unlimited packets at the base station. The base station keeps a
network-layer queue @, (t) of infinite capacity for every user
n € {l,...,N}, where Q,(t) denotes the backlog for user n
in slot ¢. In every slot, the base station admits 7, (t) € [0, 1]
packets for user n from its data source into queue Q,,(t). For
simplicity, we assume that r,,(¢) takes real values in [0, 1] for
all n.3 Let p,(t) € {0,1} denote the service rate for user n
in slot ¢. The queueing process {Q,(t)}2, of user n evolves
as

Qn(t+ 1) = max[Q, (t) — pn(t),0] + rn(t). 5)

Initially @,,(0) = 0 for all n. We say queue Q,,(t) is (strongly)
stable if its limiting average backlog is finite, i.e.,

t—1
1
lim sup — E|Qn(7)] < oco.
Pl ;) [Qn(7)]
The network is stable if all queues (Q1(t),...,Qn(t)) are
stable. Clearly a sufficient condition for stability is:

t—1 N

lim sup % > D E[Qn(r)] < o (6)

t—o0 T7=0n=1

Our goal is to design a policy that admits the right amount
of data into the network and serves them properly by channel
scheduling, so that the network is stable with throughput utility
that can be made arbitrarily close to the optimal solution to
the problem (3).

III. A PERFORMANCE INNER BOUND

This section presents an inner performance region Ajy
constructed in previous work [8] using randomized round robin
policies; see [8] for details. For every channel n € {1,..., N},
let bek 2 ; denote the k-step transition probability from state

to j, and 7, on be the stationary probability of state ON. We

3We can accommodate the integer-value assumption of 7, (¢) by introduc-
ing auxiliary queues; see [1] for an example.

define the information state for user n in slot ¢, denoted by
wr(t), as the conditional probability that channel n is ON in
slot ¢ given all past channel observations. Namely,

wn(t) = Pr[s,(t) = ON | channel observation history],

where s, (t) denotes the state of channel n in slot ¢. Condi-
tioning on the most recent channel observation, we observe
that w,,(t) takes values in the countably infinite set W, =
{Pg%l, Pgﬁl : k € N}U{m, on}. The information state vector
(wn(t))N_, is a sufficient statistic [29]; it is optimal to act
based only on the (w,(t))N_; information. Let n(t) denote
the channel observed in slot ¢ via ACK/NACK feedback. The

probability w,,(¢) on channel n € {1,..., N} evolves as:
if n =n(t), s,(t) = OFF
Pn,lla ifn= n(t)’ Sﬂ(t> =ON

wWn(E)Pr.11 + (1 — wn(t))Pro1, if n # n(t).
(N

P01,
wp(t+1)=

A. Randomized round robin policy

Let ® denote the set of all nonzero N-dimensional binary
vectors. Every vector ¢ = (¢,)"_, € @ represents a
collection of active channels, where we say channel n is
active if ¢, = 1. Let M(¢) denote the number of ones (or
active channels) in ¢. Consider the next dynamic round robin
policy RR(¢) that serves active channels in ¢, possibly with
different order in different rounds. This is the building block of
randomized round robin policies that we will introduce shortly.

Dynamic Round Robin Policy RR(¢):

1) In every round, we assume an ordering of active chan-
nels in ¢ is given.
2) When switching to an active channel n,

« With probability Pgégd’)) Jwn(t), we keep trans-
mitting packets over channel n until a NACK is
received, after which we switch to the next active
channel according to the predefined ordering.

o Otherwise, we transmit over channel n a dummy
packet with no information content for one slot
(used for channel sensing), then switch to the next
active channel.

3) Update probabilities (w,,(¢))2_; by (7) in every slot.

These RR(¢) policies are carefully designed to have good and,
more importantly, tractable performance.

Work [24] shows that, when channels are statistically iden-
tical, serving all channels by greedy round robin policies
(different from the above) maximizes the sum throughput
of the network. Thus, intuitively, we get a good achievable
throughput region Aj, by randomly mixing round robin poli-
cies each of which serves a different subset of channels.

Randomized Round Robin Policy RandRR:

1) In every round, pick a binary vector ¢ € ® U {0} with
some probability o, where ag + queb agp = 1.

2) If a vector ¢ € @ is selected, run policy RR(¢) for one
round using the channel ordering of least recently used
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first. Otherwise, ¢ = 0, idle the system for one slot. At
the end of either case, go to Step 1.

