
HAL Id: hal-01097074
https://hal.science/hal-01097074v1

Submitted on 8 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Graph Transformation-Based Approach for the
Validation of Checkpointing Algorithms in Distributed

Systems
Houda Khlif, Hatem Hadj Kacem, Saúl Eduardo Pomares Hernández, Cédric

Eichler, Ahmed Hadj Kacem, Alberto Calixto Simón

To cite this version:
Houda Khlif, Hatem Hadj Kacem, Saúl Eduardo Pomares Hernández, Cédric Eichler, Ahmed Hadj
Kacem, et al.. A Graph Transformation-Based Approach for the Validation of Checkpointing Al-
gorithms in Distributed Systems. IEEE International Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE 2014)., Jun 2014, Parma, Italy. pp.80 - 85,
�10.1109/WETICE.2014.23�. �hal-01097074�

https://hal.science/hal-01097074v1
https://hal.archives-ouvertes.fr

A graph transformation-based approach for the
validation of checkpointing algorithms in distributed

systems

Houda Khlif, Hatem Hadj Kacem
ReDCAD Laboratory

FSEGS, University of Sfax
Sfax, Tunisia

houdakhlif@gmail.com
Hatem.Hadjkacem@fsegs.rnu.tn

Saúl E. Pomares Hernandez 1,2,3, Cédric Eichler2,3
1Instituto Nacional de Astrofı́sica, Óptica y Electrónica (INAOE)
Luis Enrique Erro 1, C.P. 72840, Tonantzintla, Puebla, Mexico

2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
3Univ de Toulouse, LAAS, F-31400 Toulouse, France

spomares@inaoep.mx
ceichler@laas.fr

Ahmed Hadj Kacem
ReDCAD Laboratory

FSEGS, University of Sfax
Sfax, Tunisia

Ahmed.Hadjkacem@fsegs.rnu.tn

Alberto Calixto Simón
Universidad del Papaloapan, UNPA

Av, Ferrocarril s/n, C.P. 68400, Loma Bonita, Oaxaca, Mexico
acalixto@unpa.edu.mx

Abstract—Autonomic Computing Systems are oriented to pre-
vente the human intervention and to enable distributed systems
to manage themselves. One of their challenges is the efficient
monitoring at runtime oriented to collect information from which
the system can automatically repair itself in case of failure. Quasi-
Synchronous Checkpointing is a well-known technique, which
allows processes to recover in spite of failures. Based on this
technique, several checkpointing algorithms have been developed.
According to the checkpoint properties detected and ensured,
they are classified into: Strictly Z-Path Free (SZPF), Z-Path Free
(ZPF) and Z-Cycle Free (ZCF). In the literature, the simulation
has been the method adopted for the performance evaluation
of checkpointing algorithms. However, few works have been
designed to validate their correctness. In this paper, we propose
a validation approach based on graph transformation oriented
to automatically detect the previous mentioned checkpointing
properties. To achieve this, we take the vector clocks resulting
from the algorithm execution, and we model it into a causal
graph. Then, we design and use transformation rules oriented to
verify if in such a causal graph, the algorithm is exempt from
non desirable patterns, such as Z-paths or Z-cycles, according to
the case.

I. INTRODUCTION

As computing systems have reached a level of complexity,
their management has become increasingly difficult. As
a result, the initiative of autonomic computing has been
introduced to prevent human intervention and enable the
system to manage itself. An Autonomic Distributed System
is considered as a set of geographically distributed autonomic
components that communicate/collaborate among them. In
general, the autonomic computing has four elements: self-
configuration, self-healing, self-optimizing and self-protecting.
One open challenge in self-healing is the efficient monitoring
at runtime oriented towards the collection of information,
from which the system itself will detect problems that result

