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Abstract—Next generation of wireless local area networks
(WLANs) will operate in dense, chaotic and highly dynamic
scenarios that in a significant number of cases may result in
a low user experience due to uncontrolled high interference
levels. Flexible network architectures, such as the software-defined
networking (SDN) paradigm, will provide WLANs with new
capabilities to deal with users’ demands, while achieving greater
levels of efficiency and flexibility in those complex scenarios. On
top of SDN, the use of machine learning (ML) techniques may
improve network resource usage and management by identifying
feasible configurations through learning. ML techniques can drive
WLANs to reach optimal working points by means of parameter
adjustment, in order to cope with different network requirements
and policies, as well as with the dynamic conditions. In this paper
we overview the work done in SDN for WLANs, as well as
the pioneering works considering ML for WLAN optimization.
Finally, in order to demonstrate the potential of ML techniques
in combination with SDN to improve the network operation,
we evaluate different use cases for intelligent-based spatial reuse
and dynamic channel bonding operation in WLANs using Multi-
Armed Bandits.

Index Terms—SDN, Machine Learning, Wireless, Spatial Reuse,
Channel Allocation.

I. INTRODUCTION

In recent years, IEEE 802.11-based WLANs, commonly

known as Wi-Fi networks, have experienced a remarkable

growth in terms of traffic consumption. According to [1], in

2016 more traffic was offloaded from cellular networks onto

Wi-Fi than remained on them. Moreover, they expect by 2021

that the 63 % of total mobile data traffic will be offloaded onto

Wi-Fi network as a consequence of an increased use of portable

and handheld devices. In this context, network capacity needs

to be targeted to cope with the expected data traffic. Thus,

efforts are focused in network densification as the spectrum

scarcity and the high spectral efficiency achieved by current

technologies are limiting factors [2].

Regarding dense deployments, there exist some potential

issues in regards of performance degradation. Existing chan-

nel access protocols, such as carrier sense multiple access

(CSMA), have been designed to operate efficiently in non-

dense scenarios, and they may become a bottleneck when

pushed further. In dense WLANs, due to the great number

of contending nodes using CSMA, we could find three well-

known performance issues. We refer to the hidden and ex-

posed node problems, and to the flow starvation. In terms

of performance, the appearance of these issues can cause a

remarkable degradation of the experienced throughput due to

different factors, such as a large number of collisions or wasting

useful time slots. Moreover, some solutions like request-to-send

and clear-to-send (RTS/CTS) mechanisms that are intended to

avoid the hidden and exposed node problems, can lead to an

excessive control packet overhead, which may negatively affect

the overall performance, too. Apart from the above-mentioned,

other concerns are related with chaotic deployments since they

lead to have an excessive co-channel and adjacent channel

interference (CCI/ACI) levels, directly caused by the lack of

frequency planning and inefficient power configuration choices.

To cope with the aforementioned challenges, the software-

defined networking (SDN) paradigm can be applied to Wi-

Fi networks in order to enable a more efficient and flexible

network control and management. The main concept behind

SDN is that it proposes to decouple the control and the

data planes into different layers, with a central controller

performing configuration changes with a global view of the

network state. As a result, control processes are removed

from forwarding devices, which stand as simple programmable

nodes that directly depend on the controller’s instructions. In

consequence, networks can be adjusted dynamically according

to the knowledge extracted from statistics, which are collected



at the central entity. This specific characteristic of SDN is

quite relevant for wireless environments due to their non-

stationary conditions (i.e., users moving, diverse traffic require-

ments and changing channel conditions). Having a dynamic

and centralized control design, the overall performance of

the network can be improved and interferences, unbalanced

situations or system failures mitigated. In this regard, network

management and data analytics play a key role in order to

increase network efficiency. For instance, network information

such as the signal-to-interference-plus-noise ratio (SINR), the

received signal strength indicator (RSSI), the total number of

active users and throughput rates can be easily collected. Thus,

network optimization needs to exploit this useful data and

the use of learning algorithms can lead this processes. This

envision open up new research directions and so, we focus our

studies in the joint integration of machine learning and SDN

for wireless optimizations.

