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Unified Sensing Algorithm : a Smart Full
Exploitation of Detection Methods

Kaïs Bouallegue, Jean-Yves Baudais and Matthieu Crussière

Abstract—In this paper, we propose a new spectrum sensing
(SS) algorithm called unified sensing algorithm (USA). This
method exploits the results of different algorithms developed in
the literature. The considered methods are especially those based
on the covariance matrix of the received signal and those which
further compute the eigenvalue decomposition of such matrix.
More precisely, the USA algorithm implements some covariance
matrix based methods, and in the case where the primary
user is miss-detected, the eigenvalue decomposition is performed.
This approach fully exploits all detection methods and avoids
computational costs, as eigenvalue decomposition, when it is not
necessary. Finally, the performance of the proposed method is
provided and compared with existing state of the art algorithms.
Simulation results show the performance improvement obtained
with this new approach, namely the contribution in term of
detection under very low signal-to-noise ratio (SNR).

Index Terms—Cognitive radio, spectrum sensing, covariance
matrix, eigenvalue decomposition.

I. INTRODUCTION

In the next few years, the high demand for spectral resource
will encourage the development of new key technology to
overcome the scarcity of the spectrum and improve its ex-
ploitation. One of the main topic is the cognitive radio (CR)
which proposes to define two kinds of users. The first one
who has all the priorities on the spectral resource, called the
primary user (PU), and the second one, called the secondary
user (SU), who opportunistically exploits the free frequency
bands [1]. In [2], the authors bring details about the cognition
loop which is built upon the spectrum sensing (SS) algorithms.
In order to not interfere with the PU, the SU has to be
aware of its environment and the SS is one of the crucial
step of efficient CR mechanism. For instance, in IEEE 802.22
wireless regional area networks (WRAN), unused frequency
resources allocated for Digital TV (DTV) broadcasting are
used in communication systems [3]. The requirement of this
standard is to sense the PU at a SNR of at least −21 dB
with a probability of detection (Pd) over 0.9 and a probability
of false alarm (Pfa) fixed at 0.1 [4]. All SS algorithms are
based on two essential parameters, the first one, referred to
as the statistical test, is extracted from the received signal of
the focused frequency band and the second one, called the
threshold, is fixed by the sensing conditions. In Fig. 1, we
present one way of classification of SS algorithms. Coopera-
tive SS algorithm is a good way to improve the performance of
detection and to reduce the computational cost [5]. In order to
optimize a cooperative dense network, some SS algorithms
are developed grouping users in the same clusters [6]. In
non-cooperative narrowband SS context, many algorithms are
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Fig. 1. Classification of spectrum sensing algorithms.

Fig. 2. Scenario of dynamic resource allocation for secondary user over free
frequency in narrowband context.

developed in the literature to ensure the dynamic resource
allocation for the SU (Fig. 2). To improve the detection of
the PU, some blind SS algorithms propose to advantageously
exploit the multiple-input multiple-output (MIMO) configura-
tion of some systems. In [7], the authors take advantage of
the entries of the covariance matrix of the received signal.
Two proposed methods are known to perform efficiently in
very low SNR region: the first one is called the covariance
absolute value (CAV) and the second one is called covariance
Froebenius norm (CFN). Other recent contributions are based
on the eigenvalue decomposition of the covariance matrix
as maximum-to-minimum eigenvalue (MME) [8], arithmetic-
to-geometric mean (AGM) [9], blindly combiend energy de-
tection (BCED) [10] and mean-to-square extreme eigenvalue
(MSEE) [11]. Experimental evaluation points out the advan-



tages of some sensing algorithms using the cyclostationarity
of the signal [12]. The general likelihood ratio test (GLRT)
is also one of the famous SS method that minimizes the
sensing time and allows for a higher spectrum efficiency [13].
Other SS algorithms based on the energy and the beamform-
ing are developed. Indeed, the maximum-to-minimum beam
energy (MMBE) [14], maximum-to-mean energy detector
(MMED) [15] and maximum energy beamforming-output-to-
input (MEBOI) [16] detect only one PU under wave plane
propagation assumption. In this paper, we propose a new
algorithm based on the joint use of several SS methods using
the covariance matrix and its eigenvalue decomposition. This
proposed method, called unified spectrum algorithm (USA),
takes advantage of the covariance matrix based algorithms
firstly. In case where the PU is not detected, the eigenvalue
decomposition is performed and all the SS algorithms are
jointly processed to take the final decision.

The rest of the paper is organized as follows. In Section II,
we present the background work including the system model
and some SS algorithms based on the covariance matrix of the
received signal and the eigenvalue decomposition. In Section
III, we provide a detailed algorithm of the proposed method.
In Section IV, the performance analysis is provided through
simulations. Finally, in section V, our research contribution is
concluded.
To describe vector and matrices, we respectively use boldface
lower letter and boldface capital letter. We use superscript (.)T

to denote transpose.

