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MORPHOLOGICAL SCALE-SPACE FOR HYPERSPECTRAL IMAGES AND
DIMENSIONALITY EXPLORATION USING TENSOR MODELING

Santiago Velasco-Forero, Jesús Angulo

Mines ParisTech, Center de Morphologie Mathématique, Fontainebleau, France

ABSTRACT

This paper proposes a framework to integrate spatial infor-
mation into unsupervised feature extraction for hyperspectral
images. In this approach a nonlinear scale-space represen-
tation using morphological levelings is formulated. In or-
der to apply feature extraction, Tensor Principal Components
are computed involving spatial and spectral information. The
proposed method has shown significant gain over the conven-
tional schemes used with real hyperspectral images. In ad-
dition, the proposed framework opens a wide field for future
developments in which spatial information can be easily inte-
grated into the feature extraction stage. Examples using real
hyperspectral images with high spatial resolution showed ex-
cellent performance even with a low number of training sam-
ples.

Index Terms— Unsupervised feature extraction, mathe-
matical morphology, tensor analysis, dimensional reduction,
classification, principal component, hyperspectral imagery.

1. INTRODUCTION

Hyperspectral images (HSI) are acquired by a sensor that cap-
tures radiant flux over hundreds of contiguous bands, produc-
ing a high dimensional signature for each pixel in the image.
It is accepted that HSI include many highly correlated bands
resulting in spectral redundancy. This increases computa-
tional complexity and degrades classification accuracy [1].
The difficulties in HSI using conventional supervised clas-
sification methods originally developed for low-dimensional
multispectral data are illustrated in [2]. Additionally, identifi-
cation for relatively small objects that require high spatial res-
olution is often lost when using these methods with HSI. Due
to its simplicity, principal component analysis (PCA) using
singular value decomposition (SVD) over the zero mean co-
variance matrix is the most popular approach to dimensional
reduction in HSI. Unfortunately, PCA requires that images
are first vectorized which retains spectral information but ne-
glects the spatial information presented in the original array.
Recently, several authors have pointed out that the natural rep-
resentation for hyperspectral images is a three dimensional
array instead of a matrix of vectorized images

Our approach presents a nonlinear scale-space represen-
tation (NSSR) based on morphological levelings, which in-
clude openings and closings by reconstruction. NSSR creates
a fourth dimension in HIS which is analyzed as a forth tensor
dimension. Instead of focusing exclusively on PCA in mor-
phological operators, we focus on the analysis of spatial and
spectral patterns: Simultaneously using high-order or multi-
linear singular value decomposition (HO-SVD) as is proposed
for tensors in [7]. Classification is performed using Support
Vector Machines (SVM) since they have shown good results
with limited training sets [8]and the “kernel trick” allows us to
define natural distances after tensor dimensionality reduction.

The paper is organized as follows: Section 2 introduces
tensor notation and basic concepts being used later on. Sec-
tion 3 introduces nonlinear scale-space representations with
morphological levelings. Section 4 presents our approach us-
ing the previous framework. Section 5 shows the effective-
ness of the modified approach via practical examples with
comparison to standard approach. And section 6 concludes
the paper.

2. TENSOR MODELING

2.1. Notation

A HSI has a natural representation as a tensor, denoted by
X ∈ RI1×I2×I3 . Each index is called mode: the first two
are spatial and the third is spectral. Thus, X is a sample of
I3 images of size I1 × I2. Our approach is apply multilinear
algebra to the whole tensor structure instead of rearranging
the data tensor to adapt it to classical matrix-based algebraic
technique.

The following are the notation and the basic definitions we
use for multilinear algebra. Scalars are denoted by lower case
letters (a, b, . . .), vectors by bold lower case letters (a, b, . . .),
matrices by bold upper-case letters (X, Y, . . .), and higher-
order tensors by calligraphic upper-case letters (X ,Y, . . .).
The order of tensor X ∈ RI1×I2...×IN is N . We utilize sub-
scripts to illustrate the tensor order, for example Xijkl is a
tensor of order 4.
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2.2. Tensor Decomposition

A matrix X ∈ RI1×I2 is a two-mode mathematical object that
has two associated vector spaces, a row space and a column
space. SVD orthogonalizes these two spaces and decomposes
the matrix as X = U1ΣUT

2 , where U1 and UT
2 represent the

orthogonal column space and Σ is a diagonal singular value
matrix. In terms of the mode-n products, this SVD decompo-
sition can be rewritten as X = Σ ×1 U1 ×2 U2, where ×n

is the mode-n product [7] [9]. Extension to an N-order tensor
X ∈ RI1×I2×I3×...×IN were presented by [7] orthogonaliz-
ing N spaces and expresses the tensor as the mode-n product
of N -orthogonal spaces

X = C ×1 U1 ×2 U2 ×3 . . .×N UN (1)

Tensor C, known as the core tensor, is analogous to the di-
agonal singular value matrix in conventional matrix SVD. It
is important to realize, however, that the core tensor does not
have a diagonal structure; rather, C is in general a full tensor
[7]. The core tensor governs the interaction between the mode
matrices Un, for n = 1, . . . , N . Mode matrix Un contains the
orthonormal vectors spanning the column space of the ma-
trix Xn that results from the mode-n flattening of X [7]. The
HOSVD is performed using Alternative Least Square algo-
rithm used to jointly find n-mode matrices Un. An excellent
compendium about tensor decomposition is presented in [9].

