

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 25, 2024

SHAKE: SHared Acceleration Key Establishment for Resource-Constrained IoT
Devices

Bejder, Emil; Mathiasen, Adam Krog ; De Donno, Michele; Dragoni, Nicola; Fafoutis, Xenofon

Published in:
Proceedings of IEEE 6

th
 World Forum on Internet of Things

Link to article, DOI:
10.1109/WF-IoT48130.2020.9221263

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bejder, E., Mathiasen, A. K., De Donno, M., Dragoni, N., & Fafoutis, X. (2020). SHAKE: SHared Acceleration
Key Establishment for Resource-Constrained IoT Devices. In Proceedings of IEEE 6

th
 World Forum on Internet

of Things Article 9221263 IEEE. https://doi.org/10.1109/WF-IoT48130.2020.9221263

https://doi.org/10.1109/WF-IoT48130.2020.9221263
https://orbit.dtu.dk/en/publications/203a1a8d-b94b-4473-b745-634e98fb23c9
https://doi.org/10.1109/WF-IoT48130.2020.9221263

SHAKE: SHared Acceleration Key Establishment
for Resource-Constrained IoT Devices

Emil Bejder∗, Adam Krog Mathiasen∗, Michele De Donno∗, Nicola Dragoni∗† and Xenofon Fafoutis∗
∗DTU Compute, Technical University of Denmark, Denmark

Email: {s164161, s164168}@student.dtu.dk, {mido, ndra, xefa}@dtu.dk
†AASS, Örebro University, Sweden

Abstract—IoT security for resource-constrained devices is
largely based on symmetric block ciphers, such as AES. In such
resource-constrained contexts, and particularly in the case of
large-scale IoT deployments with multiple devices, the installation
of encryption keys can pose a significant challenge. This paper
presents SHAKE (SHared Acceleration Key Establishment): a
convenient means to generate and install secret keys in IoT
devices during deployment. Using SHAKE, an IoT deployment
technician can generate and install a shared encryption key on
two devices by holding them together and shaking them. SHAKE,
operating on each of the devices, captures these movements
from an on-board accelerometer and generates a secret key
based on the shared acceleration profile. We provide a proof-of-
concept implementation of SHAKE for the Contiki-NG operating
system and assess its security against mimic attacks, that is the
scenario whereby an eavesdropper with a clear line of sight to the
deployment technician tries to mimic the random movements to
generate the same key. Finally, we assess the energy requirements
for generating a 128-bit key with SHAKE and we compare it
against state-of-the-art methods for key generation.

Index Terms—Secret key generation, IoT security, IoT deploy-
ments, Resource-constrained devices, Internet of Things

I. INTRODUCTION

In the emerging era of the Internet of Things (IoT), there are
numerous use cases, in which networks of low-end devices,
such as sensors and actuators, support critical infrastructures
with security requirements, such confidentiality, integrity and
authentication, amongst others [1]. Whilst these security re-
quirements are largely similar to a traditional wireless network,
the key challenge in low-end IoT devices is their severe
resource constraints in terms of processing power, memory,
and energy [2]. Indeed, traditional security schemes are not
directly applicable in such resource-constrained contexts, and
this challenge has triggered interest in lightweight alternatives.

In networks of resource-constrained IoT devices, the re-
quirements for confidentiality and authentication are mainly
addressed through lightweight encryption. Traditionally, oper-
ating systems for low-end IoT devices incorporate lightweight
software implementations of symmetric block ciphers, such
as AES (see, e.g., the security suites of Contiki OS [3] and
TinyOS [4]). More recently, Systems-on-Chip (SoC) for low-
end IoT devices incorporate hardware accelerators that can
execute encryption primitives more efficiently than in software
(e.g. CC1350 incorporates an AES hardware accelerator [5]).

Although very efficient (even in such resource-constrained
contexts), symmetric cryptography has the inherent chicken-

and-egg problem of key distribution: sharing a secret key is a
prerequisite to communicating securely, yet having the means
to communicate securely is a prerequisite to sharing the key.
On the Internet, this challenge is addressed in a centralised
manner, namely using public key infrastructure and trusted
certification authorities. Wireless systems, on the other hand,
largely depend on Pre-Shared Keys (PSK), i.e. secret keys
that are shared manually during the installation of the network.
PSK solves the key distribution problem but naturally does not
scale well with the large number of devices in IoT networks.