from failures in software and/or hardware components,
diagnose and initiate a corrective action without distributing
system applications. Checkpointing is a well-known technique
that allows processes to make progress in spite of failures
[13]. Its basic idea is to start the system from a consistent
state when failures occur. Indeed, when global states are
periodically recorded during the system execution, they are
called global checkpoints. Thus, a global checkpoint is a set
of local checkpoints, where each one presents the recorded
states of a process. A global checkpoint is consistent if no
local checkpoint occurs before another, that is, there is no
causal path from one checkpoint to another, in the sense that a
message (or a sequence of messages) sent after one checkpoint
is received before the other [7]. Checkpointing algorithms are
organized into three classes: asynchronous, synchronous and
quasi-synchronous [9]. In asynchronous checkpointing, also
known as uncoordinated checkpointing, each process takes
its checkpoints independently, which leads to the domino
effect. The domino effect exists due to a dependency relation
between checkpoints called zigzag path or Z-path [11]. In
synchronous checkpointing, or coordinated checkpointing,
inorder to avoid the domino effect, processes coordinate
their checkpoints by the addition of control messages to
form consistent states. In quasi-synchronous checkpointing, or
Communication Induced Checkpointing (CIC), coordination is
achieved by piggybacking control information on application
messages and taking forced local checkpoints in case of
dangerous patterns, such as a Z-path, in order to avoid the
domino effect.
Several algorithms, which propose different methods to force
checkpoints and produce checkpoint and communication
patterns with different properties, have been developed. They
are classified into: Strictly Z-Path Free (SZPF), Z-Path Free
(ZPF) and Z-Cycle Free (ZCF). However, few works have

dealt with the correctness of such algorithms. In this paper, we
propose a validation approach for checkpointing algorithms. In
fact, to validate the correctness of a checkpointing algorithm,
we propose modelling its execution by a graph. Then, we use
graph transformation approaches to verify if in such a graph,
the algorithm is exempt from dangerous patterns like Z-paths
and Z-cycles.

This paper is structured as follows. Section 2 defines
the system model and background, describes the classification
of quasi-synchronous checkpointing, and defines the principle
approaches of graph transformation. Section 3 shows some
related works. In section 4, we describe the process of our
approach, and we present a set of transformation rules that
we have designed. Finally, we summarize our contributions
and suggest new research.

II. PRELIMINARIES

A. System Model

Processes. The system under consideration is composed of a
set of processes P = {p1, p2, · · · , pn}. The processes present
an asynchronous execution and communicate only by message
passing.
Messages. We consider a finite set of messages M , where
each message m ∈ M is sent considering an asynchronous
reliable network that is characterized by no transmission time
boundaries, no order delivery, and no loss of messages. The
set of destinations of a message m is identified by Dest(m).
Events. We consider two types of events: internal and external
events. An internal event is a unique action that occurs at a
process p in a local manner and which changes only the local
process state. We denote the finite set of internal events as R.
The set R represents the set of relevant events. We consider
only the checkpoints as internal events. We denote by Cx

i the
xth checkpoint of process pi. The sequence of events occurring
at pi, between Cx−1

i and Cx
i (i > 0), is called a checkpoint

interval (denoted as Ixi). On the other hand, while an external
event is also a unique action that occurs at a process, it is
seen by other processes, thus, affecting the global state of the
system. The external events considered in this paper are the
send and delivery events. Let m be a message. We denote
by send(m) the emission event and by delivery(p,m) the
delivery event of m to participant p ∈ P . The set of events
associated to M is the set E(M) =
{send(m) : m ∈ M} ∪ {delivery(p,m) : m ∈ M ∧ p ∈ P}.
The whole set of events in the system is the finite set E =
R ∪ E(M). The distributed computation is modeled by the
partially ordered set Ê = (Ê,→), where → denotes Lamports
Happened Before Relation [7].

B. Background and Definitions

Happened Before Relation (HBR). The definition of HBR is
the following:

Definition 1. The Happened Before Relation (HBR) [7], “→”,
is the smallest relation on a set of events E satisfying the
following conditions:

1) If a and b are events belonging to the same process,
and a was originated before b, then a → b.

2) If a is the sending of a message by one process, and b
is the receipt of the same message in another process,
then a → b.

3) If a → b and b → c, then a → c.

The Happened Before Relation among the set of relevant
events R ∈ E , is defined as follows:

• If Cx
i and Cy

j are checkpoint (relevant) events belong-
ing to the same process, and Cx

i was originated before
Cy

j , then Cx
i → Cy

j .

• If Cx
i is the sending of a message by one process,

and Cy
j is the receipt of the same message in another

process, then Cx
i → Cy

j .

• If Cx
i → Cy

j and Cy
j → Cz

k , then Cx
i → Cz

k .

Z-path and Z-cycle. Netzer et al. [10] defined the notion of
zigzag path (z-path) as a genaralization of HBR, as follows:

Definition 2. Z-path exists from Cp
i to another Cq

j iff there
are messages m1,m2, ...,ml such that:

1) m1 is sent by process p after Cp
i ,

2) if mk (1 ≤ k < l) is received by process r, then
mk+1 is sent by r in the same or at a later check-
point interval (although mk+1 may be sent before or
after mk is received), and

3) ml is received by process q before Cq
j .

