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Abstract—Location-based services (LBSs) in vehicular ad hoc
networks (VANETs) offer users numerous conveniences. However,
the extensive use of LBSs raises concerns about the privacy of
users’ trajectories, as adversaries can exploit temporal correla-
tions between different locations to extract personal information.
Additionally, users have varying privacy requirements depending
on the time and location. To address these issues, this paper
proposes a personalized trajectory privacy protection mechanism
(PTPPM). This mechanism first uses the temporal correlation
between trajectory locations to determine the possible location
set for each time instant. We identify a protection location
set (PLS) for each location by employing the Hilbert curve-
based minimum distance search algorithm. This approach incor-
porates the complementary features of geo-indistinguishability
and distortion privacy. We put forth a novel Permute-and-Flip
mechanism for location perturbation, which maps its initial
application in data publishing privacy protection to a location
perturbation mechanism. This mechanism generates fake loca-
tions with smaller perturbation distances while improving the
balance between privacy and quality of service (QoS). Simulation
results show that our mechanism outperforms the benchmark by
providing enhanced privacy protection while meeting user’s QoS
requirements.

Index Terms—Location-based service, temporal correlation,
trajectory privacy protection, differential privacy.

I. INTRODUCTION

Location-based services (LBSs) in vehicular ad hoc net-

works (VANETs), such as real-time traffic information reports

and personalized navigation, significantly enhance our daily

lives [1], [2]. However, to enjoy these convenient services,

VANET users must provide their real-time location to the

LBS server, raising concerns about privacy breaches [3].

Several location privacy protection mechanisms have been

developed to address this issue. However, focusing solely on

protecting location information is insufficient. Trajectory data,

which consists of interconnected locations, holds valuable

temporal information that potential attackers can exploit to
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deduce users’ activities and uncover sensitive personal infor-

mation [4]. Besides, different users may have different location

privacy and quality of service (QoS) requirements [5], and

even the same user may have various sensitive information at

different times and locations, and thus have different privacy

protection demands. Therefore, ensuring the privacy of user

trajectories and meeting their personalized demands is of

utmost importance.

Most existing research focuses on privacy protection for

individual locations. For instance, a privacy notion called

geo-indistinguishability, based on differential privacy, is pro-

posed in [6]. This notion aims to protect a user’s location

within a certain radius, guaranteeing “generalized differential

privacy”. However, this approach overlooks arbitrary prior

knowledge that adversaries may possess, leading to potential

privacy leakage [7], and the degree of privacy protection is

not clearly defined. To address these shortcomings, authors

in [8] combine geo-indistinguishability and expected inference

error, leveraging their complementary properties to propose a

personalized location privacy protection mechanism. However,

this approach still fails to consider the temporal correlation

between different locations on a trajectory.

A solution called “δ-location set” based differential privacy

is proposed in [9], which combines the location privacy

protection mechanism in [8] with the temporal correlation

between locations on a trajectory. However, this approach

assigns the same privacy budget to all locations and does not

cater to users’ personalized demands. A few trajectory privacy

protection schemes use k-anonymity [10] to achieve privacy

protection. These methods generalize and aggregate individual

trajectory data, ensuring the trajectory remains protected while

combining it with at least k − 1 other trajectories to form

an anonymous region. However, these approaches rely on a

trusted third party and fail to provide strict privacy guarantees

[11], [12]. In summary, existing trajectory privacy protection

schemes lack consideration of crucial aspects such as the

temporal correlation between locations on a trajectory, meeting

the user’s personalized needs, and ensuring the protection of

the user’s actual location without relying on a trusted third

party. Consequently, a novel trajectory privacy mechanism is

needed to simultaneously satisfy these requirements.