The rest of the paper is organised as follows: in Section

II, we present a general overview about the SDN paradigm,

reviewing current implementations of the SDN architecture into

wireless networks. Then, we point out different features to

be taken as future research directions. After, in Section III,

we discuss an architecture involving wireless SDN and ML

solutions, together with an overview of different management

functionalities. Later, in Section IV, we perform a proof of

concept with the aim to demonstrate how ML can enable self-

organizing WLANs. Through different use cases, we evaluate

the usage of ML over SDN-controlled WLANs with the aim to

to find the best configuration according to a Max-min fairness

policy. To do so, we exploit the Multi-Armed Bandits (MABs)

framework to empower a collaborative behavior between them.

Finally, conclusions are stated in Section V.

II. SDN: FROM WIRED TO WIRELESS

A. SDWN through SDN

SDN is a novel network architecture paradigm that is dy-

namic, manageable, cost-effective and adaptable. Moreover,

SDN decouples network control and forwarding functions into

different planes, allowing the underlying infrastructure to be ab-

stracted from application and network services. In consequence,

unlike distributed architectures, in which forwarding devices

listen for events from their neighbors and make decisions based

on a local view, the network infrastructure (i.e., switches and

routers) just act as packet forwarding devices. In addition, SDN

empowers programmability and network function virtualization

(NFV) at the controller, allowing network administrators to

have flexibility and a fine-grained control over the entire net-

work. Thus, SDN reduces capital and operational expenditures

(CapEX and OpEX, respectively), while enabling innovation.

Typically, the SDN architecture is divided into three different

layers, which can be found in literature as infrastructure,

control and application layers. The first one contains the

different network elements that follow the rules provided

by the controller. The second one involves the controller,

which is in charge of configuring the devices as well as

to the different services. The last one contains the network

applications which define the different policies to be applied

over the network. Communication between layers is done

by means of the northbound and southbound interfaces. The

former is based on APIs (e.g. REST) that are intended to

application development, while the latter is based on standard

protocols such as OpenFlow, Simple Network Management

Protocol (SNMP) or Control And Provisioning of Wireless

Access Points (CAPWAP). However, none of this protocols

are intended to wireless communications and therefore, as cur-

rently defined, they cannot control layer 2 traffic over wireless

networks nor report measurements of the wireless medium. To

overcome with that issue, modifications by means of extending

the current protocols, or even the use of proprietary ones should

be adopted to enable the control of wireless devices.

Although SDN needs to be clearly reconditioned in order to

be used in wireless networking, the previously described fea-

tures have pushed the trend to adopt SDN for WLANs. In this

context, the concept of software-defined wireless networking

(SDWN) appears with a clear aim to improve the management

of wireless networks and so, SDWN has become an emerging

research branch of SDN. Many publications have focused on

identifying the concerns and applications of SDWN, as well

as suggesting different network architectures. SDWN solutions

go from extending the OF protocol with new messages, to the

implementation of applications on top of OF controllers that

have their own proprietary control messages. Next, in II-B, we

review different architecture solutions proposed for SDWN.

B. Overview of proposals for SDWN

To begin with, OpenRoads [3] was the first project focusing

in SDN for WLANs. Moreover, it also introduced a testbed

to control mobility between Wi-Fi and WiMax base stations.

OpenRoads consists on a three layer-based architecture that is

divided into physical, slicing and control layer. The physical

layer is made of all the devices that are OF-enabled. The

control layer is in charge of network orchestration and device

configuration. Finally, the slicing layer intercepts OF protocol

messages to support the slicing layer according to the network

administrator policy. Thus, different network administrators can

operate over the same physical network, since the slicing layer

divides it into multiple logical networks. From here, other

solutions such as Odin [4] came up. The Odin’s architecture

is composed by an Odin master (running on the OpenFlow

controller), and an Odin agent (running on the APs). The

Odin master communicates to the switches and the APs by

means of the OpenFlow protocol, in order to control the wired

connections, whereas it uses a custom protocol to communicate

to each Odin agent, with the aim of collecting different network

statistics (i.e., RSSI, SINR, etc.). As a result, the network

is able to manage mobility, load balancing and interference

in wireless connections. In addition, time-critical operations



(e.g. ACKs) are performed by the APs, and non-time-critical

operations are handled by the controller. Regarding client-AP

association, Odin implements the concept of logical virtual

access point (LVAP), which are client-specific. So, each user re-

ceives a unique BSSID to be connected to. This implementation

allows client isolation as well as performing a hand-off process

without triggering any re-association mechanism, since LVAPs

can be removed from one AP and transferred to another. How-

ever, the hand-off in Odin is still performed based only on the

RSSI, which could lead to load imbalance situations. Similar to

Odin, OpenSDWN [5] is a framework that introduces a more

detailed wireless data-path transmission control, enabling user-

service differentiation by identifying and classifying flow types.