Helary et al defined the following in [4].

Definition 3. A Z-path [m1, ...,mq] is causal, iff for each pair
of consecutive messages mα and mα+1:
delivery(mα) → send(mα+1). Otherwise, it is a non causal
Z-path.

Definition 4. A local checkpoint Cy
j Z-depends on a local

checkpoint Cx
i , Cx

i
Z−→ Cy

j , if:

1) j = i and y > x, or
2) there is a Z-path from Cx

i to Cy
j .

Definition 5. A Z-cycle is a Z-dependency from a local
checkpoint Cx

i to itself: Cx
i

Z−→ Cx
i .

Theorem 1. The length of a Z-cycle (or Z-path) is l if the
Z-cycle (or Z-path) is formed by l messages m1, m2, ..., ml.

Definition 6. A communication and checkpoint pattern (CCP)
is a pair (Ê, RÊ) where Ê is a partially ordered set modeling a
distributed computation, and RÊ is a set of local checkpoints
defined on Ê.

An example of Communication and checkpoint pattern is given
in Figure 1. In this example, the messages [m1,m2] form a Z-
cycle of length two involving C2

2 , and [m5,m4,m3] form a
Z-cycle of length three involving C3

3 .

Theorem 2. The following properties of a communication and
checkpoint pattern (Ê,R) are equivalent:

1) (Ê,R) has no Z-cycle.
2) It is possible to timestamp its local checkpoints in

such a manner that

p1

p2

p3

C
 1

 1 C
 2

 1 C
 3

 1

C
 1

 2 C
 2

 2 C
 3

 2 C
 4

 2

C
 1

 3 C
 2

 3 C
 3

 3 C
 4

 3
 m m

 m

 m

 1 2
 3

 5

I
 1

 3 I
 2

 3 I
 3

 3

 m 4

Fig. 1. A communication and checkpoint pattern

A
Z−→ B ⇒ A.t < B.t

where t is a logical clock as defined by Lamport [7].

C. Classification of quasi-synchronous checkpointing

A local checkpoint that cannot be part of a consistent global
snapshot is said to be useless. A local checkpoint that can
be part of a consistent global snapshot is called a useful
checkpoint. The main advantage of a quasi-synchronous check-
pointing algorithm is that it can reduce the number of useless
checkpoints. Quasi-synchronous checkpointing algorithms are
classified into three different classes, namely, Strictly Z-Path
Free (SZPF), Z-Path Free (ZPF), and Z-Cycle Free (ZCF) [9].

Strictly Z-path free checkpointing eliminates all the noncausal
Z-paths between checkpoints altogether.

Definition 7. A checkpointing pattern is said to be strictly Z-
path free (or SZPF) if there exists no noncausal Z-path between
any two (not necessarily distinct) checkpoints.

In a ZPF system, it is possible to prevent useless checkpoints
by eliminating only those noncausal Z-paths in which there is
no sibling causal path. The ZPF model is defined below:

Definition 8. A checkpointing pattern is said to be Z-path free
(or ZPF) iff for any two checkpoints A and B, a Z-path exists
from A to B iff there exists a causal path from A to B.

In a ZCF model, only Z-cycles are prevented. A ZCF model
is defined as follows:

Definition 9. A checkpointing pattern is said to be Z-cycle
free (or ZCF) iff none of the checkpoints lie on a Z-cycle.

All checkpoints taken in SZPF, ZPF and ZCF systems are
useful. The construction of consistent global checkpoints is
more difficult in a ZCF than the other systems because of the
existence of noncausal Z-paths. However, a ZCF system has
the potential to have the lowest checkpointing overhead as it
takes forced checkpoints only to prevent Z-cycles. Figure 2
summarizes the relationship between the various quasi syn-
chronous checkpointing models. As shown in this Figure, a
SZPF system is a ZPF system, but the converse is not true.
Likewise, a ZPF system is a ZCF system, but the converse is
not true.