An alternative to manual key installation is generating
secret bit sequences on the devices using shared environmental
observations that are not accessible to third parties [6]. In
this paper, we propose SHAKE (SHared Acceleration Key
Establishment), a scheme for generating encryption keys from
shared movements. SHAKE is able to install keys without the
need of transmitting them directly over a wired or wireless
channel, operating as follows. Consider an IoT technician
deploying a network of IoT devices. A unique pair-wise key
with the IoT Gateway needs to be installed in each device.
Before mounting each device, the IoT technician holds it
in contact with the IoT Gateway and performs a random
movement for a few seconds. SHAKE leverages the shared
acceleration patterns to generate the same key in both devices.

In summary, the contributions of this paper are the follow-
ing: (i) we propose SHAKE, a friendly and efficient way to
install encryption keys on low-end IoT devices during deploy-
ment; (ii) we provide a proof-of-concept implementation of
SHAKE that is based on the Contiki-NG operating system;
(iii) we evaluate its resilience against mimic attacks; (iv) lastly,
we evaluate the energy-efficiency of SHAKE in comparison to
other state-of-the-art schemes for key generation.

The remainder of the paper is structured as follows. Sec-
tion II briefly summarises the related work. Section III elab-
orates on SHAKE and its mechanics. Section IV provides
implementation details and experimentally evaluates SHAKE
in terms of security and energy-efficiency. Lastly, Section V
provides concluding remarks.

II. RELATED WORK

From Wi-Fi to cellular networks, wireless networks typ-
ically depend on Pre-Shared Keys (PSK) for implementing
security. Although lightweight public-key infrastructure archi-
tectures have been proposed in the literature [7], [8], to date,

all major operating systems for resource-constrained wireless
embedded devices primarily depend on PSK for their security
services. For instance, Contiki-NG currently supports end-to-
end security with PSK-based TinyDTLS [9] and link-layer
security via a full implementation of the PSK-based IEEE
802.15.4 security stack [10].

PSK naturally introduces challenges in deploying IoT sens-
ing technology at large scale. A good example is the SPHERE
deployments [11]. SPHERE has deployed Health IoT sensing
technology in 50+ residential properties in Bristol, UK. The
security of their 700+ low-end IoT devices (i.e. wearables and
environmental sensors) is based on pre-shared keys that need
to be installed on the devices by non-expert technicians. To
address the challenges of key installation, SPHERE developed
a tool that automatically generates custom firmware for each
device with the necessary encryption key pre-installed [12].
Yet, handling a custom firmware image for each device in-
troduces managerial overhead, is error-prone, and reduces the
flexibility of the deployment technicians.

An alternative solution is presented in [13], which proposes
an RFID-based secret key installation system that introduces
RFID readers on the resource-constrained devices. In turn, the
deployment technician carries an RFID tag and uses it to install
keys securely and without the need of wires. The disadvantage
of the solution is that the RFID readers consume significant
battery resources (i.e. 1 mA) even when deactivated [13].

A different approach to the problem of key installation
is generating secret keys locally on the devices. Secret key
generation techniques build on measurements of some physical
property of the environment that is: (i) sufficiently random (i.e.
high entropy), (ii) shared among the legitimate parties, and
(iii) inaccessible to adversaries. The wireless channel, indeed,
has these properties and has been used as a source of shared
randomness for secret key generation [6]. This is based on the
theory of reciprocity of electromagnetic radiation, which states
that the wireless channel between two devices is symmetrical
within the coherence time and distance. Hence, the devices
can exchange unencrypted messages, individually measure the
channel attenuation (i.e. the Received Signal Strength, RSS),
and use the measurements to generate secret bit streams.
The individually generated bit streams may contain bit errors,
thus error correction techniques are employed, as well as
privacy amplification techniques (e.g. hashing) to account for
information leakage in the previous stages [6]. Examples
of RSS-based secret key generation schemes for resource-
constrained IoT devices can be found in [14], [15] and [16].

In [17], the authors present a key generation scheme that is
based on anonymous broadcasting and source indistinguisha-
bility. The proposed scheme leverages induced movements
to protect the anonymity of the broadcast packets against
RSS analysis attacks. Our proposed scheme also incorporates
induced movements, yet differently from [17], we use them
as a source of shared randomness. Indeed, as we discuss in
Section IV, [17] and the aforementioned RSS-based secret key
generation schemes require extensive use of the radio unit;
thus, they are less energy-efficient than our proposed scheme

that uses an ultra low power accelerometer instead.
In wearables and body-area networks in general, biometrics

have also been used as a source of shared randomness for
secret key generation. The idea is that two body-worn (or
implanted) IoT devices can generate shared secret keys from
some physical property of the user’s body. Walkie-Talkie [18]
and BANDANA [19], for instance, generate keys based on the
gait. Similarly, H2H [20] and H2B [21] generate keys based
on the heartbeat. Our proposed secret key generation scheme,
SHAKE, is in a similar spirit to these works, yet it is based
on shared movements induced by the deployment technician
and, therefore, it is not limited to body-worn sensors.