To do so, OpenSDWN uses per-client middle-boxes, called

virtual middle-boxes (vMB), that can be migrated from one

AP to another. Therefore, network functionalities are migrated

to destination APs as the user performs a hand-off. From Odin,

OpenSDWN inherits Odin’s LVAPs concept as well as the

mobility method and user isolation. Later on, BeHop [6] and

Ethanol [7] appeared as other solutions in the SDWN context,

which took the same basis as Odin. First, BeHop architecture

consists of a central controller, a set of APs forming the data

plane, and a network monitor and data collector. Each BeHop

AP acts as an OpenFlow switch that contains per-client virtual

APs (VAPs), and a client table to track the user information

(e.g., client-VAP mapping) and the network status information

(e.g., channel and power allocation). Here, the network control

is performed through a BeHop own proprietary API used for

channel and power allocation purposes. Moreover, through a

dedicated interface, the controller is able to access the data

stored in the network monitor, in order to take advantage

of it and enhance network management. Regarding Ethanol,

it consists of two types of devices, the controller and the

Ethanol-based APs, or Ethanol agents. Ethanol uses its own

proprietary code to gather link information from the APs

(e.g., SINR or bit rate) in order to provide the controller

with statistics for network managing. Open research directions

in Ethanol aim to guarantee security and quality of service

(QoS) through traffic shaping. At last, EmPOWER [8] is

an SDWN programming architecture that provides a set of

Python based APIs, which model the fundamentals of wireless

management. The aim of this architecture is to reduce com-

plexity by applying four abstractions, each of one addressing a

different control aspect such as: the state management, resource

allocation, network monitoring, and network reconfiguration.

Communication between wireless terminals and the controller

is done by a proprietary protocol, whereas OpenFlow is used

for managing the switching operations. Regarding time-critical

actions, CloudMAC [9] proposed to break down the MAC

operations by offloading them into different devices. Therefore,

physical APs are in charge of time-critical MAC operations,

whereas virtual APs (VAPs) are in charge of MAC generation.

Besides, communication between them is performed through a

layer 2 tunneling. The rest of the architecture is composed

by an OpenFlow switch, which is used to forward packets

between APs and VAPs, and an OpenFlow controller that

orchestrates the network according to the user-defined policies.

Similarly, Aeroflux [10] also promotes a separation between

MAC features by implementing a 2-tier control plane. Here,

the global control plane (GC) handles non-real time tasks

such as authentication and load balancing, whereas the near-

sighted control plane (NSC) is located closer to the APs to

manage time-critical operations such as rate control and power

adjustment. Then, this architecture emphasizes that control

plane delays need to be short.

In contrast to the previous works reviewed, Ætherflow [11]

and COAP (Coordination framework for Open APs) [12] ex-

tended the OpenFlow protocol in order to manage the commu-

nication between the controller and the APs. In consequence,

both techniques simplify the data plane programmability as

there is no need of extra software implementation. Thus, the

extended OpenFlow protocol by itself comprises all the re-

quired messages to allow the controller gather different network

statistics such as RSSI, SINR, bitrate or airtime usage.

C. SDWN applications for wireless networking

In the previous section we presented a set of different

proposals. Most of them only propose or implement mecha-

nisms to enhance mobility. However, here we present other

functionalities that can be implemented:

• Spatial reuse: power control mechanisms are essential

in order to reduce interference. In SDWN environments,

thanks to the centralised control plane, power control

mechanisms can be applied to avoid unnecessary overlaps

TABLE I: Taxonomy of the related work presented

Name Application development Southbound communication VAP / LVAP Separated MAC End-user modification

OpenRoads ✓ OpenFlow + SNMP ✓ ✗ ✗

Odin ✓ OpenFlow + Proprietary ✓ ✓ ✗

CloudMAC ✓ OpenFlow ✓ ✓ ✗

Ætherflow ✓ Extended OpenFlow ✗ ✗ ✗

COAP ✓ Extended OpenFlow ✗ ✗ ✗

Ethanol ✓ OpenFlow + Proprietary ✓ ✓ ✗

Aeroflux ✓ OpenFlow + Proprietary ✓ ✓ ✗

OpenSDWN ✓ OpenFlow + REST ✓ ✗ ✗

BeHop ✓ OpenFlow + Proprietary ✓ ✗ ✗

EmPOWER ✓ OpenFlow + Proprietary ✓ ✗ ✗



between WLANs. In addition, the set-up of different

clear channel assessment (CCA) levels could enhance the

spatial reuse.