D. Graph Transformation

Graph Transformation is a rule-based approach targeted to-
wards the modifications on a graph [14], [2], [1]. A Graph

SZPF

SPF

SCF

Quasi-synchronous

Fig. 2. Relationship between the various quasi synchronous checkpointing
models

Transformation Rule is described by a pair of graphs r =
(L,R), where L is called the left-hand side graph and R is
called the right-hand side graph. Applying the rule r = (L,R)
means finding a match of L in the source graph and replacing
L by R. The suppression of the occurrence of L in G may
cause the appearance of edges without a starting node or a
terminating node or both. Those edges are called “dangling
edges”. Two principle approaches have dealt with this problem,
which are the SPO approach and the DPO approach [1].

The Single PushOut Approach (SPO). A rule of type SPO
is a production of the form (L,R). Its application to a graph
G is related to the existence of an occurrence of L in G. The
application of the SPO rule to a graph G involves the removal
of the graph corresponding to Del = (L\(L ∩ R)) and the
addition of the graph corresponding to Add = (R\(L ∩R)).

The Double PushOut Approach (DPO). A rule of type DPO
is a production of the form (L,K,R), where K is used to
specify clearly the part to preserve after applying the rule.
If both conditions of existence of the occurrence of L and
absence of suspended edges are checked, the application of
the rule involves the removal of the graph corresponding to
the occurrence of Del = (L\K) and the addition of a copy
of the graph Add = (R\K).

Neighborhood Controlled Embedding Approach (NCE).
The NCE mechanism [14] is based on the specification of
the so-called connection instructions. These instructions are
based on the labels of nodes to define new edges to be
introduced. The connection instructions are described by a pair
(n, δ). The execution of this instruction connection involves
the introduction of an edge between the added node n and
all the neighboring nodes of the removed node, whose label
is δ. dNCE (d for edge label), eNCE (e for edge label),
and edNCE are extensions of NCE approach. The dNCE
connection instructions are described by a triplet (n, δ, d),
where d ∈ {in, out} is for controlling the direction of the
edges. The eNCE connection instructions are described by a
triplet (n, p/q, δ), where p and q are edge labels. The edNCE is
the combination of the eNCE and dNCE approaches. The ed-
NCE connection instructions are of the form (n; p/q; δ; d; d′).
The execution of this instruction implies the introduction of
an edge in the direction indicated by d′ between the node
n and all nodes n′ that are p-neighbours and d-neighbours
(in-neighbours if d=in and out-neighbours otherwise) of the
removed node.

III. RELATED WORK

Finding a method to construct consistent global checkpoints
in a ZCF system has been an open problem. The impossibility
of designing an optimal ZCF quasi-synchronous checkpoint-
ing algorithm has been treated by Tsai et al [17]. In the
last few years, some ZCF quasi-synchronous checkpointing
algorithms have been developed. For example, the Fully In-
formed (FI) algorithm of Helary et al [4], the Fully In-
formed aNd Efficient (FINE) algorithm of Luo et al. [8],
the Delayed Communication-Induced Checkpointing (DCFI)
algorithm [15] and The Scalable Fully Informed (SF-I) al-
gorithm [16] of Calixto et al. According to our knowledge,
the present work introduces the first solution based on graph
transformation for the validation of checkpointing properties
that can be used with any CIC algorithm.
Wang [18], [19] has defined a graph called ”Rollback depe-
dency graph” to show Z-paths in a distributed computation. It
is easy to detect Z-paths in such a graph, but detecting Z-cycles
is a critical problem. Taesoon Park and Heon Y. Yeom [12]
have proposed a scheme for detecting Z-cycles of length two.
Such scheme takes forced checkpoints to break them. Then,
Chin-Lin Kuo and Yuo-Ming Yeh [6] have proposed an in-
line distributed algorithm to detect all Z-cycles of long length
and their involved checkpoints. This algorithm conceptualizes
an appropriate data structure to express Z-path and Z-cycle. It
requires much piggybacked Z-path information, but it detects,
for a distributed computation, all the existing Z-cycles and
their involving checkpoints. In order to use this last solution
for validation purposes, such algorithm must be executed at
runtime in a simultaneous way along with the checkpointing
algorithms, which implies an expensive and additional use of
memory, processing and bandwidth resources.

IV. APPROACH

Figure 3 ullistrates the general process of our approach. We
have choosen to use the Graph Matching and Transformation
Engine (GMTE)1 as it is able to search small and medium
graph patterns in huge graphs in a short time. It receives as
input graph descriptions and transformation rules written in
XML [3]. In our approach, the GMTE receives a checkpoint
graph that models the execution of a checkpointing algorithm,
for which it applies a transformation rule presenting dangerous
patterns to show if in such a graph the algorithm is exempt
from these patterns. Our solution is based on two main
approaches which are SPO approach and edNCE approach.
The SPO approach is to deal with suspended egdes as it
provides power to remove this kind of edges greater than the
DPO approach. The edNCE approach is for the addition and
the removal of nodes using the connection instructions.