We note that, in every round of a RandRR policy, a RR(¢)
policy is feasible only if P%ﬁ‘i’)) < wp (t) whenever an active
channel n starts service (see Step 2 of the RR(¢) policy). This
condition is guaranteed by serving active channels in the order
of least recently used first [8, Lemma 6]. Thus all RandRR
policies are feasible.*

The following results present the amount of service oppor-

tunities provided by a RandRR policy to every user n.

Theorem 1 ([8]). (i) In every round of a RandRR policy,
when policy RR(¢) is randomly chosen for service, let LY
denote the time duration an active channel n is accessed. The
duration L® has the probability distribution:

16 _ 1 with prob. 1 — P; g
" 1j>2 with prob. P(M ¢)) (Pn11)Y=2 P, 19
and
P(N(I)Yﬁ))
E[L?] =1+ ——— (8)
Pn,lO

(ii) In the duration L®, channel n serves (L® — 1) packets.

Theorem 1 shows that the distribution of L¢ is independent
of the information state vector (w, (t)))_, at the start of a
transmission round; it only depends on the number of chan-
nels, M (¢), chosen for service in a round. This observation
implies that the transmission rounds in a RandRR policy have
i.i.d. durations. Moreover, for every fixed user n, the number
of user-n packets served in a round is also i.i.d. over different
rounds. This leads to the following corollary.

Corollary 1. (i) Let T} denote the duration of the kth
transmission round in a RandRR policy. The random variables
Ty, are ii.d. over different k with

E[Tk] = Qg + ZO&¢
Ped

> E[LZ]].

nipp=1

which is computed by conditioning on the policy chosen in a
round.

(ii) Let Ny ) denote the number of packets served for
user n in round Ty. For each fixed n, the random vari-
ables N, are iid. over different k with E[N, ;] =
Z¢:¢>n:1 agE [Lﬁ — 1}, which is computed by conditioning
on the RR(¢) policy that is chosen and uses channel n.

(iii) Because Ny, j, and T}, are i.i.d. over k, the throughput
of user n under a RandRR policy is equal to E[N,, ;] /E [Tk).

B. The inner performance region Ay

In this paper, we define the inner performance region Ay,
in (3) as the set of all throughput vectors achieved by the class
of RandRR policies. Equivalently, the inner throughput region

4The feasibility of RandRR policies is proved in [8] under the special case
that there are no idle operations (cg = 0). Using the monotonicity of the k-
step transition probabilities {P(k017 P(kll} the feasibility can be similarly
proved for the extended Ra ndRR policies considered here.

Ajne can be viewed as a convex hull of the zero vector and the
performance vectors of the subset of RandRR policies, each
of which executes a fixed RR(¢) policy in every round. A
closed form expression of the inner region A, is given in [8,
Theorem 1]. An example is given next.

Consider a two-user system with statistically identical chan-
nels with Py; = P19 = 0.2. Fig. 2 shows the tightness of the
inner throughput region A, compared to the (unknown) full
network capacity region A. We note that points B, A, and

0.25 1

0.5

Fig. 2. The closeness of the inner throughput region Aj, and the network
capacity region A in a two-user network with statistically identical channels.

C in Fig. 2 maximize the sum throughput of the network in
directions (0, 1), (1,1), and (1, 0), respectively [24]. Thus the
boundary of A is a concave curve connecting these points.

IV. NETWORK UTILITY MAXIMIZATION
A. The QRRNUM policy

Following the above discussions, the problem (3) is a well-
defined convex program. Yet, solving (3) is difficult because
the performance region Aj, is represented as a convex hull
of 2V performance vectors. The following admission control
and channel scheduling policy solves (3) in a dynamic manner
with low complexity.

Queue-dependent Round Robin for Network Utility
Maximization (QRRNUM):

¢ (Admission control) At the start of every round, observe

the current queue backlog Q(t) = (Q1(t),...,Qn(t))
and solve the convex program
N
maximize: — Z Qn(t) s 9)
=1
subject to: 1, €[0,1], Vn € {1,..., N}, (10)

where V' > 0 is a predefined control parameter, and
vector = (r,)N_,. Let (r@R)N_, denote the solution
to (9)-(10). In every slot of the current round, admit TS RR
packets into queue @, (¢) for every user n € {1,...,N}.
o (Channel scheduling) At the start of every round, over all
nonzero binary vectors ¢ = (¢,)N_; € ®, let ¢°RR be

the maximizer of the ratio
Yot Qu(HE [Lg —1] ¢,
S E[LE] 6

; (1)
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where E [L;ﬂ is given in (8). If the maximum of (11) is
positive, run policy RR(¢®RR) for one round using the
channel ordering of least recently used first. Otherwise,
idle the system for one slot. At the end of either case, start
a new round of admission control and channel scheduling.