• Dynamic channel allocation (DCA): by gathering chan-

nel statistics in the controller, SDWN can perform dy-

namic channel allocation to minimize co-channel interfer-

ence between WLANs.

• Dynamic channel bonding (DCB): the use of channel

bonding based on the spectrum occupancy of neighboring

WLANs can be performed as a solution to increase

throughput rates and reduce interference between nodes,

allocating different channel widths to each WLAN based

on its traffic demands and capabilities.

• Multi-AP communication: by taking advantage of net-

work programmability, multiple connections per user to

different APs could be easily managed. The controller

would be in charge of deciding whether or not the use of

multiple simultaneous connections improve user and net-

work performance, as well as to take actions by installing

new forwarding rules in the forwarding devices.

• Multiple input multiple output (MIMO) and multi-

user (MU) MIMO coordination: This application is

more related with a joint SDN and SDR framework.

However, the programmability of SDN creates a great op-

portunity for SDR to be applied and therefore, techniques

such as interference coordination and alignment can be

implemented in order to reduce and mitigate interfering

signals. Coordination of such techniques can lead future

WLANs to a new level of complexity, but with high

performance gains.

III. TOWARDS INTELLIGENT NETWORKING

The SDWN paradigm is extremely flexible as networks

can be dynamically reconfigured to handle new states. Thus,

the introduction of machine learning techniques constitute a

potential solution to achieve higher gains in terms of network

performance. By using different techniques, patterns can be

extracted from data sets, or learned through interacting with

the environment. Therefore, the knowledge extracted from past

observations can be applied to update the behavior of the

network. Existing machine learning algorithms are generally

classified into three different categories depending on how the

learning process is done. Supervised learning (SL) algorithms

are trained using labeled examples. By comparing the predicted

output with the labeled ones, these algorithms update the

model accordingly to the error measured. On the other hand,

unsupervised learning (USL) algorithms are used against data

that has no historical labels. Thus, USL algorithms try to focus

on arranging samples into different groups. Last, reinforcement

learning (RL) algorithms, which through trial and error, try to

find the actions that yield the greatest rewards.

The inclusion of machine learning into networking motivated

the consideration of a new architectural division due to the fact

that this kind of algorithms does not belong to data nor control

planes. The new architectural division is the knowledge plane

(KP), which was proposed in [13], and which intends to place

machine learning techniques over the network architecture

scheme. The KP is responsible for learning the behavior of

the network, and the decision-making process. Basically, the

KP processes the statistics collected by the control plane,

transforms them into knowledge via machine learning algo-

rithms, and uses that knowledge to make decisions. Hence,

in the context of SDN networks, the KP participates actively

in the network orchestration due to its interaction with the

controller, which configures the network according to KP’s

instructions. In the literature, the joint consideration of SDN

and machine learning techniques can be found as Knowledge-

Defined Networking (KDN) [14]. This new paradigm consists

Fig. 1: SDWN architecture with knowledge plane



in combining data, control and knowledge planes to provide

automated network control. Figure 1 depicts an architecture

that merges both KP and SDWN concepts to have a flexible

wireless environment. Here, the SDN paradigm is identified

in how the network is orchestrated since the control plane is

managed by a controller that communicates and requests dif-

ferent information from the APs through OpenFlow. In regards

to the machine learning related functionalities, a dedicated

server, in which data is stored and machine learning algorithms

executed, it is connected to the controller to take full advantage

of network statistics to take decisions. Through the results from

the machine learning algorithms, the decision-making process

according to the knowledge obtained can be driven directly by

the KP in an autonomous way based on a set of predefined

requirements. On top of the controller, network applications

are executed in order to give the directives to the controller

for managing the network. In this context, some applications

already done are:

• Traffic prediction and classification: both features were

the earliest machine learning applications in the network-

ing field. In this context, traffic classification is done in

order to ensure QoS as well as quality of experience

(QoE). Thus, statistics gathered by the controller can be

used to classify data flows into different QoS-categories.