http://arxiv.org/abs/2401.11225v1


In this paper, we develop a personalized trajectory privacy

protection mechanism (PTPPM) that considers the temporal

correlation between locations on a trajectory. The mechanism

constructs a location transition probability matrix, deriving the

potential location set for the user at each time point along the

trajectory. To improve privacy, we leverage the complementary

features of geo-indistinguishability [6] and distortion privacy

[13] by employing the Hilbert curve-based minimum distance

search algorithm [8] to identify a protection location set (PLS)

encompassing all potential locations along the trajectory. Geo-

indistinguishability can limit the attacker’s posterior knowl-

edge, but cannot quantify the similarity between the attacker’s

inferred location and the actual location. Distortion privacy

can ensure that the attacker’s expected inference error is

greater than a certain threshold. However, it cannot prevent

the leakage of posterior information. The combination of

these two notions can effectively strengthen the resistance

against location inference attacks. The mechanism also enables

personalized user privacy protection by adjusting the privacy

settings through two privacy parameters.

In addition, we introduce an extension of the Permute-

and-Flip mechanism [14], originally designed for data privacy

protection during data publishing, to serve as a location per-

turbation mechanism. This novel approach achieves a smaller

perturbation distance, which has a better balance between

location privacy and QoS. Simulation results demonstrate that

PTPPM provides personalized trajectory privacy protection

and offers superior privacy preservation compared to PIVE [8]

under the same QoS loss. The main contributions of our work

include:

1) We propose a personalized trajectory privacy protec-

tion mechanism called PTPPM, which can defend the

attacker that obtains the temporal correlation between

various locations within a trajectory. This mechanism

combines two privacy notions of geo-indistinguishability

and distortion privacy to enhance the system’s robustness

against location inference attacks.

2) We put forth a novel location perturbation mechanism,

Permute-and-Flip. It has a smaller perturbation distance

to release perturbed locations, thereby achieving a better

balance between location privacy and QoS.

3) We conduct comprehensive simulations to study the im-

pact of different privacy budgets and expected inference

errors on users’ personalized requirements. Additionally,

we demonstrate the performance advantage of PTPPM

over PIVE under the same QoS loss.

The remainder of this paper is organized as follows. Section

II presents the system model. We present the trajectory privacy

protection statement in Section III. A PTPPM framework is

proposed in Section IV. The evaluation results are provided in

Section V. Finally, we conclude this work in Section VI.

II. SYSTEM MODEL

To obtain real-time LBSs, we consider that VANET users

share their location information with a roadside unit (RSU) or

an LBS server at different times and locations [5], [15]. Users

LBS server 
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Fig. 1. Illustration of the trajectory privacy protection.

interact with the RSU to access road information, plan their

destinations, and determine driving routes. Fig. 1 illustrates

the user’s driving trajectory, where A, B, and C are the

user’s locations at different times. To protect privacy, the user

releases the perturbed locations. The untrusted LBS server,

which an external attacker might also corrupt, can infer the

user’s sensitive information (e.g., the user’s driving trajectory)

at a particular time by analyzing the received temporally

correlated location information and sending related spam or

scams while providing feedback services.

A. User Model

We consider VANET users driving within a specific area

of a city, which is divided into multiple grids. Each grid cell

represents a distant location state of the user, and each cell

is associated with a unique 2D coordinate. The state of all

locations of the user in the area is A = {a1, a2, · · ·, an},

where n is the total number of location states. xt represents

the user’s true location at time t, and lt represents the two-

dimensional coordinates of the user’s location state at time t.

For example, a shown in Fig. ??, A = {a1, a2, · · ·, a22},

xt = a6 = [0, 0, 0, 0, 0, 1, 0 · ··, 0], lt = [2, 4].
The user uses the location perturbation mechanism to remap

the actual location xt from the actual location set O1 to the

fake location x
′

t from the perturbed location set O2. The

location perturbation probability distribution f is given by

f
(

x
′

t|xt

)

= Pr
(

O2 = x
′

t|O1 = xt

)

, xt,x
′

t ∈ A. (1)

We use pt to represent the user’s location state at time t, where

pt [i] = Pr (xt = ai) = Pr (lt) represents the probability

that the user’s real location is in ai at time t. Assuming

that users are distributed with the same probability A =
{a2, a3, a5, a7}, then the location probability distribution

of users is pt = [0, 0.25, 0.25, 0, 0.25, 0, 0.25, 0, · · ·, 0]. We

use p−
t and p+

t to represent the prior and posterior proba-

bilities of the user before and after observing the released

perturbed location x
′

t.