GMTE

Graph

rule

Graph

file

Unwanted Patterns

Checkpointing algorithm

Output Graph

Validation Verdict

Fig. 3. Validation process

1GMTE is available at http://homepages.laas.fr/khalil/GMTE/

A graph transformation rule applied to an HBR graph.
The HBR graph presents the causal relations of the system. The
graph presented in Figure 4 is the HBR graph corrsponding
to the scenario of Figure 1. As shown in this Figure, a causal
graph contains three types of edges:

• A local relation that connects two successive check-
points Cx

i and Cx+1
i , belong to the same process pi,

is denoted by the label ”c”.

• A direct relation between two checkpoints Cx
i of pi

and Cy
j of pj is denoted by the label ”d”.

• A transitive relation is denoted by the label ”t”.

c-labeled edge

t-labeled edge

d-labeled edge

C
 1
 1

C 2
 1 C 3

 1

C
 1
 2 C 2

 2
C

 3
 2

C 4
 2

C 1
 3

C 2
 3 C 3

 3 C 4
 3

Fig. 4. Example of an HBR graph

Figure 5 presents the general patterns of Z-paths and Z-cycles.
A Z-path, in an HBR graph, is in the form of (n1

d−→ n3, n2
c−→ n3, n3

d−→ n4). It can be either of length two or more.
A Z-cycle, in an HBR graph, is in the form of (n1

d−→ n2,
n2

c−→ n3, n3
d−→ n1). It can also be of length two or more.

d

c

d

d

d

d d

d

d

c

c c

c c

(b) Z-cycle of length two

(d) Z-cycle of length l

d

c

d

(a) Z-path of length two

n1

n3 n2

n4
n2 n3

n1

d d

.

.

.

.

.

.

d

c

d

d

c

d

(c) Z-path of length l

c

d

.

.

.

Fig. 5. General patterns of Z-paths and Z-cycles in an HBR graph

We start by eliminating all t-labeled edges, as they can be
involved neither in a Z-path nor in a Z-cycle. For this, we use
the rule r1. This rule is of type SPO. Its application implies the
removal of all t-labeled edges. An example of the application
of rule r1 to an HBR graph is given in Figure 6.

c-labeled edge

t-labeled edge

Graph G1 = HBR Graph Graph G2 d-labeled edge

C 1
 1 C 3

 1

C
 2
 2

C 3
 3

C
 4
 2

C 4
 3 C 1

 3

C
 3
 2

C 2
 1

C 2
 3

C
 1
 2

2

C 1
 1

C 2
 1 C 3

 1

C
 1
 2 C 2

 2 C
 4
 2

C
 1
 3 C

 2
 3 C

 3
 3

C
 4
 3

Applying r1

t
n1 n2 r1 = n3 n4 L1 = , R1 =

C
 3
 2

Fig. 6. The application of rule r1

In the first time, we verify if the output graph of r1 is exempt
from Z-paths. For this, we implement the SPO rule r2 that we
present in Figure 7. Its application implies the addition of a
z-labeled edge between the two checkpoints (nodes) involved
in a Z-path. An illustrative example is given in Figure 7. The
application of r2 to graph G2 shows the existence of two
Z-paths: the first is from C2

1 to C3
3 (C2

1
d−→ C4

2 , C3
2

c−→ C4
2 ,

C3
2

d−→ C3
3) and the second is from C3

3 to C4
2 (C3

3
d−→ C3

1 ,
C2

1
c−→ C3

1 , C2
1

d−→ C4
2).