Finally, acceleration profiles have also been used to prevent
information leakage in wearables [22], as well as for security
in different application domains that are far less resource-
constrained, including smartphone pairing [23], driver iden-
tification in smart cars [24], and smart bicycle locks [25].

III. SHAKE

In this section, we illustrate SHAKE and its operations,
contextualising it in a real-world setting.

Consider an IoT technician who needs to deploy an IoT
device, D, and establish an encryption key with the IoT
gateway, G, using SHAKE. Like other secret key generation
schemes, SHAKE is composed of five main stages: sampling,
quantisation, reconciliation, privacy amplification, and confir-
mation, as illustrated in Fig. 1.

1) Sampling: The technician holds D and G together,
initiates SHAKE (by, e.g., clicking a button), and begins a
series of random movements. In turn, D and G enable their
on-board tri-axial accelerometers and collect N acceleration
samples. Let us denote these acceleration matrices as AD and
AG respectively. In these 3×N matrices each raw corresponds
to the acceleration on the x, y and z axis respectively, and
each column corresponds to a sample. The key challenge of
this stage is synchronisation of the measurements; i.e. better
synchronisation reduces the bit mismatches at the next stage.

We highlight that SHAKE assumes that gateway can be
moved during deployment and that all devices are equipped
with an ultra-low-power accelerometer, such as [26].

2) Quantisation: In this stage, D and G process their
respective acceleration matrices, AD and AG, individually.
The process is similar on both devices, yet for clarity, let
us focus on D. Initially, D applies filtering on each of the
three axes using a low-pass filter and a running mean filter.
Filtering reduces the impact of high-frequency noise on bit
mismatches. Next, D calculates the magnitude of the accel-
eration. This step is necessary because D and G will likely
have their accelerometers’ axes not perfectly aligned. Next, D
normalises the signal. Finally, the normalised magnitude of the
acceleration is quantised into a binary array. The quantisation
step operates using hysteresis thresholding. In particular, two
thresholds are defined: an upper and a lower threshold. When
a sample is above the upper threshold, it is quantised as 1;
when a sample is below the lower threshold, it is quantised as
0; the samples in between the two thresholds are quantised as

Sampling Quantisation Reconciliation Privacy
Amplification Confirmation

AD KD

Sampling Quantisation Reconciliation Privacy
Amplification Confirmation

AG KG

sync 𝜖𝐺, challenge

KG

KG

k

k

ackresponse

D

G

Fig. 1. Secret key generation with SHAKE. An IoT deployment technician establishes a secret key between a device, D, and the gateway, G, using
SHAKE. Upon initialisation, the technician holds the devices together and performs random movements. The devices individually capture the movements
using an on-board accelerometer (Sampling). Then, they quantise the raw acceleration measurements into a binary series, KD and KG, respectively
(Quantisation). Discrepancies between the generated bit series are corrected (Reconciliation) and encryption keys are generated after privacy amplification
(Privacy Amplification). Finally, G and D confirm that they have agreed on the same secret key, k, via a Challenge-Response mechanism (Confirmation).

the previous sample. The output of the quantisation stage is
a binary array of size N , KD. Similarly, G applies the same
steps on AG and generates KG.

3) Reconciliation: KD and KG are expected to have some
bit mismatches. These are due to small differences in the
induced movements of the D and G, noise and synchronisation
errors in sampling, and quantisation errors in processing. In
the reconciliation stage, the miss-matches are corrected using
error correction codes. It operates as follows. The gateway, G,
generates an error correction code (εG) from KG and transmits
it to D over the wireless channel. In turn, D applies εG to
KD and flips the bits that do not match. At the end of the
reconciliation stage, both D and G agree on a shared secret,
namely KG. (We note that it is equivalent if D and G changed
roles during this stage.) The coding rate, R, is particularly
important. On one hand, it controls how many errors can be
fixed, therefore the reliability of SHAKE. On the other hand,
the larger the size of the code, the more information about
the shared secret leaks to a potential eavesdropper. We further
investigate this trade-off in Section IV-B2.