On the other hand, traffic prediction is used to forecast

the total amount of traffic expected. As an example, in

[15], neural networks (NN) are used to perform traffic

prediction by using flow level statistics together with a

learning window of past time intervals, which repetitively

trains the algorithm in order to characterize and predict the

network behavior. Traffic prediction solutions may lead to

have proactive systems in which different actions can be

triggered before traffic imbalances happen. For instance,

some actions could lead to a reconfiguration of the spec-

trum allocation in order to provide more bandwidth to a

group of WLANs, or trigger load balance mechanisms.

• Routing: Regarding to the management of the wired part

of the network, routing strategies have been tackled such

as in [16], in which is proposed a network congestion

prevention mechanism based on the Q-learning algorithm.

In case of detecting congestion between a link pair,

the algorithm recomputes the reward matrix accordingly

to the inputs, in order to search a new route. As the

authors proved, in comparison with Dijkstra’s algorithm,

Q-learning based routing provides better results.

• Security: This is one of the most important factors that

SDN architectures must face. The centralized nature of the

control plane has many benefits, but it is a risky approach

in terms of security, as all the network control is placed

in a single point. For instance, current attacks such as

denial of service (DoS) can be potentially critical, since

the control plane is no longer distributed, and so the entire

network can be compromised. In this context, machine

learning can help to achieve a good level of security due

to its ability to automatically find correlations in data.

Deep learning techniques, such as the ANN proposed

in [17], are good mechanisms to detect any anomaly by

just analyzing few per flow statistics. So, the algorithm

compares any incoming traffic with the previous ones and

raises an alert when the deviation between them is greater

than a certain threshold. In consequence, attacks such as

DoS can be detected and mitigated.

• Spatial reuse and channel bonding: these are two

techniques that are gaining attention since last IEEE

802.11ax amendment supports both of them. The former

is based on the application of different techniques such as

transmission power control (TPC) and CCA adjustment in

order to control the potential drawbacks of uncoordinated

deployments. The later refers to a technique in which

two or more adjacent channels, within a given frequency

band, are temporally combined to increase throughput

and data transfer between devices. The application of this

techniques have opened a new set of challenges in wireless

environments and so, different works attempted to enhance

the network performance by their application. First, in the

work done in [18], MABs are used for finding the AP

configuration that maximizes the aggregate throughput.

There, the authors analyze different policies, in which the

nodes’ learning process is done by means of exploiting

and exploring the medium. In regards of DCB, the work

done in [19], assesses the problem for dense WLANs

by evaluating different DCB policies. There, the authors

show, through analytical results, that always selecting

the widest available bandwidth is counterproductive in

the long term. Moreover, authors conclude that, in non-

fully overlapping scenarios, the optimal solution is to

apply different policies depending on the context of each

WLAN, and therefore they must be on-line learned.

IV. PERFORMANCE EVALUATION

In order to assess the integration of the KP, we have studied

the application of machine learning algorithms to tackle the

spatial reuse and channel bonding issues. To do so, we have

considered an SDWN composed of different WLANs, whose

APs’ power and channel configurations are defined by the

ML server, and then advertised by the controller. By includ-

ing intelligent operations, we expect to increase the network

performance, aiming to find the best configuration according

to a policy, while empowering a collaborative behavior1. In

this context, the problem is modelled through the multi-armed

bandits (MABs) framework by defining a set of K config-

urations, which correspond to any combination of channel

range and transmit power that each WLAN can select (refer

to Table II). Moreover, as an action-selection strategy, we use

1All the simulations have been performed using the SFCTMN framework
developed in [19] and the learning package used in [18].



TABLE II: Simulation parameters and action mapping

Parameter Description Value

C Set of channels 1 / 2 / 3 / 4

Ptx Set of transmit power values 1 dBm / 20 dBm

f Central frequency 5 GHz

B Bandwidth 20 MHz

SUSS Spatial streams per user 1

Gtx Transmitting gain 0 dBi

Grx Reception gain 0 dBi

Pn Noise level -95 dBm

CCA Clear channel assessment -62 dBm

Action number Transmission power Channel number

1 1 dBm [36,40]

2 1 dBm [44,48]

3 1 dBm [36,40,44,48]

4 20 dBm [36,40]

5 20 dBm [44,48]

6 20 dBm [36,40,44,48]

Thompson sampling (TS) algorithm, since it has been shown to

provide better results than other well-known algorithms such

as Upper Confidence Bound (UCB) for similar problems in

WLANs [18]. The TS algorithm is a Bayesian algorithm that

constructs a probabilistic model of the rewards observed by

each configuration. After selecting an arm to play, TS observes

the reward, and updates its prior belief in a way that the

probability of a particular arm being optimal matches with

the probability of each arm being selected. In practice, this

is done by sampling each arm from its posterior distribution,

and selecting the one that returns the maximum expected re-

ward. Accordingly, it randomly selects the probabilistic optimal

configuration. Algorithm 1 shows in detail the implementation

of TS for this use case.