II. SYSTEM MODEL AND BACKGROUND

A. System model

We assume a SU terminal equipped with M > 1 uniformly
linear array antennas. We consider two main hypotheses H1,
when the PU is present and H0, when the frequency band
is free. The expression of the received signal samples under
these two hypothesis are given by

H0 : ym(n) = wm(n) (1)
H1 : ym(n) = am(n) + wm(n), (2)

where am(n) represents the primary signals, wm(n) is a zero-
mean additive white Gaussian noise with variance σ2

w and m
represents the antenna (m = 0, · · · , (M − 1)). The vector
representation of the received signal, under H1 hypothesis, at
the SU is given by

y(n) =

P∑
p=1

Cp−1∑
k=0

hp(k)xp(n− k) + w(n), (3)

where P is the number of PU (PUp, 1 6 p 6 P ) and
w(n) = [w1(n), w2(n), · · · , wM (n)]T . We note xp the signal
of the pth PU. The channel order is denoted Cp and hp =
[h1p, h2p, · · · , hMp]T is the expression of the channel from
PUp to SU and Cp is the channel order. Thus the frequency
selectivity is given by the order of the channel Cp (Cp > 0).
The well-known smoothing factor L [8] allows to represent

consecutive samples, thus the expressions of the vectors are
given by

yL(n) = [yT (n), · · · ,yT (n− L+ 1)]T , (4)
wL(n) = [wT (n), · · · ,wT (n− L+ 1)]T , (5)

xL(n) = [xT
1 (n),xT

2 (n), · · · ,xT
P (n)]T , (6)

where xp(n) = [xp(n), xp(n− 1), · · · , xp(n− L− Cp + 1)].
The matrix expression of the received signal is given by

yL(n) = HxL(n) + wL(n), (7)

where H = [H1,H2, · · · ,HP ] and Hp is a ML× (Cp + L)
matrix which represents the channel between pth PU and the
SU. The size of the channel matrix H is given by ML ×

(C + PL) where C =
P∑

p=1
Cp. The covariance matrix of the

received signal is defined as

Ry(n) = HRxH
H + σ2

wIML, (8)

where

Ry = E[yL(n)yL(n)H ] (9)
Rx = E[xL(n)xL(n)H ]. (10)

The covariance matrix of the received signal is a Hermitian
matrix, thus the eigenvalues, noted λi, are real numbers then
we define ML eigenvalues such as λ1 > λ2 > · · · > λML.
The covariance matrix for a finite number of samples is given
by

Ry(N) =
1

N

N∑
k=1

yL(k)yL(k)H (11)

where N is the number of observed samples. The noise
subspace size is equal to (M − P )L − C, so we can note
λ1 > λ2 > · · · > λC+PL > λC+PL+1 = · · · = λML = σ2

w.

B. Spectrum sensing methods
In this section we introduce some well-known SS algorithms

based on the entries of the covariance matrix. The off-diagonal
entries of the covariance matrix of the received signal, corre-
sponds to the main difference, between H0 and H1, which is
exploited by the two following algorithms.

a) Covariance Absolute Value (CAV): The statistical test,
noted TCAV, of the CAV approach is based on the ratio
between the sum of the absolute values of Ry by the sum of
the absolute values of the diagonal entries of the covariance
matrix [7], hence

TCAV =

ML∑
n=1

ML∑
m=1
| rnm |

ML∑
n=1
| rnn |

H0

≶
H1

γCAV, (12)

where rnm represents all the elements of the estimated covari-
ance matrix Ry and γCAV is the threshold given by [7]

γCAV =
1 + (L− 1)

√
2

Nπ

1−Q−1(Pfa)

√
2

N

, (13)



where Q−1 is the inverse Q-function which describes the tail
distribution function of the standard normal distribution

Q (t) =
1√
2π

+∞∫
t

exp
(
−u2/2

)
du. (14)

b) Covariance Frobenius Form (CFN): This approach
proposes as statistical test the same comparison as CAV
method by using Euclidean norm for each entries of Ry

TCFN =

ML∑
n=1

ML∑
m=1
| rnm |2

ML∑
n=1
| rnn |2

H0

≶
H1

γCFN. (15)

The threshold γCFN is approximated in [17] by

γCFN >
1 +N + L

N + 2−Q−1(Pfa)

√
8N + 40 +

48

N

. (16)

In the sequel, we will present a non-exhaustive list of
spectrum sensing algorithms based on the eigenvalue decom-
position of the covariance matrix of the received signal Ry .

c) Maximum-to-Minimum Eigenvalue (MME): The
MME is a SS algorithm proposed in [8] and its statistical test
is expressed as

TMME =
λ1
λML

H0

≶
H1

γMME, (17)

where γMME is the threshold of the MME method. The
analytic expression of the smallest and largest eigenvalues are

