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On the Computation of the Higher-Order Statistics
of the Channel Capacity over Generalized Fading

Channels
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Abstract—The higher-order statistics (HOS) of the channel
capacity µn = E [logn (1 + γend)], where n ∈ N denotes the
order of the statistics, has received relatively little attention in
the literature, due in part to the intractability of its anal ysis.
In this letter, we propose a novel and unified analysis, whichis
based on the moment generating function (MGF) technique, to
exactly compute the HOS of the channel capacity. More precisely,
our mathematical formalism can be readily applied to maximal-
ratio-combining (MRC) receivers operating in generalizedfading
environments. The mathematical formalism is illustrated by some
numerical examples focusing on the correlated generalizedfading
environments.

Index Terms—Higher-order statistics of the channel capacity,
ergodic capacity, maximal-ratio combining, correlated fading
distributions, correlated non-central chi-squared distributions.

I. I NTRODUCTION

ERGODIC capacity, i.e.,µ = E [log (1 + γend)], where
E [·] denotes the expectation operator andlog(·) denotes

the natural logarithm, has been extensively investigated for
diversity receivers in the literature (see for example [1]–[5] and
the references therein). It is worth noticing that thefirst-order
statistics of channel capacity is well-known as the ergodic
capacity. However, thehigher-order statistics(HOS) of the
channel capacityµn = E [logn (1 + γend)], where n ∈ N

denotes the order of the statistics, are also useful in orderto
control the maximum dispersion in the channel capacity and
achieve a successful carrier aggregation [6]. Some papers ad-
dressed the HOS of the channel capacity for different types of
fading channels [4], [7, and references therein]. In particular,
while the references in [7] have been involved with multiple
input multiple output (MIMO) transmission over Rayleigh or
Riciean fading channels, Laourineet al. considered in [7]
the HOS of the channel capacity only for single-link log-
normal fading channels. However due in part to the difficulty
of finding a tractable analytical solution for diversity receivers,
there has been indeed a lack of unified analysis in the literature
on the HOS of the channel capacity.

Consider the instantaneous SNRγend at the output of the
L-branch maximal ratio combining (MRC), specifically given
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by γend =
∑L

ℓ=1
γℓ where forℓ ∈ {1, 2, . . . , L}, γℓ represents

the ℓth diversity branch’s instantaneous SNR. Without loss of
generality, the HOS of the channel capacity for theL-branch
MRC receiver is given by1

µn =

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0
︸ ︷︷ ︸

L-fold

logn
(
1 +

∑L
ℓ=1

γℓ
)
×

pγend
(γ1, γ2, . . . , γL) dγ1dγ2 . . . dγL, (1)

wherepγend
(γ1, γ2, . . . , γL) denotes the joint probability den-

sity function (PDF) of the instantaneous SNRsγ1, γ2, . . . , γL.
Note that thisL-fold integration is tedious and computationally
inefficient even ifγ1, γ2, . . . , γL are assumed to be mutually
independent. Recently, Di Renzoet al. derived in [4, Eq. (22)]
an analytical solution to evaluate the HOS of the channel
capacity. However, as mentioned in [4, Section III-E], this
analytical solution requires both higher-order differentiation
and a limit operation.

In this paper, we propose an MGF-based approach for the
exact and unified analysis of the HOS of the channel capacity
over correlated / uncorrelated generalized fading channels and
for an MRC receiver with an arbitrary number of diversity
branches. More specifically, in contrast to [4, Eq. (22)], our
MGF-based approach does not require higher-order differ-
entiation and limit operation in the numerical evaluation.It
is further clear that, with the aid of Fox’s H transforms
[10], our MGF-based approach readily results in a closed-
form for single-link fading channels. On the subject of the
first-order statistics (i.e., ergodic capacity), our MGF-based
approach also provides a new MGF-based approach for the
ergodic capacity, which is alternative to the other MGF-based
approaches proposed in [3], [4], and which may be useful for
the researchers working in this field. Finally, numerical and
simulation results, performed to verify the correctness ofthe
proposed approach, are shown to be in perfect agreement.
II. H IGHER-ORDER STATISTICS OFCHANNEL CAPACITY

In this section, a novel MGF-based framework for the exact
analysis of the HOS for the channel capacity is introduced

1Note that if the PDF ofγend could be expanded in a canonical exponential
form, then (1) is very easy and straightforward to compute, evidently leading
to closed-form results. For instance, the HOS of the channelcapacity have
been successfully carried out in [8] for the diversity receivers over Nakagami-
m fading channels since the PDF of the Nakagami-m distribution can be
expanded in canonical form [9]. However for the other fadingdistributions
commonly used in the literature (e.g, extended generalized-K and its special
cases), the PDF ofγend is generally not available in a simple and canonical
form.
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for an MRC receiver in correlated / uncorrelated generalized
fading environments.