B. Attack Model

We consider the attacker to be an untrusted LBS server

or an external attacker who may attack or corrupt the LBS
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Fig. 2. User map coordinates and status coordinates.

server. They can access users’ current location information

for commercial profit or illegal purposes. We assume that the

attacker knows the location perturbation probability distribu-

tion f
(

x
′

t|xt

)

, and can obtain the prior distribution p−
t =

Pr (xt) of the user’s current location through public tracking,

check-in data set, or statistical information [16]. Then, the

attacker can calculate the posterior probability distribution

p+
t = Pr

(

xt|x
′

t

)

after observing the user’s reported location

x
′

t, i.e.,

p+
t = Pr

(

xt|x
′

t

)

=
Pr (xt) f

(

x
′

t|xt

)

∑

xt∈A
Pr (xt) f

(

x
′

t|xt

) . (2)

A Bayesian adversary aims to infer the actual location at

time t by minimizing the expected inference error against the

posterior distribution. Therefore, the inferred location x̂t is

x̂t = argmin
x̂t∈A

∑

xt∈A

Pr
(

xt|x
′

t

)

d (x̂t,xt) . (3)

We assume that the attacker can obtain the user’s location

transition probability matrix M based on the user’s historical

trajectory data and behavior habits [9]. Then, the attacker can

infer the prior probability p−
t+1 of the user at time t+ 1, i.e.,

p−
t+1 = p+

t M. (4)

Since the posterior probability p+
t+1 at time t + 1 can be

obtained according to (2), the attacker can perform an optimal

inference attack on the user’s location at time t+1 according

to (3) to obtain the corresponding inferred location x̂t+1.

Therefore, the attacker can obtain the inferred trajectory of

the user in a certain period of time by performing the optimal

inference attack on the user’s location at each moment on the

trajectory, thereby stealing the user’s trajectory privacy.

III. TRAJECTORY PRIVACY PROTECTION STATEMENT

In this section, we first list the main trajectory privacy

notions and the condition for determining PLS, and then we

present this paper’s problem statement.

A. Location Transition Probability Matrix

Matrix N is the location transfer matrix, representing the

number of times a user goes from one place to another. Let

nij be an element in the ith row and jth column of matrix

N, and nij represents the number of times the user goes from

region ai to region aj .

Through the location transition matrix N, the location

transition probability matrix M of the user can be analyzed.

Let mij be an element in the ith row and the jth column

of matrix M, mij =
nij

∑

j nij

represents the probability of

the user moving from ai to aj . The matrix M describes

the temporal correlation of the user at different locations in

a trajectory.

B. δ-Location Set

To protect locations frequently visited by users, δ-location

set is proposed in [9], which represents the set of locations

where the user is most likely to appear at time t, and we

denote it as ∆χt.

∆χt denotes a set containing the minimum number of

locations at time t with a prior probability sum not less than

1− δ (0 < δ < 1).

∆χt = min

{

ai|
∑

ai

p−
t [i] ≥ 1− δ

}

. (5)

Note that since the δ-location set represents a set of possible

locations with a high probability of the user appearing at time

t, the real location xt of the user may be eliminated with

an extremely small probability. In this case, we substitute the

closest location x̃t for the actual location xt, given by

x̃t = argmin
x̃t∈∆χ

t

d (x̃t,xt) . (6)

If xt ∈ ∆χt, then xt is protected in ∆χt; if not, x̃t is

protected in ∆χt.

C. Condition for Determining PLS

A two-phase dynamic differential location privacy frame-

work PIVE was proposed in [8]. It studies the complementary

relationship between geo-indistinguishability and distortion

privacy and obtains the upper bound of posterior probability

and lower bound of inference error through formula derivation.

By combining these two privacy notions, PIVE introduces a

user-defined inference error bound Em to determine PLS.