Graph G2 Graph G3

z-labeled edge

Applying r2

c-labeled edge

d-labeled edge

C 1
 1 C 3

 1

C
 2
 2

C 3
 3

C
 4
 2

C 4
 3 C 1

 3

C
 3
 2

C 2
 1

C 2
 3

C
 1
 2

C 1
 1 C 3

 1

C
 2
 2

C 3
 3

C
 4
 2

C 4
 3 C 1

 3

C
 3
 2

C 2
 1

C 2
 3

C
 1
 2

r2 = L2 = , R2 = c

n4

n1

d

d

c

n8

n7 n6

d

d

n5

n3 n2

z

Fig. 7. The application of rule r2

The occurence of the label “z”in the resulting graph implies
that the system is not ZPF. So, it can also contain Z-cycles.
Then, we implement the rules r3, r4 and r5 to verify
such property. These rules are of type SPO, and they are
sequentially executed.
Rule r3, presented in Figure 8, is to detect a long Z-path. It is

applied to G3, the output graph of r1. Two successive Z-paths
form another Z-path (n1

z−→ n3, n2
d−→ n3, n3

z−→ n4).
We denote this model by adding a z-labeled edge between
n1 and n4. In the HBR graph that we have previously used,
there is no case of long Z-path. G4, the output graph of r3,
is equivalent to graph G3. For this, we illustrate the result of
the application of rule r3 in the general case (see Figure 8).

Z-cycle of length l

.

.

.

.

.

.

Z-path of length l

.

.

.

z-labeled edge

c-labeled edge

d-labeled edge

d

n4

n1

z

z

d
n7 n6

z

z

n5

z

n3 n2

n8

r3 = L3 = , R3 =

z-labeled edge

(after applying r3)

Fig. 8. The application of rule r3

Rule r4 (presented in Figure 9) is used to detect Z-cycles of
length two. Its application implies replacing the node involved
in such a Z-cycle by a zc-labeled node. In this level, it is
necessary to use the connection instructions to link the added
node and all nodes that are d-neighbours (in-neighbours if d=in
and out-neighbours otherwise) of the removed node.This rule
is applied to graph G4. Figure 9 illustrates the application of
r4. In this example, only one Z-cycle of length two exists
involving C2

2 (C1
3

d−→ C2
2 , C1

3
c−→ C2

3 , C2
3

d−→ C2
2).

Applying r4

C
 1
 1 C

 3
 1

C 2
 2

C
 3
 3

C 4
 2

C
 4
 3 C

 1
 3

C 3
 2

C
 2
 1

C
 2
 3

C 1
 2 zc

C
 1
 1 C

 3
 1

C
 3
 3

C 4
 2

C
 4
 3 C

 1
 3

C 3
 2

C
 2
 1

C
 2
 3

C 1
 2

Graph G3 Graph G4 z-labeled edge

c-labeled edge

d-labeled edge

c

n1

n2 n3

n4

n2 n3

d d

c

d d
r4= L4 = , R4 =

zc

Fig. 9. The application of rule r4

Finally, we apply rule r5 to G5 to detect long Z-cycles. As
a result, a node involved in a long Z-cycle is removed and
replaced by a new zc-labeled node. In this level, it is also
necessary to use the connection instruction because of the
removal and the addition of nodes. Figure 10 presents rule
r5 and illustrates its application. In the given example, a z-
cycle exists involving C3

3 (C2
1

z−→ C3
3 , C2

1
d−→ C4

2 , C3
3

z−→
C4

2).

Graph G5 Graph G6

z-labeled edge

Applying r5

c-labeled edge

d-labeled edge

zc

C 1
 1 C

 3
 1

C
 3
 3

C 4
 2

C
 4
 3 C 1

 3

C
 3
 2

C 2
 1

C
 2
 3

C
 1
 2 zc

C 1
 1 C

 3
 1

C 4
 2

C
 4
 3 C 1

 3

C
 3
 2

C 2
 1

C
 2
 3

C
 1
 2

zc

z

n1

n2 n3

zc

n4

n2 n3

z z z r5 = L5 = , R5 =

Fig. 10. The application of rule r5

By applying the set of transformation rules previously pre-
sented to a causal graph, we can detect all existing Z-paths
and Z-cycles, whether they are of length two or more. Then,
we can decide for any checkpointing algorithm if it is ZPF
on the one hand, and if it is ZCF on the other hand. The
use of graph transformation approaches ensures correct results
without much need of time and space. As a result, we obtain
an efficient validation approach, which verifies the correctness
of checkpointing algorithms in a less costly way.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a validation approach for
checkpointing algorithms in distributed systems. We have used
graph transformation approaches to validate the correctness of
such algorithms in a less costly way. Firstly, we have designed
a set of transformation rules to verify in a causal graph, the
existence of non desirable patterns like Z-paths and Z-cycles.
The application of these rules shows all existing Z-paths and
Z-cycles in such a graph regardless of its length. The cost
reduction is explained by the fact that the designed rules are
not executed at runtime. With the obtained results, we can
validate if the algorithm is ZPF in the first time and if it is
ZCF in the second.
As an on-going work, we aim to design transformation
rules oriented to the Minimal Causal and Set Representation
(MCSR)2 tool that constructs, for a distributed computation,
the minimal causal graph (IDR graph) at a single event level.
For this, the MCSR uses the Immediate Dependency Relation
(IDR) [5]. The IDR graph greatly reduces the state-space of a
system. This is the reason why finding an efficient method

2MCSR is available at http://homepages.laas.fr/khalil/GMTE/

to detect non desirable patterns in such graphs can be an
important contribution in term of cost reduction.