Theorem 1. The HOS of the channel capacityµn =
E [logn (1 + γend)] for theL-branch MRC receiver over cor-
related fading channels is given by

µn =

∫ ∞

0

Zn(s)

{

Mγend
(s)− ∂

∂s
Mγend

(s)

}

ds, (2)

whereMγend
(s) = E

[
exp

(
−s

∑L
ℓ=1

γℓ
)]

denotes the joint
MGF for the correlated instantaneous SNRsγ1, γ2, . . . , γL.
Furthermore,Zn(s) is an auxiliary function defined as

Zn(s) = n! exp(−s)G0,n+1

n+2,n+1

[
1

s

∣
∣
∣
∣

1, 1, ..., 1

0, 0, ..., 0

]

, (3)

whereGm,n
p,q [·] denotes Meijer’s G function[11, Eq. (9.301)].

Proof: The proof has two steps, one of which is to
establish (2) for the HOS of the channel capacity in correlated
fading environments. The other one is to obtain the auxiliary
functionZn(s) in a closed form without involving any differ-
entiation as compared to [4, Eq. (22)].

The First Step.Note that using the well-known relation
between the differentiation and the power of logarithm, i.e.,
∂n

∂an (1 + γend)
−a = (−1)n(1 + γend)

−a logn(1+γend) where
n ∈ N anda ∈ R+, the HOS of the channel capacity can be
readily written as

µn =

∫ ∞

0

{

(−1)
n ∂n

∂an
(1 + γ)−a

∣
∣
∣
∣
a=0

}

pγend
(γ)dγ. (4)

Substituting the following equality [11, Eq. (1.512/4)], i.e.,

(1 + γ)−a−1 =
1

Γ(a+ 1)

∫ ∞

0

exp(−sγ)sa exp(−s) ds (5)

into (4) and performing some simple algebraic manipulations
while exploiting the definition of joint MGF, i.e.,Mγend

(s) =
∫∞

0
exp(−sγ)pγend

(γ)dγ, we can readily obtain the HOS of
the channel capacityµn = E [logn (1 + γend)] as shown in
(2), which proves the first step of Theorem 1, and the resulting
auxiliary functionZn(s) is given by

Zn(s) = (−1)
n
exp(−s)

∂n

∂an
sa

Γ(a+ 1)

∣
∣
∣
∣
a=0

, (6)

which will be obtained in a closed form in the following step.
The Second Step.In order to simplify the auxiliary function

Zn(s), we use the well-known Cauchy’s integral formula [12].
Note that, with the aid of Cauchy’s integral formula, (6) can
be expressed in terms of Mellin-Barnes Integral as

Zn(s) = n! e−s

{
1

2πi

∮

C

Γn(−p) sp

Γn+1(1− p)Γ(1 + p)
dp

}

, (7)

wherei =
√
−1 denotes the imaginary number and the contour

integrationC is chosen counter-clockwise in order to ensure
the convergence. With the aid of the Mellin-Barnes integral
representation of Meijer’s G function [11, Eq. (9.301)], the
Mellin-Barnes integral in (7) can be expressed in terms of
Meijer’s G function, that is

1

2πi

∮

C

Γn(−p) sp dp

Γn+1(1− p) Γ(1 + p)
= G0,n+1

n+2,n+1

[
1

s

∣
∣
∣
∣

1, 1, ..., 1

0, 0, ..., 0

]

. (8)

Finally, substituting (8) into (7) yields the desired result given
in (3), which proves the second step of Theorem 1.

Note that Theorem 1 is applicable for any situation if the
MGF of the instantaneous SNRγend could be obtained. In
addition, in the case of there does not exist any correlation
between all diversity branches, the HOS of the channel capac-
ity µn can be readily obtained using the following corollary.