When the utility function g(+) is a sum of individual utilities,
ie., g(r) = 25:1 9n (), problem (9)-(10) decouples into N
one-dimensional convex programs, each of which maximizes
the weighted difference [V gy, (1) — Qn (t)ry] over r, € [0,1],
which can be solved efficiently in real time.

The most complex part of the QRRNUM policy is to max-
imize the ratio (11). In the following we present a bisection
algorithm [16, Section 7.3.1] that searches for the maximum
of (11) with exponentially fast speed. This algorithm is moti-
vated by the next lemma.

Lemma 1. ([16, Lemma 7.5]) Let a(¢) and b(¢) denote the
numerator and denominator of (11), respectively. Define

* £ max «9) c —
o 2 {20 <o ()]

Then the following is true: (1) If 6 = 0*, then ¢(0) = 0. (2)
If 0 < 0%, then c¢(0) > 0. (3) If 0 > 6%, then c(0) < 0.

2 max [a(¢)

$ED

The value ¢(#) can be easily computed by noticing
t0) =, o {mxlo(@) o)1, a2

where ®;, C & denotes the set of binary vectors having &
ones. The inner maximum of (12) is equal to

(¢,
{5 [r @00 -d]o

P 10

k

which is solved by sorting the values Fi%; (Qn(t) —0) — 9} .

Intuition from Lemma 1: To search for the optimal ratio
0*, suppose initially we know 6* € [Oyin, Omax] for some Oin
and O.x. We compute the midpoint O, = %(Hmin + Onax)
and evaluate ¢(0miq). If ¢(Omiq) > 0, we have O < 6* and
thus 6* € [Omia, Omax]; One such bisection operation reduces
the feasible region of 6* by half. By iterating the bisection,
we can find 6* quickly. Notice that the maximizer of ¢(6*) is
the desired policy ¢®RR, since by definition we have a(¢) —
6*b() < 0 for all ¢ € ® and a(PpR) — #*b(PIRR) = 0.

The bisection algorithm that maximizes (11):

o Initially, define 0, = 0 and
N n,
N (anl Qn(t)) maXnE{l LN} { = ?: }
o Pn,Ol
N} { Pn,l(J }
s0 that Opin < a(@)/b(@) < Oax for all g € P. Tt follows

that 6* € [Qr:ina emax]"s
o Compute Omia = 5 (Omin + Omax) and c(Omia). If ¢(Omia) =

0, we have 6* = g and SRR is the maximizer of

emax
1 —|—minne{1’m,

5The value Omay is created by noun% that, in a §)0s1tive1y correlated channel,
the k-step transition probabilities P( and Pn 1o increase and decrease with

k, respectively; both sequences have the same limit T ,ON-

¢(0*). When ¢(0mia) < 0, update the feasible region of 6*
as [Omin, Omid]- If ¢(0mia) > 0, update the feasible region
of 0* as [Omid, Omax)- In either case, repeat the bisection
process.

B. Lyapunov drift inequality

The construction of the QRRNUM policy follows a new
Lyapunov drift argument. We start with constructing a frame-
based Lyapunov drift inequality over a frame of size T, where
T is possibly random but has a finite second moment bounded
by a constant C' so that C > E [T? | Q(t)] for all ¢ and all
possible Q(t). Intuition for constructing such an inequality is
shown later. By iteratively applying (5), it is not hard to show

Zﬂnt+7 +Zrnt+7

(13)
for every n € {1,...,N}. We define the quadratic Lya-
punov function L(Q(t)) = 237" | Q2(t) as a scalar measure
of the queue size vector Q(t). Define the T-slot Lyapunov drift

Ar(Q() 2 E[LQ(t+T)) — L(Q(1)) | Q(t)]

as a conditional expected change of queue sizes across 7' slots,
where the expectation is with respect to the randomness of the
network within the 7" slots, including the randomness of 7.
By taking square of (13) for every n, using inequalities