REFERENCES

[1] H. Ehrig, H.J. Kreowski, and G. Rozenberg. Tutorial introduction to
the algebraic approach of graph grammars based on double and single
pushouts. In Graph-Grammars and Their Application to Computer
Science, volume 532 of LNCS. Springer, March 5-9 1990.

[2] J. Engelfriet and G. Rozenberg. Handbook of Graph Grammars and
Computing by Graph Transformation, chapter Node Replacement Graph
Grammars, pages 1–94. World Scientific Publishing, 1997.

[3] M. A. Hannachi, I. B. Rodriguez, K. Drira, and S. E. Pomares-
Hernandez. GMTE: A tool for graph transformation and exact/inexact
graph matching. In Graph-Based Representations in Pattern Recogni-
tion. 9th IAPR-TC-15 International Workshop, GbRPR 2013, Vienna,
Austria, volume 7877 of LNCS. Springer, 2013.

[4] J. M. Helary, A. Mostefaoui, R. H. B. Netzer, and M. Raynal.
Communication-based prevention of useless checkpoints in distributed
computations. Distributed Computing, 13:29–43, January 2000.

[5] S.E. Pomares Hernandez, J. Fanchon, and K. Drira. The Immedi-
ate Dependency Relation: An Optimal Way to Ensure Causal Group
Communication. Singapore University Press and World Scientific
Publications, 2004.

[6] C. L. Kuo and Y. M. Yeh. An algorithm for detecting z-cycles in
distributed computing system. In Int. Computer Symposium, pages
1124–1133. Int. Computer Symposium, December 2004.

[7] L. Lamport. Time, clocks and the ordering of events in a distributed
system. ACM, 21:558–565, July 1978.

[8] Y. Luo and D. Manivannan. Fine: A fully informed and efficient
communication-induced checkpointing protocol for distributed systems.
Journal of Parallel and Distributed Computing, 69:153–167, February
2009.

[9] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing:
Models, characterization, and classification. IEEE Transactions on
Parallel and Distributed Systems, 10(7):703–713, 1999.

[10] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for
consistent global snapshots. IEEE, 6:165–169, February 1995.

[11] Robert H. B. Netzer and Jian Xu. Adaptive message logging for
incremental replay of message-passing programs. Technical report,
Brown University, Providence, RI, USA, 1993.

[12] T. Park and H. Y. Yeom. Application controlled checkpointing co-
ordination for fault-tolerant distributed computing systems. Parallel
Computing, 26:467–482, 2000.

[13] B. Randell, P. A. Lee, and P. C. Treleaven. Reliability issues in
computing system design. ACM, 10(2):123–166, June 1978.

[14] G. Rozenberg. Handbook of Graph Grammars and Computing by
Graph Transformation, volume 3. World Scientific Publishing, 1997.

[15] A. C. Simon, S. E. Pomares Hernandez, and J. R. Pilar Cruz. A
delayed checkpoint approach for communication-induced checkpointing
in autonomic computing. In Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, June 2013.

[16] A. C. Simon, S. E. Pomares Hernandez, J. R. Pilar Cruz, P. Gomez-Gil,
and K. Drira. A scalable communication-induced checkpointing algo-
rithm for distributed systems. IEICE TRANSACTIONS on Information
and Systems, E96-D(4):886–896, April 2013.

[17] J. Tsai, Y. Wang, and S. Kuo. Evaluations of domino-free
communication-induced checkpointing protocols. Information Process-
ing Letters, 69:1–69, 1998.

[18] Y. M. Wang. Maximum and minimum consistent global checkpoints
and their applications. In Symposium on Reliable Distributed Systems,
pages 86–95, 1995.

[19] Y. M. Wang. Consistent global checkpoints that contain a given set of
local checkpoints. IEEE Transactions on Computers, 46(4):456–468,
April 1997.