First, to guarantee the expected inference error in terms of

PLS, the conditional expected inference error is given by

ExpEr
(

x
′

t

)

= min
x̂t∈A

∑

xt∈A

Pr
(

xt|x
′

t

)

d (x̂t,xt) . (7)

Given that the adversary narrows possible guesses to the PLS

Φt that contains the user’s true location, we define

E (Φt) = min
x̂t∈A

∑

xt∈Φt

Pr (xt)
∑

y
t
∈Φt

Pr (yt)
d (x̂t,xt) . (8)



According to the lower bound on expected inference error,

ExpEr
(

x
′

t

)

≥ e−ǫE (Φt) , (9)

the authors in [8] (Theorem 1) obtain a sufficient condition,

E (Φt) ≥ eǫEm, (10)

to satisfy the user-defined threshold, ∀x
′

t, ExpEr
(

x
′

t

)

≥

Em.

D. Problem Statement

Considering the temporal correlation between locations on

the trajectory, it is insufficient to protect only the user’s current

location, as attackers can still deduce the actual location

by analyzing behavior patterns, geographical constraints, and

other available information. Assuming the attacker possesses

knowledge of the user’s location transition probability matrix

M, they can calculate the prior probability of the user’s current

location based on previously published location information.

To enhance the protection of the user’s current location, we

focus on protecting frequently visited locations with high prior

probabilities [9].

Moreover, different types of LBS and varying contexts

may impose different users’ privacy requirements. Even for

the same LBS, users may have various privacy needs for

the same location at different times or in different locations.

Therefore, we determine the possible location set ∆χt for

each user at any given time based on the prior probability

of locations along the trajectory. By combining the concepts

of geo-indistinguishability and distortion privacy, we use a

Hilbert-based minimum distance search algorithm to identify

the set Φt of possible locations in ∆χt at any location along

the trajectory. We personalize user privacy by adjusting the

privacy budget ǫ and the expected inference error threshold

Em. To enhance performance, we adapt the Permute-and-Flip

mechanism, which was originally designed for data publishing

scenarios, to serve as the location perturbation mechanism.

IV. PRESONALIZED TRAJECTORY PRIVACY PROTECTION

MECHANISM

In this section, we propose a personalized trajectory privacy

protection mechanism PTPPM, as shown in Fig. 3. Here, we

consider the temporal correlation between different locations

on the trajectory and combine geo-indistinguishability and

distortion privacy to protect the user’s personalized trajectory

privacy. Specifically, we first use algorithm F1 to obtain the

set of possible locations for the user at each time, leveraging

the associated prior probability at each moment along the

trajectory. Second, we employ algorithm F2 to dynamically

select PLS for each possible location on the trajectory, incor-

porating both geo-indistinguishability and distortion privacy.

Furthermore, our mechanism enables personalized trajectory

privacy protection by adjusting different privacy settings (min-

imum inference error and privacy budget) for individual users.

Finally, we put forth a novel Permute-and-Flip mechanism K
to generate a perturbed location x

′

t for each location within

Actual 

location

Em

K

Perturbed 

location

Minimum 

inference 

error

Privacy 

budget

Prior 

distribution

PLS

Fig. 3. The framework of PTPPM.

the PLS. These perturbed locations are selected with a smaller

perturbation distance, ensuring a better QoS experience while

providing robust and effective privacy protection.

A. Determine ∆χt at Continuous Times

The transition probability matrix M is constructed accord-

ing to the user’s historical trajectory data and behavior habits

[9]. We eliminate all impossible locations (p−
t is minimal or

p−
t = 0) based on certain criteria to obtain the set of possible

locations at time t, i.e., ∆χt. If the actual location at time t

is removed, we substitute it with x̃t.

We calculate the posterior probability p+
t according to (2)

and then combine the location transition probability matrix M

according to (4) to obtain the prior probability p−
t+1 at time

t + 1. In terms of p−
t+1, we get ∆χt+1 at time t + 1. We

determine the size of ∆χt+1 by setting the value of δ. Then,

we obtain ∆χt at consecutive times by following the same

process.