Qu(t+T) < max | Qu (¢

max[a — b,0] <a Va,b>0,
(max[a — b,0))? < (a —b)?,  pn(t) <1,

to simplify terms, summing all resulting inequalities, and
taking conditional expectation on Q(t), we can show

Ar(Q(t)) < B

N
> Q)

n=1

ra(t) <1,

—-E | Q(2)

T-1
lz n(t+7)—rp(t+7)
7=0

] (14)

where B 2 NC > 0 is a constant. Subtracting from both sides

of (14) the weighted sum VE [ZT gt +1) | Q(t)},

where V' > 0 is a predefined control parameter and (¢ + 7)
an admitted data vector, we get the Lyapunov drift inequality

T—1

Ar(Q(t)) = VE | Y glr(t+7)) | Q(t)] as)
7=0

< B—f(Q(1)) — h(Q(1)),

VE

where
N T—1
FQW) 2 S QuE |3l +7) | Q(t)] 6
n=1 7=0
T—1
h(Q(t) = E Vg(r(t+7))
7=0 N
*ZQn(t)rn(Hr) Q(t)]. (17)

The inequality (15) holds for any scheduling policy over a
frame of any size 7.
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C. Intuition behind the Lyapunov drift inequality

The desired network control policy shall stabilize all queues
(Q1(t),...,Qn(t)) and maximize the throughput utility g(-).
For queue stability, we want to minimize the Lyapunov
drift Ar(Q(t)), because it captures the expected growth of
queue sizes over a duration of time. On the other hand,
to increase throughput utility, we want to admit more data
into the system for service, and maximize the expected sum
utility E Ef;ol g(rt+71)) | Q(t)] Minimizing Lyapunov
drift and maximizing throughput utility, however, conflict
with each other, because queue sizes increase with more
data admitted into the system. To capture this tradeoff, it is
natural to minimize a weighted difference of Lyapunov drift
and throughput utility, which is the left side of (15). The
tradeoff is controlled by the positive parameter V. Intuitively,
a large V' value puts more weights on throughput utility, thus
throughput utility is improved, at the expense of the growth
of the queue size reflected in A7 (Q(t)). The construction of
the inequality (15) provides a useful bound on the weighted
difference of Lyapunov drift and throughput utility.

The QRRNUM policy that we will construct in the next
section uses the above ideas with two modifications. First,
it suffices to minimize a bound on the weighted difference
of Lyapunov drift and throughput utility, i.e., the right side
of (15). Second, since the weighted difference of Lyapunov
drift and throughput utility in (15) is made over a frame of T’
slots, where the value 7' is random and depends on the policy
implemented within the frame, it is natural to normalize the
weighted difference by the average frame size, and we will
minimize the resulting ratio (see (18)). This new ratio rule
is a generalization of the MaxWeight policies for stochastic
network optimization over frame-based systems.

D. Construction of the QRRNUM policy

We consider the policy that, at the start of every round, ob-
serves the current queue backlog vector Q(t) and maximizes
over all feasible policies the expression:

Q) +hQ())
E[T]Q(1)]

over a frame of size 1', where the numerator is defined
in (16) and (17). Every feasible policy here consists of: (1)
an admission policy that admits packets into queues Q(t) for
all users in every slot; (2) a randomized round robin policy
RandRR (given in Section III-A) for data delivery. The frame
size T in (18) is the length of one transmission round under
the candidate RandRR policy, and its distribution depends on
the backlog vector Q(t) via the queue-dependent choice of
policy RandRR. When the feasible policy that maximizes (18)
is chosen, it is executed for one round of transmission, after
which a new policy is chosen for the next round based on the
updated ratio of (18), and so on.

Next we simplify the maximization of (18); the result is the
QRRNUM policy in Section IV-A. In h(Q(t)), the optimal
admitted data vector r(¢t+7) in every slot is independent of the
frame size T and of the rate allocations ., (t+7) in f(Q(¢)).
In addition, it should be the same for all 7 € {0,...,T — 1},

(18)

and is the solution to (9)-(10). These observations lead to the
admission control subroutine in the QRRNUM policy.

Let ¥*(Q(t)) denote the optimal objective of (9)-(10).
Since the optimal admitted data vector is independent of
the frame size T', we get h(Q(t)) = E[T | Q(¢)] T*(Q(¢t)),
and (18) is equal to

Q) .
Qe Y
It indicates that finding the optimal admission policy is inde-
pendent of finding the optimal RandRR policy that maximizes
the first term of (19).