Corollary 1. When theL-branch MRC diversity receiver’s
diversity branches are not correlated, the HOS of the channel
capacityµn is given by2

µn =

∫ ∞

0

Zn(s)

{
L∏

ℓ=1

Mγℓ
(s)−

L∑

ℓ=1

[
∂

∂s
Mγℓ

(s)

] L∏

k=1

k 6=ℓ

Mγk
(s)

}

ds, (9)

where for all ℓ ∈ {1, 2, . . . , L}, Mγℓ
(s) = E [exp(−sγℓ)],

ℜ{s} ∈ R+ denotes the MGF of theℓth diversity branch.

Proof: When there is no correlation between all instan-
taneous SNRsγ1, γ2, . . . , γL, one can readily write the joint
MGFMγend

(s) =
∏L

ℓ=1
Mγℓ

(s). The proof is thence obvious
using the derivative of this joint MGFMγend

(s).

In the following subsections, we consider some special cases
in order to demonstrate the analytical simplicity and accuracy.

A. Some Special Cases

The first-order statistics of the channel capacity, which is
well-known as the ergodic capacity, have been greatly and ex-
tensively studied in the literature [1]–[4]. Thence, substituting
n = 1 into (3) and exploiting the equalityG0,2

3,2

[

x
∣
∣
∣
1,1,1
0,0

]

=

−E − log(x) for all x ∈ R, which we obtained with the aid
of [13, Eqs. (07.34.03.0191.01) and (07.25.03.0005.01)],the
auxiliary functionZ1(s) simply reduces to

Z1(s) = − exp(−s)
(
log (s) + E

)
, (10)

where the constantE = 0.5772156649015328606... is Euler-
Mascheroni constant [11]. With this result, the ergodic capac-
ity can be readily given by

µ1 = −
∫ ∞

0

exp(−s)
(
log (s) + E

)
×

{

Mγend
(s)− ∂

∂s
Mγend

(s)

}

ds, (11)

Given the advantages of the ergodic capacity analysis in [4,
Eq.(7)], it is worth noticing that (11) is equivalent to [4,
Eq.(7)] but it is relatively simple since it does not involve
the exponential integralEi (·) function [11, Eq. (8.211)]. In
addition, from a numerical convergence stand-point [14], (11)
is numerically and computationally more efficient than [3,
Eq.(6)]. For instance, Chebyshev-Gauss quadrature requires
less number of terms when applied onto (11), specifically with
comparison to [3, Eq.(6)] and [4, Eq.(7)].

2Note that the MGF and its derivative are available in closed form for fading
distributions commonly used in the literature (see for example [1, Table II-V]
and [2, Table I-III]).
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Z3(s) = − exp(−s)
(
log3(s) + 3E log2(s)−

(
π2

2
− 3E2

)
log(s)−

(
π2

2
− E2

)
E + 2 ζ(3)

)
. (16)

Z4(s) = exp(−s)
(
log4(s)+4E log3(s)−

(
π2−6E2

)
log2(s)+

(
4E3−2π2E+8 ζ(3)

)
log(s)+E4−π2E2+8E ζ(3)+ π4

60

)
. (17)

In wireless communication theory and statistics, the vari-
ance of the channel capacity (i.e.,V[log(1+γend)] whereV[·]
denotes the variance operator) is a measure of how far the
channel capacity lies from the ergodic capacity. In particular,
the variance is related to the first and second-order statistics
of the channel capacity byV[log(1 + γend)] = µ2 − µ2

1. Its
normalization with respect to the ergodic capacity, i.e.,

D[log(1 + γend)] = µ2/µ1 − µ1 (12)

also further explores the amount of dispersion (AoD) in the
channel capacity, and the AoD takes positive values smaller
than one. More specifically, when the channel quality (i.e.,
diversity) increases,D[log(1+γend)] approaches to zero while
it approaches to one otherwise. Accordingly, we can define the
reliability percentage of the signal throughput asR[log(1 +
γend)] = 100 (1− D[log(1 + γend)]), i.e.,

R[log(1 + γend)] = 100 (µ1 − µ2/µ1 + 1) . (13)

Accordingly and demonstratively, substitutingn = 2 into (3)
and performing some simple algebraic manipulations using
[13, Eq. (07.34.06.0017.01)] results in

Z2(s) = exp(−s)
(
log2(s) + 2E log(s) + E2 − π2

6

)
. (14)

Substituting (14) into (2), the second-order statistics ofthe
channel capacity can be in general written as

µ2 =

∫ ∞

0

exp(−s)
(
log2(s) + 2E log(s) + E2 − π2

6

)
×

{

Mγend
(s)− ∂

∂s
Mγend

(s)

}

ds. (15)

Finally, the variance and the AoD in the channel capacity can
be obtained by means of (11) and (15).