B. Determine Protection Location Set

After obtaining ∆χt for each time on the trajectory, we

consider the protection of possible locations within ∆χt at

any given time.
In order to improve the user’s QoS, the smaller the diameter

D (Φt) of the circular area, the better. Since D (Φt) is the
diameter of the Φt, the distance between any two locations
is less than or equal to D (Φt). For ∀xt, x̂t in Φt, we have
D (Φt) ≥ d (xt, x̂t). By (10), we have

e
ǫ
Em ≤ E (Φt) ≤ min

x̂t∈Φt

∑

xt∈Φt

Pr (xt)∑
yt∈Φt

Pr (yt)
D (Φt) = D (Φt) .

(11)

To effectively find the PLS with the smallest diameter at

time t, the search method based on the Hilbert curve in [8]

is adopted. For each possible location xt in ∆χt on the

trajectory, we search the neighborhood of xt according to the

search direction of the Hilbert curve. We identify the PLS

for xt that satisfies (10) and select the one with the smallest

diameter as the PLS Φt.

On this basis, to prevent the single-direction search of

the Hilbert curve might lead to an unreasonable protection

area with a large diameter, we perform spatial rotation of

the Hilbert curve to improve the opportunity of finding a



PLS for each location xt with a smaller diameter. More

specifically, similar to [8] we rotate 90, 180, and 270 degrees

clockwise around the center point to generate three more

Hilbert curves. After rotation, search for PLS where the user’s

location is under different Hilbert curves. Then, the group with

the smallest diameter is selected from the four results as the

PLS.

C. Differentially Private Mechanism in Protection Location

Set

We put forth a new perturbation mechanism, Permute-and-

Flip, to release the perturbed location with a smaller pertur-

bation distance, which can better balance location privacy and

QoS. The Permute-and-Flip mechanism was initially devel-

oped to protect privacy in the data publishing process [14]. We

apply this mechanism for the first time to protect the location

in the PLS Φt through the mapping relationship between

the utility function and the Euclidean distance. The Permute-

and-Flip mechanism always selects the query option with the

highest score when processing query options. Therefore, we

take the difference between its distance and the maximum

distance as a query function and define the sensitivity of the

utility function as

∆u = maxmax
x

′

t
∈A,xt,yt

∈Φt

∣

∣

∣
d
(

xt,x
′

t

)

− d
(

yt,x
′

t

)∣

∣

∣
, (12)

according to the triangle inequality, we have
∣

∣

∣
d
(

xt,x
′

t

)

− d
(

yt,x
′

t

)
∣

∣

∣
≤ d (xt,yt) ≤ D (Φt).

After obtaining ∆χt for each location on the trajectory,
we can find the corresponding Φt for each possible location
in ∆χt using (10). Given the current location xt and the
PLS Φt, the probability of the output perturbed location

x
′

t is proportional to exp
(

−ǫ(u(D,r)−max(u(D,r)))
2∆u

)

according

to the Permute-and-Flip mechanism. We have the perturbed
locations’ probability distribution

f
(

x

′

t
|xt

)

= ωx exp





−ǫ
(

d
(

xt,x
′

t

)

−max d
(

xt,x
′

t

))

2D (Φt)



 , (13)

where ωx is the probability distribution normalization factor,
i.e.,

ωx =







∑

x

′

t
∈A

exp





−ǫ
(

d
(

xt,x
′

t

)

− max d
(

xt,x
′

t

))

2D (Φt)











−1

. (14)

V. SIMULATION RESULTS

In this section, we evaluate the effectiveness of our proposed

PTPPM. We compare the trajectory privacy performance of

PTPPM with that of PIVE [8] under the same QoS loss.

To facilitate evaluation, we divide the 50 km × 50 km two-

dimensional space evenly into 100 units, and each unit has

the same area. These units serve as areas that VANET users

may access, also known as the attacker’s prior distribution.

Each unit represents the location status of the user and has

corresponding two-dimensional coordinates. We select 5 of

them as the real locations of 5 consecutive moments on the

user’s trajectory, as depicted in Fig. 4.
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Fig. 4. Simulation setting of the trajectory of a user.