4) Privacy Amplification: Reconciliation improves reliabil-
ity at the cost of secrecy. To address this problem, we employ
privacy amplification [27] using a hash function. (It is worth
noting that recent systems, such as the CC1352, incorporate
a SHA2 hardware accelerator.) Indeed, reconciliation reduces
the number of secret bits by a ratio equal to the rate of the
error correction code, R [6]. Therefore, for a key length of L
bits, the samples N should be equal to N = L/R. The output
is an encryption key, k, of high entropy that can be used as-is
or as a master key.

5) Confirmation: Finally, D and G confirm that the keys
are identical with a Challenge-Response (CR) mechanism. In
this version, we opt for a basic HMAC-based CR mechanism
that operates as follows. G generates a nonce (challenge) and
sends it to D together with the error correction code during
the reconciliation phase. In turn, D, hashes the challenge
together with the generated key, k, and responds with the
digest (response). G repeats the process locally and confirms
that the digests match (ack). Different CR mechanisms can
also be adopted to best suit every scenario [28].

TABLE I
TYPES OF MOVEMENTS

Title Description
Simple Shake Regular translation along the x-axis
Rough Shake Same as Simple Shake but with greater force
Roller Coaster Moving the device along a path in space
Circular Motion Moving the device in a circle along x and y axes

IV. EVALUATION

In this section, we first prototype SHAKE and provide
implementation details, then, we experimentally evaluate it,
both in terms of security and energy-efficiency.

A. Proof-of-Concept Implementation

For the purposes of the evaluation, we provide a prototype
implementation of SHAKE using Contiki-NG.

In particular, we interface an ADXL362 accelerometer to
the launchpad CC1350 [5]. ADXL362 is an ultra-low-power
accelerometer that consumes less than 2 µA when active
and 10 nA on standby [26]. Although SHAKE is designed
to run on the embedded device, for convenience and quick
experimentation, in this implementation, we use the prototype
for sampling and we do the signal processing off-board.

The accelerometer is configured with a sampling frequency
of 25 Hz and a sampling range of ±4 g. The low-pass filter
is a fourth-order filter with a cut-off frequency of 2 Hz. The
running mean filter has a window of 2. The upper and lower
quantisation thresholds are set to 0.6 and 0.4. These configu-
ration values are chosen empirically upon experimentation. In
the reconciliation stage, we employ Reed-Solomon codes.

Using two prototypes, we collect data as follows. An
individual is instructed to hold two launchpads together and
execute SHAKE, i.e. perform random movements in order
to generate a key. Specifically, we consider four types of
movements, as detailed in Table I. The process is repeated 10
times for each type of movement (40 iterations in total). The
user is instructed to vary the movements with each repetition.

B. Security

In this section, we evaluate the security of SHAKE. First,
we define the adversary model considered, then, we describe

the mimic attack, a possible threat for SHAKE, and we discuss
its impact based on experimental results.

1) Adversary Model: In order to evaluate SHAKE from the
security perspective, we need to define the adversary model
in scope. The scenario we consider is the same presented
in Section III: an IoT technician uses SHAKE to deploy an
IoT device, D, and establish an encryption key with the IoT
gateway, G. The main goal of the adversary is to extract the
key being established between D and G using SHAKE. To this
aim, the adversary has: (i) clear line of sight of all actions and
movements performed by the technician throughout SHAKE;
and (ii) the possibility to eavesdrop the full communication
between D and G. In other words, the attacker is in close
proximity of the IoT technician during key installation and
has direct sight on them.

We consider this adversary model particularly strong, as it is
difficult for an attacker to be in such a privileged spot in a real-
world setting, for two reasons. Firstly, SHAKE is designed for
indoor deployments, as its mechanics assume that adversaries
do not have physical access to the devices; in this spirit, we
anticipate that SHAKE shall be used behind closed doors and
far from the eyes of potential attackers. Secondly, SHAKE
automatically configures the radio to the lowest transmission
power setting for the transmission of the synchronisation
message, error correction code, and challenge/response; given
the fact that the devices are in contact during the operation of
SHAKE, a higher transmission power is not only wasteful (i.e.
unnecessary energy consumption), but it also unnecessarily
increases the exposure distance to potential eavesdroppers.

Lastly, we do not address any adversary who exploits
(locally or remotely) any vulnerability of the involved devices
to gain the encryption key after it has been generated and
stored on the devices, since it is out of the scope of SHAKE.