2.3. Tensor Principal Component Analysis

In high-dimensional problem as HSI, it is of great interest to
reduce the spectral dimension in order to address problems
as “Curse of Dimensionality” in distance-based or nonpara-
metric analysis and “Hughes phenomenon” in linear classi-
fiers. Commonly a pre-processing step consists in performing
a PCA to reduce the dimensional space. We present a tensor
version for PCA that minimize the reconstruction error in the
Frobenius norm. Thus, the best lower rank tensor approxima-
tion of X [7], denoted by X̃ is:

X̃ = X ×1 P1 ×2 P2 ×3 . . .×N PN (2)

where Pn = UnUn
T , and Un is found using expression

1. Our motivation is to reduce the high dimension corre-
spondent to some mode-n product, i.e. yield a projection
RI1×I2...×IN → RI1×I2...×k. Thus, we present the Tensor
PCA as follows:

X̂I1,I2,...,k = X ×1 P1 ×2 P2 ×3 . . .×N ÛT
N (3)

where ÛT
N contains the k eigenvectors associated with the k

largest eigenvalues holding of the unfolding matrix XN [7].
Tensor PCA was previously presented for HSIs in [3] includ-
ing transformation for sphericity.

3. NONLINEAR SCALE-SPACE REPRESENTATION
WITH MORPHOLOGICAL LEVELINGS (NSS-ML)

NSS-ML generates a multiscale representation where trans-
formation from finer scale to a coarse scale are defined us-
ing morphological levelings [10]. The application of level-
ings for Multiscale imaging structure decomposition in re-
mote sensing has been previously studied by [4]. In [4], the
levelings are achieved using reconstruction of separated open-
ings/closings. Then the residues of both operators (i.e., top-
hat transformations) are thresholded to segment the image
into convex/concave classes for the various scales. As we
shows below, levelings can be directly computed by standard
iterative geodesic operators. In addition, based on a pyramid
of markers, the levelings define a nonlinear scale space which
decompose simultaneously the bright/dark image structure in
various scales.

3.1. Morphological Levelings

Given a grey scale image X = f(x, y) and a marker im-
age M = m(x, y), where the marker is typically a rough
simplification of reference image which determines the struc-
tures to be reconstructed and those to be simplified during
the geodesic erosion/dilation procedure. The leveling λ(f,m)
can be obtained by the following iterative algorithm:

λ(f,m) = λi(f,m) = [f ∧ δi
f (m)] ∨ εi

f (m)

such that λi(f,m) = λi+1(f,m) (convergence until idempo-
tency).
The geodesic dilation of size i is given by δi

f (m) = δ1
fδi−1

f (m)
where unitary conditional dilation is δ1

f (m) = δB(m) ∧ f
with δB(m) an unitary dilation. The geodesic erosion of
size i, εi

f (m) can be obtained by the property of duality by
complement εi

f (m) = [δi
fc(mc)]c, where fc is the negative

of image f .

(a) XS0 (b) Ψ1(X
S0 ) (c) XS1 (d) RS1

Fig. 1. Morphological decomposition steps using σ = (σ1) = 3

3.2. Morphological Multiscale Decomposition

The idea is to start from a family of transformations indexed
by a scale parameter, i.e.,{Ψn(X)}N

n=0, such that Ψ0(X) =
X. In this study, we typically use a pyramid of Gaussian fil-
ters, Ψn(X) = Gσn ∗X such that σn > σn−1 for all n.
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Now, we can define the following scheme for image struc-
ture decomposition:

. Image≡ Structure Residual≡ Texture
Scale 0 XS0 = X RS0 = 0

Scale 1 XS1 = λ(XS0 ; Ψ1(X
S0 )) RS1 = XS0 −XS1

Scale 2 XS2 = λ(XS1 ; Ψ2(X
S1 )) RS2 = XS1 −XS2

...
...