Regarding the reward function, we define a common goal

for all the WLANs, which refers to maximize the minimum

throughput. To allow a collaborative behavior, the resulting

throughput of each WLAN, which is obtained by means of

the Shannon capacity, is passed to the ML server. However,

note that even if the rewards are known, actions are selected

independently for each WLAN, as no other information regard-

ing the configurations of the neighboring WLANs is informed.

The Shannon capacity expression is shown in 1:

Algorithm 1: Implementation of Thompson Sampling for

WLANs

Input: A: set of possible actions in {1, ...,K}
1 initialize: t = 0, for each arm k ∈ A, set r̂k = 0 and

nk = 0
2 while active do

3 For each arm k ∈ A, sample θk(t) from normal

distribution N (r̂k,
1

nk+1
)

4 Play arm k = argmax
1,...,K

θk(t)

5 Observe the reward rk,t

6 r̂k,t ← r̂k,tnk,t+rk,t

nk,t+2

7 nk,t ← nk,t + 1
8 t← t+ 1
9 end

C = B · log2(1 + SINR) (1)

where B is the channel bandwidth, and the SINR is the

signal-to-interference-plus-noise ratio given by SINR = Ps

Pn+Pi
.

Here, the Pn and Pi refer to the noise and interference levels

respectively, whereas the Ps refers to the signal level received

at the AP, which is calculated through the path loss model

proposed in [20] that is given in 2. This path loss model is

simple but accurate, and it is used for 5GHz systems in indoor

environments:

Lprop(d) = FSL + α · d (2)

where FSL are the well-known free space losses at distance d,

and α = 0.44 dB/m is the constant attenuation per unit of path

length. The different simulation parameters taken into account

are described in table II.

A. Full overlapping WLANs

In this first scenario, which is presented in Figure 2a, we

consider 2 WLANs that fully overlap. The parameters dSTA

and dAP are set to 5 m. Either choosing 1 dBm or 20 dBm,

both APs will be inside the CCA range of its neighbor. At
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Fig. 2: Use case with 2 WLAN. (a) Scenario considered. (b) Evolution of the throughput experienced by WLAN A. (c) Histogram of the
probabilities for each action



the end of the simulation, we observe that both WLANs

reached the optimal configuration. The two WLANs selected

the maximum transmission power, and a different channel

scheme as it can be seen in Figure 2c. Besides, we can see

that actions containing the whole set of channels have been

explored but discarded, as they were only beneficial for one

WLAN in detriment of the other. Moreover, in Figure 2b,

we can observe that the max-min throughput converges into

a collaborative solution before iteration 200, discarding selfish

decisions. Regarding the transmission power, both networks

decide to use the maximum allowable as using the lower value

does not reduce the contention between the two WLANs.

B. Partial overlapping WLANs

In this scenario, we want to tackle a non-stationary scenario

by simulating changing conditions. For this purpose, we deploy

three partially overlapping WLANS (Figure 3a), which activa-

tion time is different. Then, WLAN A and C are activated since

the beginning, whereas WLAN B is activated at iteration 250.

The parameters dSTA and dAP are set to 5 m. Figure 3b shows

the obtained results, and how TS fails at reaching the best pos-

sible configuration for the first 250 iterations, so WLANs A and

C end up choosing different channel ranges in order to avoid

interference. In this particular case, the optimal configuration is

not found since it requires both WLANs to choose the optimal

action simultaneously (i.e., minimum transmit power and the

entire channel range). Moreover, in case that only one of the

WLANs chooses the optimal one, it becomes vulnerable if the

other WLAN uses maximum transmit power, thus leading to

a low collaborative reward. On the other hand, when WLAN

B becomes active, the three WLANs are able to choose the

optimal configuration. Note that at iteration 250, the previous

knowledge is discarded since the network state has changed. In

Figure 3c, we have performed a comparison between applying

learning, and leaving WLANs with an static configuration. We

show that this kind of techniques can minimise the appearance

of problems such as the flow starvation. For instance, from the

scenario presented in Figure 3a, we can see that WLAN B will

suffer flow starvation as the other WLANs will get most of the

time to transmit. If we do not apply any mechanism and we

explore the different available actions, we find that applying

a conservative action (i.e., minimum power and minimum

bandwidth) will lead to downgrade the performance of the three

WLANs but maintaining the fairness. On the contrary, if we

apply and aggressive solution, WLAN B barely transmits. As

a result, none of the previous solutions solves the situation

without diminishing the performance of several WLANs, nor

making the network unfair.