Additionally, the other two important statistical metrics
are the skewness and kurtosis. More precisely, the skewness,
which is given byS[log(1+γend)] = (µ3−µ3

1)/(µ2−µ2
1)

3/2,
is a measure of the degree of asymmetry for the distribution
of the channel capacity, while the kurtosis, which is given
by K[log(1 + γend)] = (µ4 − µ4

1)/(µ2 − µ2
1)

2, is the degree
of peakedness of the channel capacity around the ergodic
capacity. When the number of branches of the MRC receiver
(i.e., diversity) increases, the skewness of the channel capacity
approaches to zero, and the kurtosis of the channel capacity
gets closer to the kurtosis of the channel capacity in the case of
thatγend follows Gaussian distribution. It is clear that, in order
to obtain the skewness and kurtosis, the third- and fourth-order
statistics can be readily obtained by substituting the simplified
auxiliary functions given at the top of this page, in whichζ(·)
denotes the zeta function [11, Eq.(9.513/1)].

III. A PPLICATION IN CORRELATED ENVIRONMENT

Let r represent aL × 1 complex Gaussian random vector,
that denotes the complex channel gains, with meanη =
[η1, η2, . . . , ηL]T and non-singular covariance matrixC =

E [(r − η)(r − η)H ], where the superscriptT andH denote
the transposition and Hermitian transposition, respectively.
Herein, the mean vector represents the line-of-sight conditions
in the fading environment. Further, the instantaneous SNR
γend at the output of theL-branch MRC receiver whose
diversity branches are correlated regarding the covariance
matrix C is given by γend = rHr. With the situation that
the fading figure (i.e., diversity order) is common to all the
diversity branches, the MGFMγend

(s) = E[exp(−s γend)] =
E[exp(−s rHr)] can be in general, as the other contribution
of this letter, given by

Mγend
(s) =

exp
(
−sΩλH

[
I + s Ω

mR
]−1

λ
)

∣
∣I + s Ω

mR
∣
∣
m (18)

which we termed as the MGF of the sum ofthe correlated non-
central chi-squared distributions/ the correlated generalized
Rician distributions. In (18), R is the L × L normalized
covariance matrix defined byR = C/

(
ηHη + Tr (C)

)

whereTr (·) denotes the trace operator, andλ is theL × 1
normalized mean vector defined byλ = η/

√

ηHη +Tr (C).
The parameterΩ corresponds to the average SNR at the
output of the MRC receiver3 and the parameterm denotes
the diversity order of the signal recovered by each branch.
Furthermore, the notationsI, |·| and [·]−1 in (18) denote the
L×L identity matrix, matrix determinant and matrix inversion,
respectively. At the point regarding the versatility of (18), it
is useful mentioning that the MGF given by (18) simplifies
to the MGF of the MRC receiver over correlated Nakagami-
m fading channels [15, Eq. (9.219)] when the mean vector
η = 0. Indeed, form = 1 and η = 0, it reduces to the
MGF over Rayleigh fading channels. Furthermore, substituting
m = 1 into (18) and then performing some simple algebraic
manipulations results in the MGF of the MRC receiver over
correlated Rician fading channels [3, Eq. (5)]. In addition,
when the diversity orderm of the branches gets much larger
(i.e., m → ∞), (18) simplifies toMγend

(s) = e−sΩλ
H
λ

which is the MGF of the MRC receiver operating in additive
white Gaussian noise (AWGN) channels.