...
Scale N XSN = λ(XSN−1 ; ΨN (XSN−1 )) RSN = XSN−1 −XSN

Therefore, the morphological multiscale decomposition
of a grey scale image X as a tensor of order 3 denoted by
Xσ

ijk can be defined by:

M(Xij ,σ) = Xσ
ijn =

[{
RSn

ij

}N

n=1
,XSN

ij

]
= Xσ (4)

Additionally, Xσ
ijn has the following structure+texture prop-

erty:

N+1⊕
n=1

Xσ
ijn =

N⊕
n=1

RSn
ij + XSN

ij = Xij = X

Fig. 1 illustrate morphological decomposition of the orig-
inal image XS0 . In remote sensing scenario, given a HSI
X with K bands, our approach use a marginal framework to
obtain a decomposition using expression 4 for each spectral
band denoted by Xk for k = 1, . . . ,K as follows:

M(Xijk,σ) = {Xσ
ijk}K

k=1 = Xσ
ijkn = Xσ (5)

4. REDUCTION AND CLASSIFICATION

The main motivation for this paper is to incorporate spatial in-
formation in the HSI classification. Previous researches have
shown that mathematical morphology operators as opening
and closing by reconstruction help us to set up spatial in-
formation in analysis [6]. Our approach also utilizes math-
ematical morphology to yield a nonlinear decomposition pre-
sented in Section 3. For a hypersepctral image X , the oper-
ator M(X ,σ) = Xσ produces a fourth dimension that cor-
responds to different scales in the image and has the property
that summing by scale produces the exact original hyperspec-
tral image (

⊕
Xσ = X ). Using tensor reduction presented

in section 2 we obtained a smaller tensor preserving informa-
tion both in bands and scales X̃σ

I1,I2,kb,ks
, where kb and ks

are the number of feature to reduce in bands and scale respec-
tively. Directly from tensor reduction, we obtain a matrix of
size kb × ks for each pixel. Taking advantage of flexibility
in support vector machine problem formulation, we solve the
classification problem using gaussian kernel in matrix form.

5. EXPERIMENTS

In this section, the proposed method is compared to clas-
sical dimensional reduction in a standard hyperspectral im-
age. Before classification using SVM-KM [11], each fea-
ture was standardized. The kernel parameter ρ̃ was tuned to

range ρ̃ = {1, 2, . . . , 10} and the regularization parameter for
SVMs was varied in C = {100, . . . , 105}.

An image taken over the Northwest of Indiana in an Indian
Pine test site in June 1992 is used in our experiment. This
image contains 145x145 pixels and 200 spectral bands in the
400-2500 nm range. The whole image containing 16 classes
is considered. In first scenario, we followed the procedure
presented in [12].Therefore, we present classification for 9
classes and 5 labeled samples only.

(a) Scenario 1: 5 training samples per class in 20 ran-
dom repetitions for 9 classes.

(b) Scenario 2: 20% training samples in 16 classes in
10 random repetitions.

Fig. 2. OA accuracy for different dimensional reduction approaches in
Indian Pine.

Results for different dimensional reduction approaches
are presented in Fig. 2(a). This extreme scenario shows
the importance of incorporating spatial information before
doing feature reduction. Our approach involving morpholog-
ical information is clearly better. Additionally, our proposal
involving tensor reduction has the best performance using
26 features (i.e. 13 spectral dimension (kb) by 2 spatial di-
mension (ks)) with more than 75% in overall classification.
This result is better than state of the art using spatial and
spectral kernel [12]. Second scenario contains 16 classes
using 20% of the labeled samples for training and the rest
for validation in 10 repetitions. Results are presented in Fig.
2(b). Our approach produces excellent results (98.12% and
Cohen’s kappa coefficient κ = 0.9645) compared to state of
the art methods [13] considering 20 (kb = 10 and ks = 2)
features selected by tensor PCA using morphological infor-
mation. Classifications are presented in Fig.3 showing clear
improvement when using tensor PCA with morphological
information. The optimum gaussian kernel parameter was
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(a) PCA(X ) 6 features - 84.83% (b) PCA(Xσ) 16 features - 94.37%

(c) bXI1,I2,20 20 features - 93.64% (d) bXσ
I1,I2,10,2 20 features - 98.12%

Fig. 3. Scenario 2. Classification Map by SVM using (a) Standard PCA (b)
Standard PCA in Morphological Multiscale Decomposition (c) Tensor PCA
(d) Tensor PCA in Morphological Multiscale Decomposition. Accuracies are
presented in Figure 2.

obtained through cross-validation ρ̃ = 4 and regularization
parameter for SVMs, C = 105. In our experiments the value
I1 = I2 = 50 were fixed and σ = (2, 4, . . . , 10). An optimal
parameter selection analysis can be done, however that is
beyond the scope of this paper.

6. CONCLUSION

This paper proposed a framework to integrate spatial infor-
mation into unsupervised feature extraction for hyperspectral
images. Nonlinear Scale-Space representations with Morpho-
logical Levelings favourably incorporate spatial information
before the classification stage. Tensor structures can inte-
grate spatial information into feature extraction to drastically
reduce the dimension without diminishing classifier perfor-
mance. Results in real hyperspectral images show that this
tensor approach incorporates more usefully spatial informa-
tion in the dimension reduction stage than its matrix version
equivalent. Results show that this produces better perfor-
mance than current state of the art methods used for classi-
fication with spatial and spectral information [13, 12].
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