λML =
σ2
b

N

(√
N −

√
ML

)2
and λ1 =

σ2
b

N

(√
N +

√
ML

)2
respectively. The threshold γMME is given by

γMME = ∆
(
1 + φF−1TW (1− Pfa)

)
, (18)

where ∆ =
(
√
N+
√
ML)

2

(
√
N−
√
ML)

2 , φ =
(
√
N+
√
ML)

−2/3

(NML)1/6
and F−1TW

is the inverse cumulative distribution function of the Tracy-
Widom (TW) distribution.

d) Arithmetic to Geometric Mean (AGM): In [9], the
authors propose a SS algorithm based on the ratio between
the arithmetic mean and geometric mean of the eigenvalues.
The statistical test is given by

TAGM =

1

ML

ML∑
k=1

λk(
ML∏
k=1

λk

)1/ML

H0

≶
H1

γAGM, (19)

where γAGM is the threshold proposed in [18] by

γAGM =

√
2

MLN
Q−1 (Pfa) + 1. (20)

e) Blindly Combined Energy Detection (BCED): This
method is derived from the Energy Detector (ED) method.
In SS, at least only one PU is necessary to decide hypothesis
H1. Thus in [10], the following statistical test is proposed,

TBCED =
λ1

1

ML

ML∑
k=1

λk

H0

≶
H1

γBCED, (21)

where γBCED is the threshold analytically developed, in [19],
considering the ratio of the largest eigenvalue divided by
the trace of a Wishart matrix with N degree of freedom.
The asymptotic limit of the ratio follows a TW distribution
but in order to get an accurate expression of the Pfa, the
second derivative for the TW distribution must be added. Thus
the closed-form expression of the threshold γBCED is quite
complex to obtain. For this reason the expression of the Pfa

is sufficient

Pfa = 1− FTW

(
γBCED − µN,ML

σN,ML

)
+

1

MLN

(
µN,ML

σN,ML

)2

F ′′TW

(
γBCED − µN,ML

σN,ML

)
, (22)

where F ′′TW represents the second derivate of FTW,

µN,ML =

(
1 +

√
ML

N

)2

(23)

σN,ML = N
−2
3

(
1 +

√
ML

N

)1 +
1√
ML
N

1/3

. (24)

f) Maximum-Eigenvalue-to-the-Geometric-Mean
(MEGM): MEGM algorithm is presented in [18], the
authors propose as statistical test the ratio of the largest
eigenvalue and the geometric mean of the eigenvalues

TMEGM =
λ1(

ML∏
k=1

λk

)1/ML

H0

≶
H1

γMEGM. (25)

The threshold is given by

γMEGM =
F−1TW (1− Pfa) ν + χ

N
, (26)

where ν =
√
χ

(
1√
N − 1

+
1√
ML

)(1/3)

and χ =(√
N − 1 +

√
ML

)2
.

g) Mean-to-Square Extreme Eigenvalue (MSEE):
In [11], the authors propose an algorithm similar to the AGM
one using only the extreme eigenvalues. The statistical test is
given by

TMSEE =
λ1 + λML

2
√
λ1λML

H0

≶
H1

γMSEE, (27)

where the threshold is expressed as

γMSEE = G−1
(
∆
(
1 + φF−1TW (1− Pfa)

))
, (28)

and G (x) = 2x2 − 1 + 2x
√
x2 − 1.



SNR (dB)
-25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15

P
ro
b
ab

il
it
y
of

d
et
ec
ti
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

CAV

MEGM

MME

AGM

USA

SNR (dB)
-25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15

P
ro
b
ab

il
it
y
of

d
et
ec
ti
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

CFN

BCED

MEGM

AGM

USA

Fig. 3. Probability of detection versus SNR at different values of smoothing factor L. (a) L = 3 and (b) L = 1.

III. UNIFIED SENSING APPROACH

In this section, we introduce a new SS approach consisting
in a cost effective unification of all detectors reminded in
the previous section. The main idea of this new detector,
called unified sensing algorithm (USA), is to improve the
detection of the PU signal with less computational complexity.
The decision of this new approach is based on two steps of
detection. As a first step we only consider SS algorithms based
on the covariance matrix and then, in the second step, we acti-
vate those based on the eigenvalue decomposition. Eigenvalue
based detection are only performed when, in the first step,
the algorithms based on the entries of the covariance matrix,
do not detect any PU signal. The result of the comparison
of each statistical test and its own threshold is a boolean
expression denoted as Dj (j = {CAV, CFN, MME, AGM,
BCED, MEGM, MSEE, USA}). When Dj is true, the detector
decides the presence of PU signal.