Next we evaluate the first term of (19) under a fixed
RandRR policy with parameters {ag}¢caufoy- In the rest of
the section, when we use a RR(¢) policy for one round, the
channel ordering of least recently used first is always adopted.
Conditioning on the choice of ¢, we get

fQM) = Y aef(Q(),RR(¢)),

pedU{0}

where f(Q(t), RR(¢)) denotes the term f(Q(¢)) in (16) eval-
uated under the policy RR(¢) for one round; for convenience
we have denoted by RR(0) the policy of idling the system for
one slot. Similarly, by conditioning we can show °

> agE [Trreg))
PedU{0}

19)

E[T=E[T]Q()] =

where Trr(g) denotes the duration of one transmission round
under the RR(¢) policy. It follows that

FQ)  Lgpeauioy ¥ f(Q(E),RR())

E[T | Q(t)] Y scauioy % E [Trr(g)]
The next lemma shows that there always exists a RR(¢)
policy maximizing (20) over all RandRR policies for one

round of transmission. Therefore it suffices to focus on the
class of RR(¢) policies in every round of transmission.

Lemma 2. We index RR(¢) policies for all ¢ € ®U{0}. For
the RR(¢) policy with index k, define

fr 2 J(Q(),RR(¢)), Dy, £ E [Tree)) -
Without loss of generality, assume

ho b
Dy = Dy

Then for any probability distribution {ay}req:

(20)

Vk e {2,3,...,2V}

.....

N
ar > 0 and Zi:l o = 1, we have

2N

ﬁ > Zk:1 ap fk

- N .

D1 = 3o Dy
Proof of Lemma 2: Omitted due to space constraint. W
By Lemma 2, next we evaluate the first term of (19)
under a given RR(¢) policy. When ¢ = 0, we get
f(QW)/E[T | Q(t)] = 0. Otherwise, fix some ¢ € ®. For
each active channel n in ¢, we denote by L,‘f the amount

Given a fixed RandRR policy, the frame size T' no longer depends on the
backlog vector Q(t), and E [T =E [T | Q(¢)].
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of time the network stays with channel n in one round of
transmission under policy RR(¢). The probability distribution
and the mean of L% are given in Theorem 1. It follows that
under the RR(¢) policy we have

E[T)=E[|Q@)]= ) E[L],

nipn=1

T—1
E|> m(t+7) Q)] =

7=0

E[L?] -1 if¢, =1
0 if ¢, =0"

As a result,

Q)
E[T|Q®)

N ¢ _

Sl E[L2] 6

The above simplifications lead to the channel scheduling
subroutine of the QRRNUM policy.

V. PERFORMANCE ANALYSIS

Theorem 2. Let y,(t) = min[Qy(t), 1n(t)] be the number of
packets delivered to user n in slot t; define y(t) = (y,(t))N_,.
For any control parameter V> 0, the QRRNUM policy sta-
bilizes all queues (Q1(t),...,Qn(t)) and yields throughput

utility satisfying
= B
. . - > %) — —
liminfg | - ;E[y(ﬂ] >9@) -3 @2

where g(g*) is the optimal objective of the constrained prob-
lem (3) and B > 0 is a finite constant.

Proof of Theorem 2: In Appendix A. ]
Theorem 2 shows that the throughput utility under the
QRRNUM policy is at most B/V away from the optimal
9(y™). By choosing V sufficiently large, the throughput utility
can be made arbitrarily close to the optimal g(y*) and the
constrained problem (3) is solved. The tradeoff of choosing a
large V value is that the average queue size in the network
grows linearly with V. Such tradeoff agrees with the design
principle of the QRRNUM policy discussed in Section I'V-C.