2) Mimic Attack: Given the mechanics of SHAKE and the
adversary model we consider, the main security threat resides
in what we call mimic attack. A mimic attack is an attack
where the adversary, Eve, tries to extract the key established
between two devices, D and G, by mimicking the motions of
the deployment technician during key installation.

The mimic attack can be described as follows: (i) the legit-
imate key generation process, between D and G, starts while
an adversary, Eve, is eavesdropping their communication; (ii)
Eve mimics the motion of the deployment technician and
generates the bit sequence KE ; (iii) Eve intercepts εG sent
from G to D and applies it to KE , generating the shared secret
between D and G, denoted as K ′

G; (iv) if K ′
G is identical to

KG (i.e., the legitimate secret between D and G) the mimic
attack is successful, as Eve can now perform the privacy
amplification function to obtain the final key, k.

3) Experimentation: We test the effectiveness of the mimic
attack using our prototype. For each of the movement types
detailed in Table I we perform a mimic attack, acting like
an attacker that is positioned less than one meter from the
technician and has a clear line of sight, as well as the ability
to capture all transmitted packets. To ensure the repeatability
of the results and to avoid the presence of outliers, we have

performed the attack 5 times for each type of movement.
Table II compares the similarity of the generated bit sequences

TABLE II
SHAKE: SIMILARITY OF GENERATED BIT-SEQUENCES

Similarity (%) of Legitimate Attempts (KD and KG)
Movement Type Mean ±95% CI
Simple Shake 85.12 82.68 87.56
Rough Shake 69.53 56.23 82.83
Roller Coaster 83.34 72.47 94.21
Circular Motion 48.31 25.87 70.74
Similarity (%) of Malicious Attempts (KE and KG)

Movement Type Mean ±95% CI
Simple Shake 51.99 37.94 66.04
Rough Shake 41.13 27.31 54.94
Roller Coaster 52.18 28.12 76.23
Circular Motion 68.57 15.36 100.0

before the stage of reconciliation. In particular, in the upper
half of the table, we show the similarity of KD and KG, whilst
in the lower half we show the similarity of KE and KG. The
similarity is expressed as a percentage of bit matches and the
table shows the mean and 95% Confidence Intervals (CI).

A key aspect that affects the success rate of a mimic attack
is the maximum percentage of bits that can be fixed using the
error correction code: a higher degree of error correction will
make it easier to compute the right key, both for legitimate
and malicious users; a lower degree of error correction will
make it also harder for the legitimate users to succeed in
the key generation. Indeed, the ideal level of error correction
would fall above the upper bound of the malicious attempts
and below the lower bound of the legitimate attempts, since
it gives the adversary a small chance of randomly hitting the
key while the intended user has a high chance of succeeding at
the first attempt. Looking at the data, in most movement types,
there is a clear separation between legitimate and malicious
attempts. This means that it is possible to generate an error
correction code that is able to fix legitimate errors without
enabling mimic attacks. This observation holds for three of
the considered movement types. Indeed, ‘Circular Motion’ is
not characterised by sufficient separation. As a result, it is not
secure against mimic attacks and, thus, it is henceforth not
considered any further.

In Fig. 2, we plot the success rate of the legitimate and
malicious attempts against various error correction rates for the
three movement types with good separation, i.e., excluding the
‘Circular Motion’. Based on these results, we adopt an error
correction rate that is able to fix up to 20% of the bits. In this
setting, over 60% of the legitimate attempts succeed on the
first attempt, while none of the mimic attacks is successful.

To conclude, although the mimic attack described in Sec-
tion IV-B2 is theoretically possible, we have shown that, with
a 20% of error correction, it is very unlikely to succeed. In
plain words, the KE generated by the attacker is not similar
enough to KG generated by the gateway, thus, even using the
eavesdropped information εG is not sufficient for the correct
generation of the shared secret, KG.

0 25 50 75 100
Max. Corrected Bits (%)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Legitimate
Malicious

Fig. 2. Percentage of successful legitimate key generation attempts (in green)
and mimic attacks (in red) against the maximum percentage of bits that the
code can correct.

C. Energy Consumption

To evaluate the energy consumption of SHAKE, we have
identified the consumption of sampling, communication, and
processing using software-based estimation [29]. In particu-
lar, we have monitored the CPU-cycles of each stage using
the Contiki-NG tool energest [30]. In turn, we have ap-
proximated the energy consumption by combining the time
measurements with current measurements.