One of the objective of the SS, especially for non-
cooperative detectors, is to get the right decision on the
occupancy of the spectral band as quickly as possible, i.e.
relying on a number N of samples the smallest as possible.
Note that N , representing the sensing duration, is the value
which defines the complexity of the sensing algorithm. How-
ever, to achieve the same performance, some method requires
less sensing time depending on the detection parameters and
the channel (M,L,N and Cp). In the presence of a PU
(H1) and in order to avoid eigenvalue decomposition, if
the methods based on the entries of the covariance matrix
of the received signal are sufficient then the USA method
offers good performance with minimum complexity. In case
where the eigenvalue-based methods are performed, then the
proposal benefits from all the results based on the eigenvalue
decomposition knowing that the thresholds are pre-computed
from their analytical expression.

Algorithm 1 Algorithm for USA detector
Input: N .
Output: DUSA

Initialisation :
Compute Ry(N)

1: if DCAV or DCFN then
2: DUSA ←− true
3: else if not DCAV and not DCFN then
4: λi ←− EVD(Ry(N)) % Eigenvalue decomposition
5: if DMME or DAGM or DBCED or DMEGM or

DMSEE then
6: DUSA ←− true
7: else
8: DUSA ←− false
9: end if

10: end if
11: return DUSA

IV. SIMULATIONS AND DISCUSSION

In this section, we provide the simulation results in terms
of the probability of detection versus the SNR for different
features of detection. In the following simulations, we consider
only one PU and the probability of false alarm is fixed
at Pfa = 0.1. For a sake of clarity, only some detection
algorithms are drawn for different scenarios.

At first, Fig. 3 represents the detection performance at dif-
ferent values of the smoothing factor L. From this first figure,
two interesting results can be observed. Firstly, the proposed
USA algorithm provides the best results compared to all other
detection methods, hereby confirming the positive effect of the
joint approach. Indeed, the contribution of all the algorithms
allow to improve the sensing significantly. Secondly, we note
that the sensing methods based on the covariance matrix (CAV
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Fig. 4. Probability of detection versus SNR at different values of number of antenna M . (a) M = 4 and (b) M = 10.
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Fig. 5. Probability of detection versus SNR at different values of channel order Cp. (a) Cp = 0 and (b) Cp = 5.

and CFN) provide quite good performance at very low SNR
region in both figure Fig. 3.a and 3.b. For example, at SNR
= −21 dB, more than 70% of the right detection of the
USA method is performed by the covariance matrix based
algorithms.

In Fig. 4, we now illustrate the probability of detection
versus SNR for different values of the number of antennas
M . Comparing Fig. 4.a and 4.b, it appears that when the
number of antennas is relatively low, methods based on the
covariance matrix become much less accurate. For example,
at SNR = −19 dB, the contribution of CAV and CFN
represent only 70% of the proposed algorithm in Fig. 4.a and
approximately 100% in Fig. 4.b. It can hence be concluded
that the robustness of the USA algorithm relies more on

eigenvalue-based approaches (such as MEGM or MME) at
small-scale antenna regime.

In Fig. 5 represents the probability of detection versus the
SNR for different numbers of channel paths. It is observed
that performances are very sensitive to multipath. However,
the proposed method provides better detection, almost of 10%
for example, for a SNR range from −19 dB to −16 dB.

Finally, the impact of the sensing time N on the perfor-
mance is investigated in Fig. 6. We note that the gap of
performance between all the methods remains globally the
same whatever N . These results are expected because the
influence of the detection time does not influence the per-
formance differences between all the algorithms. Eventually,
it clearly appears that that the the USA method offers better
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Fig. 6. Probability of detection versus SNR at different values of number of samples N . (a) N = 5000 and (b) N = 20000.

Algorithm 2 Algorithm for eigenvalue based SS
Input: N , .
Output: Pd(i) (i ={BCED,AGM,MGEM,· · · })

Initialisation :
Compute Ry(N)

1: γi : Compute the threshold of the ith SS method
2: λi ←− EVD(Ry(N)) % Eigenvalue decomposition
3: Ti : Compute the statistical test of the ith SS method
4: Compare γi and Ti
5: if Ti > γi then
6: Pd(i)←− true
7: else if Ti < γi then
8: Pd(i)←− false
9: end if

10: return Pd(i)

performance than the other methods.

V. CONCLUSION

In this paper, we proposed a new spectrum sensing al-
gorithm which consists in the unification of miscellaneous
sensing methods of the literature. Our joint algorithm, called
unified spectrum algorithm (USA) is based on two steps of
decision. First USA method exploits results from algorithms
based on the covariance matrix of the received signal and
then, in the case of miss-detection, these based on eigenvalue
decomposition are activated. From simulation results and com-
parisons, we conclude that the proposed method outperforms
the other ones for all the scenarios and system parameters such
as the number of antennas, the smoothing factor, the multipath
order of the channel or the sensing duration. This confirms that
the proposed joint algorithm takes advantage of the different
unitary sensing methods.
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