In order to obtain the higher-order capacity of the channel
capacity, the first derivative of the MGFMγend

(s) given in
(18) is required as per Theorem 1. Performing some algebraic
manipulations and using [11, Eq.(13.31/5)], we obtained

∂

∂s
Mγend

(s) = −Ω
exp

(
−sΩλH

[
I + s Ω

mR
]−1

λ
)

∣
∣I + s Ω

mR
∣
∣
m ×

{

Tr
([
I + s Ω

mR
]−1

R
)
+ λH

[
I + s Ω

mR
]−2

λ

}

. (19)

3Note that the average SNRΩ at the output of the MRC receiver isΩ =
∑

L

ℓ=1
γ̄ℓ whereγ̄ℓ denotes the average SNR of theℓth diversity branch. The

average SNRs of the diversity branches, i.e.,γ̄ = [γ̄1, γ̄2, . . . , γ̄L]
T may not

be balanced due to both the covariance matrixC and the mean vector mean
η, and specifically are given bȳγ = Ωdiag

(

R+ λλH
)

wherediag (·)
denotes the diagonal of the matrix argument.
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µn =

∫ ∞

0

Zn(s) exp
(
−sΩλH

[
I + s

Ω

m
R
]−1

λ
)
∣
∣
∣
∣
I + s

Ω

m
R

∣
∣
∣
∣

−m{

1+Tr
([
I + s Ω

mR
]−1

R
)
+λH

[
I + s Ω

mR
]−2

λ

}

ds. (20)
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Fig. 1. Higher-order statistics of the channel capacity fora 3-branch MRC
receiver in correlated generalized fading environments.
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Fig. 2. Amount of dispersion of the channel capacity for the3-branch MRC
receiver considered in Fig. 1.

Finally, substituting (18) and (19) into (2), the HOS of the
channel capacity of theL-branch MRC receiver over corre-
lated generalized fading channels can be readily obtained as
shown in (20) at the top of this page.

In order to check analytical simplicity and accuracy, the
considered covarianceC, meanη and fading figurem are ex-
plicitly given in Fig. 1 for a3-branch MRC receiver. As seen in
Fig. 1, the HOS are getting closer to each other almost around
1.5dB. This value determines the boundary SNR< 1.5dB of
that the low-SNR regime starts. As seen in Fig. 1, the HOSµn

in the low-SNR regime can be characterized withµn ≈ µn
1 .

In addition, in Fig. 2, the AoD in the channel capacity of
the considered3-branch MRC receiver is depicted. As seen
in Fig. 2, the AoD distinctly increases, reaches its highest
value around5 dB, and then decreases as the average SNR
increases. For the SNR values either much lower or much
higher than the SNR the AoD peaks, the channel capacity

does not fluctuate drastically, specifically conveying thatthe
transmission throughput is reliable (i.e., even if the throughput
gets either worse for low SNR values or better for high
SNR values). As a consequence, for a better communication
configuration, the SNR should be chosen greater than the SNR
the AoD peaks. For instance, for20 dB, the AoD is0.04807
and the reliability percentage is95.193, which means that the
average SNR must be chosen equal to or greater than20 dB
in order to reach at least95.193% reliable throughput.

IV. CONCLUSION

In this letter, we proposed a novel MGF-based unified
analysis of HOS of the channel capacity for the MRC receivers
operating in generalized correlated fading channels, and also
offered a closed-form solution for the MGF of the sum of
the correlated non-central chi-squared fading distributions.
To validate our exact analytical expressions, Monte Carlo
simulations have been carried out, and the numerical and
simulation results were shown to be in perfect agreement.
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Communications (SPAWC 2012), Çeşme, Izmir, Turkey, June 2012.

[10] A. Kilbas and M. Saigo,H-Transforms: Theory and Applications. Boca
Raton, FL: CRC Press LLC, 2004.

[11] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products, 5th ed. San Diego, CA: Academic Press, 1994.

[12] G. B. Arfken and H. J. Weber,Mathematical methods for physicists.
Elsevier, 2005.

[13] Wolfram Research,Mathematica Edition: Version 8.0. Champaign,
Illinois: Wolfram Research, Inc., 2010.

[14] M. Y. Antimirov, A. A. Kolyshkin, and R. Vaillancourt,Applied Integral
Transforms, ser. Crm Monograph Series. American Mathematical
Society, 2007.

[15] M. K. Simon and M.-S. Alouini,Digital Communication over Fading
Channels, 2nd ed. John Wiley & Sons, Inc., 2005.