Based on the conclusion of Section IV-B3, we consider an
error coding rate that can correct up to 20% of the generated
bits. Hence, for L secret bits after the error correction, we
generate N bits from N = L/0.8 samples [6].

Since the proof-of-concept implementation performs only
data sampling on-board, an auxiliary program is written to es-
timate the power usage of processing. This program performs
data processing on the CC1350 in a loop. An analogous python
script is written to accompany it. Both are then executed and
the timing differential is used as runtime scalar, such that the
on-board processing time can be estimated. The python code
written to handle the data processing off-board is then timed
and the scalar is applied to estimate the on-board running time.

The energy consumption of communication assumes the use
of the IEEE 802.15.4 TSCH (Time-Slotted Channel Hopping)
protocol [31] at 2.4 GHz, and that the packet transmissions
are acknowledged at the link layer. Given that the two devices
are in close proximity during the key generation, we use the
lowest transmission power setting (i.e., −9 dBm) to limit the
exposure to potential eavesdroppers. Finally, we assume the
maximum packet size (i.e., 98 bytes of payload). The estimates
are based on measurements from [32] and [31].

Table III summarises the energy cost for generating a key
of L = 128 bits (i.e. N = 160). Each stage was measured 10
times and the mean is used in the estimation. The standard
deviation of all measurements was less than 2% of the mean.
Furthermore, Table IV shows the estimates of the energy
required for generating keys of 192 and 256 bits as well.

Finally, Table V compares SHAKE to other proposed
methods for generating symmetric 128-bit keys in energy-
constrained devices. In terms of energy consumption, SHAKE

TABLE III
SHAKE: ENERGY BREAKDOWN FOR GENERATING A 128-BIT KEY

Stage Time (ms) Current (mA) Energy (mJ)
Sampling 472 4 6.24
Tx (2x pkts) 20 5.39 0.36
Rx (2x pkts) 20 4.97 0.33
Processing 1816 4 23.97
Total 2329 - 30.9

TABLE IV
SHAKE: ENERGY CONSUMPTION AGAINST KEY LENGTH

Key Length (bits) Time (s) Energy (mJ)
128 2.33 30.9
192 3.46 45.9
256 4.62 61.1

performs better than the other schemes; SHAKE needs 77%
of the energy required by the low-power configuration of
SKYGlow [16] that ranks second. This is primarily due to
the low usage of the radio unit. The energy consumption of
[14] and [15] are taken from [16]. H2B [21] uses 20.6 mJ for
sampling and 83.8 mJ for processing (Samsung Smartwatch),
resulting in 104.4 mJ in total. The table does not include [17]
because the authors do not provide energy measurements. Yet,
[17] requires the transmission and reception of one packet
per two generated bits (i.e. 64 packets for a 128-bit key)
per device. In contrast, SHAKE requires the transmission and
reception of just 2 packets per device. Overall, we note that
the comparison is only indicative as the adopted hardware
and communication protocol also affect the energy needed
to generate a key. Lastly, we also note that the various
schemes have important qualitative differences that must also
be considered (e.g. H2B only works on body sensors).

TABLE V
ENERGY COMPARISON FOR GENERATING A 128-BIT KEY

Key Generation Scheme Energy (mJ)
Ali et al. [14] (estimated by [16]) 161.8
Li et al. [15] (estimated by [16]) 79.8
SKYGLOW.a (Indoor, 2.4 Ghz) [16] 36.3
Walkie-Taklie (Moto E2) [18] 85.4
H2B (Samsung Smartwatch) [21] 104.4
SHAKE 30.9

V. CONCLUSION AND FUTURE WORK

Lightweight security for resource-constrained IoT systems
largely depends on symmetric block ciphers and pre-shared
keys. This paper has presented SHAKE, a means to install
encryption keys on IoT devices during deployment. SHAKE
generates keys from acceleration measurements that capture
random movements performed by the deployment technician.
The process incorporates a quantisation stage, a reconciliation
stage for error correction, and a privacy amplification stage for
increasing the entropy and addressing information leakage.

We have provided a proof-of-concept implementation of
SHAKE for the CC1350 system using Contiki-NG. Using

the prototype implementation, we have generated keys from
several types of movements, such as simple shake, rough
shake, roller coaster, and circular motion. In addition, we have
performed a series of mimic attacks whereby an adversary with
a clear line of sight and ability to capture all the transmitted
packets attempts to replicate the movements of the deployment
technician from a short distance. The experimental results,
used to fine-tune the reconciliation stage, have demonstrated
that there is sufficient separation between the legitimate and
adversarial generated bit streams that allows for the correction
of up to 20% of the bits. This applies to all but the circular
motion, which is not recommended for usage.