VI. CONCLUSION

This paper provides a theoretical framework for utility
maximization over a wireless network with partially observ-
able Markov ON/OFF channels. The performance and control
in this network are constrained by limiting channel probing
and delayed/uncertain channel state information, but can be
improved by exploiting channel memory. Overall, attacking
such problems requires solving (at least approximately) high-
dimensional restless multi-armed bandit problems with non-
linear objective functions of time average rewards, which are
difficult to solve by existing tools such as Whittle’s index or
Markov decision theory. This paper provides a new achievable
region method for these problems. The idea is to first identify
a good inner performance region rendered by randomizing
stationary policies, and then solve the problem over the inner
region, serving as an approximation to the original problem. In
this paper, with an inner performance region constructed in [8],
we provide a novel frame-based Lyapunov drift argument that

solves the approximation problem with provably near-optimal
performance. We generalize the classical MaxWeight policies
from time-slotted wireless networks to frame-based ones that
have policy-dependent random frame sizes. Extensions of
this new achievable region method to other open stochastic
optimization problems are interesting future research.
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APPENDIX A

Proof of Theorem 2: We need to show that all queues
(Qn(t))N_, are stable and that (22) is achieved. Due to space
constraint, we only prove (22) here. Under policy QRRNUM,
let tx_1 and T} be the beginning and the duration of the kth
transmission round, respectively. We have T}, = t; —tx—1 and

= YF T, for all k € N. Every Ty is the length of a
transmission round of some RR(¢) policy. Assume tq = 0.

To show (22), we compare the QRRNUM policy with
the (unknown) solution to problem (3). By definition of the
throughput region Ajy in Section III-B, there exists a random-
ized round robin policy RandRR™ that solves (3) and yields
the optimal throughput vector ¥* = (y))_,. Let T* denote
the length of one transmission round under policy RandRR*.

From Corollary 1, we have for every user n € {1,...,N}:
T 1 T —1
E| > wa(t+7)]Q( ] ZunHT T E[T7].

7=0

Combining RandRR* with the admission policy o* that sets

rn(t+7) =¥ for all users n and 7 € {0, ..., T*—1} yields ’
N

QM) =E[T*]>_ Qnt)7 (23)
n=1

h Q1)) = E[T7]

N
0 y:i} (24)
n=1

where (23) and (24) are f(Q(t)) and h(Q(¢)) (see (16), (17))
evaluated under policies RandRR* and ¢*, respectively.
Since the QRRNUM policy maximizes (18), comparing (18)

under QRRNUM and the joint policy (RandRR™, c*) yields
Jarrnum (Q(tk)) + hqrrnum (Q(tr))
> E[Ther | Q(t)] [(Q(tr)) + h*(Q(ty)) 25)

E [T%]
(@)

= E[The1 | Q(tr)]V 9(¥"),
where (a) is from (23) and (24). The inequality (15) under the

TThe throughput
of rn(t + 7).

yy is less than or equal to one, thus is a feasible choice

QRRNUM policy in the (k+ 1)th round of transmission yields

Thi1—1
A7, (Qtr) = VE | Y g(r(te +7)) | Qtr)
7=0
< B — forrnum (Q(tk)) — hqrrnum (Q(tr)) 20
®

)
< B—=E[Tis1 | Q(tr)]V 9(T"),
where (b) uses (25). Taking expectation over Q(t) in (26)

and summing it over k € {0,..., K — 1}, we get
EL(Q(tx)] ~ EL(@(t0))] - VE| Y g<r<7>>] o
7=0
< BK - Vy(y")E[tg] < [B - Vg(y")] E[tx]

where the last inequality uses tx = Zszl Ty, > K. Ignoring
the first term, noting Q(tp) = 0, and dividing by V yields

E [Z_ g(rm)] > (o57) - 7 ) Bl

7=0

(28)

Let K (t) denote the number of transmission rounds ending by
time ¢; we have {5 ) <t < tg(s41- It follows that

t—1 . [trey—1
SEGrOISE] S gr(n)
=0 =0

(d) B 29
> (g(y*) - V) E [tx] 29)

- o) - 2t o) - 2] - Elexia)).

where (c) uses the nonnegativity of g(-) and ¢ > t (), and (d)
follows (28). Dividing (29) by ¢, taking a liminf as ¢ — oo,
and noting t — E [t ()| < E [Tr(1)11] < oo yields

1 B
lim inf — TZ:%E otr()] 2 9" ) - - GO

Using Jensen’s inequality and the concavity of g(-), we get
lim infg (F(t)) >9(y") -

where 7 2 (7{))N_ and 7 2 3 E [r,(7)]. Since
all queues (Q,(t ))ﬁy_l are stable, We can show that the time
average throughput vector 5 = (7\)N_,, where 7 2

B
V’ (€29)

LSV E [ya (7)), satisfies
lim inf g (y<f>) > liminf g (ﬁf)) . 32)
t—o0 t—o0
Combining (31) and (32) finishes the proof. |