The location privacy p and QoS loss q are evaluated by the

similar metrics in our previous work [5] which are given by

p =
∑

xt,x
′

t
,x̂t∈A

Pr (xt)f
(

x
′

t|xt

)

h
(

x̂t|x
′

t

)

d (xt, x̂t) , (15)

q =
∑

xt,x
′

t
∈A

Pr (xt)f
(

x
′

t|xt

)

d
(

xt,x
′

t

)

. (16)

First, we set different privacy budgets ǫ and inference error

threshold Em to evaluate their impact on users’ personalized

trajectory privacy protection performance in Figs. 5. We can

see that two privacy parameters (ǫ and Em) have a significant

impact on trajectory privacy and QoS loss. More specifically,

as shown in Figs. 5(a) and ??, when ǫ is small, the trajectory

privacy and QoS loss decrease with increased ǫ under different

Em. Besides, when ǫ is larger than a specific value, the

trajectory privacy and QoS loss start to increase. That is

because, according to (10), the increase of ǫ will cause D (Φt)
to sharply increase. The turning points under different Em

settings are different. Moreover, because D (Φt) cannot be in-

creased indefinitely in practical scenarios, the location privacy

and QoS loss finally reach the upper limit value. Figs. 5(b) and

5(d) show that the trajectory privacy, QoS loss, and trajectory

error increase with the increase of Em under different ǫ. Given

a ǫ, when Em increases, the D (Φt) of the protected area

increases, thus increasing the trajectory privacy and QoS loss.

Moreover, the effect of ǫ on D (Φt) is exponential, much

higher than that of Em. Therefore, when ǫ is set to 1.5, with the

increase of Em, D (Φt) changes significantly, so the trajectory

privacy and QoS loss increase sharply, resulting in a steep

curve. However, there is a limitation on the D (Φt) of the

protected area, so the trajectory privacy and QoS loss will

converge to a finite value. We can see that the user’s trajectory

privacy and QoS loss reach the upper limit when ǫ is 0.1,

regardless of the Em setting. By adjusting different privacy

settings, personalized trajectory privacy protection is realized.

Next, we quantitatively compare PF with PIVE in terms of

trajectory privacy and QoS loss to verify its advantages. We set

(16) equal to the set QoS loss value, and the only variable in
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Fig. 5. Impact of ǫ and Em on personalized trajectory privacy protection.
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Fig. 6. Performance of different LPPMs under different QoS loss.

this equation is the privacy budget ǫ. By solving this equation,

ǫ corresponding to PF and PIVE can be obtained under the

same QoS loss. By substituting (15), the corresponding privacy

of PF and PIVE under the same QoS loss can be calculated.

As shown in Fig. 6, we can see that PF can better protect

privacy under the same QoS loss. For example, when QoS loss

= 44, the privacy value of PTPPM is 22.4% which is higher

than that of PIVE. That is because the proposed Permute-

and-Flip mechanism provides a smaller perturbation distance

while guaranteeing privacy demands in PLS. In addition, since

D (Φt) cannot be infinitely enlarged in the actual scenario,

privacy eventually reaches the upper limit. We can see that

the proposed mechanism can better protect user privacy while

meeting users’ QoS requirements.

VI. CONCLUSION

In this paper, we have proposed a personalized trajectory

privacy protection mechanism PTPPM. This paper has three

novel contributions: First, we address the issue of attackers

exploiting the temporal correlation between different locations

to compromise user privacy. To mitigate this threat, we design

a robust trajectory privacy protection mechanism. Second, we

combined the privacy notions of geo-indistinguishability and

distortion privacy, enabling personalized privacy protection

by adjusting the privacy budget and the expected inference

error threshold to meet individual user needs. Third, we

proposed a novel perturbation mechanism, Permute-and-Flip,

which releases perturbed locations with smaller perturbation

distances to better balance the trajectory privacy and QoS.

Simulation results show that PTPPM offers improved privacy

protection under the same QoS loss compared to PIVE. For

instance, when QoS loss = 44, the privacy of PTPPM is 22.4%

higher than that of PIVE.
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