Finally, we have measured the energy required for gener-
ating keys using SHAKE and compared it against other key
generation schemes in the literature. The results suggest that
SHAKE is more energy-efficient than the alternatives; yet, we
appreciate that the employed hardware and networking proto-
cols also have a significant impact on energy consumption.

The performance of SHAKE can be further improved in
future work with better time synchronisation. Indeed, a time-
synchronous communication protocol, such as IEEE 802.15.4
TSCH, can provide microsecond level synchronisation be-
tween the clocks of the devices [33]. Yet, the ADXL362
accelerometers do not operate using the device clock; instead,
they use their own embedded clocks. For better synchronisa-
tion, sampling should be triggered externally, from a pulse-
wave generated by CC1350. At the cost of additional energy
consumption, this approach would improve the similarity of
the generated signals, enabling the generation of more than
one bits per sample during quantisation.

REFERENCES

[1] S. Ravi, S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Se-
curity in embedded systems: Design challenges,” ACM Trans. Embed.
Comput. Syst., vol. 3, no. 3, pp. 461–491, Aug. 2004.

[2] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems
for low-end devices in the internet of things: A survey,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 720–734, Oct 2016.

[3] L. Casado and P. Tsigas, “ContikiSec: A Secure Network Layer for
Wireless Sensor Networks under the Contiki Operating System,” in
Identity and Privacy in the Internet Age, 2009, pp. 133–147.

[4] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks,” in Proc. 2nd Int. Conf.
Embedded Networked Sensor Systems. ACM, 2004, pp. 162–175.

[5] Texas Instruments. LaunchPad CC1350. [Online]. Available: http:
//www.ti.com/tool/LAUNCHXL-CC1350

[6] Y. E. H. Shehadeh and D. Hogrefe, “A survey on secret key generation
mechanisms on the physical layer in wireless networks,” Security and
Communication Networks, vol. 8, no. 2, pp. 332–341, 2015.

[7] R. Watro, D. Kong, S.-f. Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“TinyPK: securing sensor networks with public key technology,” in Proc.
2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, 2004.

[8] D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure
for key distribution in TinyOS based on elliptic curve cryptography,”
in Proc. 1st IEEE Int. Conf. Sensor and Ad Hoc Communications and
Networks (SECON). IEEE, 2004, pp. 71–80.

[9] O. Bergmann, S. Gerdes, and C. Bormann, “Simple keys for simple
smart objects,” in Workshop on Smart Object Security, 2012.

[10] N. Sastry and D. Wagner, “Security considerations for ieee 802.15.4
networks,” in Proc. 3rd ACM Workshop on Wireless Security, 2004.

[11] A. Elsts, X. Fafoutis, P. Woznowski, E. Tonkin, G. Oikonomou,
R. Piechocki, and I. Craddock, “Enabling Healthcare in Smart Homes:
The SPHERE IoT Network Infrastructure,” IEEE Commun. Mag.,
vol. 56, no. 12, pp. 164–170, 2018.

[12] X. Fafoutis, A. Elsts, G. Oikonomou, and R. Piechocki, “SPHERE
Deployment Manager: A Tool for Deploying IoT Sensor Networks at
Large Scale,” in Int. Conf. Ad-Hoc Networks and Wireless. Springer,
2018, pp. 307–318.

[13] M. Cetinkaya, J. Dede, and A. Förster, “An RFID Based Secure Key
and Configuration Distribution for Contiki,” in Proc. 2018 Int. Conf.
Embedded Wireless Systems and Networks, 2018, pp. 189–190.

[14] S. T. Ali, V. Sivaraman, and D. Ostry, “Zero reconciliation secret key
generation for body-worn health monitoring devices,” in Proc. 5th ACM
Conf. on Security and Privacy in Wireless and Mobile Networks. ACM,
2012, pp. 39–50.

[15] Z. Li, Q. Pei, I. Markwood, Y. Liu, and H. Zhu, “Secret key estab-
lishment via RSS trajectory matching between wearable devices,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 3, pp. 802–817, 2017.

[16] G. Margelis, X. Fafoutis, G. Oikonomou, R. Piechocki, T. Tryfonas, and
P. Thomas, “Efficient DCT-based secret key generation for the Internet
of Things,” Ad Hoc Networks, vol. 92, 2019.