C. Grid scenario

Lastly, we have studied the behaviour of the proposed

solution in a grid scenario, which is depicted in Figure 4a.

The parameters dSTA and dAP are set as
√
8 m and 5 m

respectively. Here, we intend to see the interactions between

multiple neighbors, and how the decisions of others affect

the action-selection process. For this scenario, finding the

optimal configuration in a decentralized way is unlikely to

occur, since it requires that all WLANs choose the optimal

action simultaneously. Therefore, there is a narrow window of

possibilities for that to happen. In case that only one of the

WLANs chooses the optimum, it becomes vulnerable and so

leading to a low collaborative reward. However, as shown in

Figure 4b, the learning algorithms reach a solution that is fair.

Note that as the number of nodes increases, the convergence

time increases too. So, the more nodes we have, the later

we converge into a solution when considering a collaborative

reward. Figure 4c shows a comparison among optimal and

achieved throughput per WLAN.

V. CONCLUSIONS

In this article, we have shown that new networking

paradigms, such as the presented SDN and SDWN, are grab-

bing attention from academia and research institutions, with

a clear aim to be used in next generation of WLAN de-

ployments. Besides, big data mining and machine learning

techniques are also raising attention due to their ability to use

collected information for improving network management. In

this regard, we have performed different study cases to analyse
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Fig. 3: Use case with 3 WLAN. (a) Scenario considered. (b) Minimum throughput evolution. (c) Throughput per WLAN corresponding to
different action settings. Static 1: All WLAN select action 1 (conservative). Static 2: All WLAN select action 6 (aggressive). Optimal

configuration: WLANs A&C select action 1, whereas WLAN B selects action 5.



!"#$

!$%
!!! !�#

!�$ !�%

$$!&'()*+

,-&.#/0

(a)

0 100 200 300 400 500
TS Iteration

0

50

100

150

200

250

M
in

 th
ro

ug
hp

ut
 (

M
bp

s)

Throughput
Max-min throughput

(b)

WLAN A WLAN B WLAN C WLAN D
0

50

100

150

200

250

T
hr

ou
gh

pu
t (

M
bp

s)

Throughput
Max-min throughput

(c)

Fig. 4: Use case with 4 WLANs. (a) Scenario considered. (b) Minimum throughput evolution. (c) Throughput histogram.

the behavior of ML over wireless networks for management

purposes. ML and SDWN can be perfectly combined to achieve

better performance, as the results obtained prove that there

is a clear improvement over the pre-defined configurations.

However, further research must be carried out in order to

quantify the different drawbacks and trade-offs that exist, such

as the negative effects that greater network delays can have in

the overall network performance.
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Eduard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon
Barkai, Mike J Hibbett, et al. Knowledge-defined networking. ACM

SIGCOMM Computer Communication Review, 47(3):2–10, 2017.
[15] Abdelhadi Azzouni and Guy Pujolle. Neutm: A neural network-

based framework for traffic matrix prediction in sdn. arXiv preprint

arXiv:1710.06799, 2017.
[16] Seonhyeok Kim, Jaehyeok Son, Ashis Talukder, and Choong Seon

Hong. Congestion prevention mechanism based on q-leaning for efficient
routing in sdn. In Information Networking (ICOIN), 2016 International

Conference on, pages 124–128. IEEE, 2016.
[17] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi,

and Mounir Ghogho. Deep learning approach for network intrusion
detection in software defined networking. In Wireless Networks and

Mobile Communications (WINCOM), 2016 International Conference on,
pages 258–263. IEEE, 2016.

[18] Francesc Wilhelmi, Cristina Cano, Gergely Neu, Boris Bellalta, Anders
Jonsson, and Sergio Barrachina-Muñoz. Collaborative spatial reuse in
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