[17] C. Castelluccia and P. Mutaf, “Shake them up!: A movement-based
pairing protocol for cpu-constrained devices,” in Proceedings of the 3rd
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’05. ACM, 2005, pp. 51–64.

[18] W. Xu, G. Revadigar, C. Luo, N. Bergmann, and W. Hu, “Walkie-Talkie:
Motion-Assisted Automatic Key Generation for Secure On-Body Device
Communication,” in Proc. 15th ACM/IEEE Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2016, pp. 1–12.

[19] D. Schrmann, A. Brsch, S. Sigg, and L. Wolf, “BANDANA – Body area
network device-to-device authentication using natural gAit,” in Proc.
IEEE Int. Conf. Pervasive Computing and Communications (PerCom),
2017, pp. 190–196.

[20] M. Rostami, A. Juels, and F. Koushanfar, “Heart-to-heart (H2H): authen-
tication for implanted medical devices,” in Proc. ACM SIGSAC Conf.
Computer & Communications Security. ACM, 2013, pp. 1099–1112.

[21] Q. Lin, W. Xu, J. Liu, A. Khamis, W. Hu, M. Hassan, and A. Senevi-
ratne, “H2B: heartbeat-based secret key generation using piezo vibration
sensors,” in Proc. 18th Int. Conf. Information Processing in Sensor
Networks (IPSN). ACM, 2019, pp. 265–276.

[22] X. Fafoutis, L. Marchegiani, G. Z. Papadopoulos, R. Piechocki, T. Try-
fonas, and G. Oikonomou, “Privacy leakage of physical activity levels in
wireless embedded wearable systems,” IEEE Signal Processing Letters,
vol. 24, no. 2, pp. 136–140, 2017.

[23] R. Mayrhofer and H. Gellersen, “Shake well before use: Intuitive and
secure pairing of mobile devices,” IEEE Trans. Mobile Computing,
vol. 8, no. 6, pp. 792–806, 2009.

[24] L. Marchegiani and I. Posner, “Long-term driving behaviour modelling
for driver identification,” in 21st Int. Conf. Intelligent Transportation
Systems (ITSC), Nov 2018, pp. 913–919.

[25] A. Arno, K. Toyoda, and I. Sasase, “Accelerometer assisted authentica-
tion scheme for smart bicycle lock,” in Proc. IEEE 2nd World Forum
on Internet of Things (WF-IoT), Dec 2015, pp. 520–523.

[26] Analog Devices. ADXL362. [Online]. Available: https://www.analog.
com/media/en/technical-documentation/data-sheets/adxl362.pdf

[27] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, “Generalized
privacy amplification,” IEEE Trans. Information Theory, vol. 41, no. 6,
pp. 1915–1923, 1995.

[28] G. Ginesu, M. L. Lobina, and D. D. Giusto, “Property Protection and
User Authentication in IP Networks through Challenge-Response Mech-
anisms: Present, Past and Future Trends,” in Inform. Tech. Intellectual
Property Protection: Interdisciplinary Advancem., 2012, pp. 133–163.

[29] P. Hurni, B. Nyffenegger, T. Braun, and A. Hergenroeder, “On the
accuracy of software-based energy estimation techniques,” in Wireless
Sensor Networks. Springer, 2011, pp. 49–64.

[30] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-
line energy estimation for sensor nodes,” in Proc. 4th Workshop on
Embedded Networked Sensors, 2007, pp. 28–32.

[31] S. Duquennoy, A. Elsts, B. Al Nahas, and G. Oikonomou, “TSCH and
6TiSCH for Contiki: Challenges, Design and Evaluation,” in 13th Int.
Conf. Distributed Computing in Sensor Systems (DCOSS), 2017.

[32] X. Fafoutis, E. Tsimbalo, W. Zhao et al., “BLE or IEEE 802.15.4:
Which Home IoT Communication Solution is more Energy-Efficient?”
EAI Endorsed Trans. Internet of Things, vol. 2, no. 5, 12 2016.

[33] A. Elsts, S. Duquennoy, X. Fafoutis, G. Oikonomou, R. Piechocki,
and I. Craddock, “Microsecond-accuracy time synchronization using the
ieee 802.15.4 tsch protocol,” in Proc. IEEE 41st Conf. Local Computer
Networks Workshops (LCN Workshops), 2016, pp. 156–164.

