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Discontinuous integral control for mechanical systems

Jaime A. Moreno

Abstract

For mechanical systems we present a controller able to macknknown smooth signal, converging in finite time and by
means of a continuous control signal. The control schemesisnisitive against unknown perturbations with bounded/atare.
The controller consists of a non locally Lipschitz statedtesck control law, and a discontinuous integral contrplieat is able
to estimate the unknown perturbation and to compensatet.fdioicomplete an output feedback control a continuous ebser
for the velocity is added. It is shown that the closed loopsisting of state feedback, state observer and discontinimgegral
controller has an equilibrium point that is globally, fintime stable, despite of perturbations with bounded devieaiThe proof
is based on a new smooth Lyapunov function.

. INTRODUCTION
We consider in this paper a second order system

5:1 = &
52 = f(gla 521 t)+p(t)+7—

where¢; € R andé&; € R are the states; € R is the control variablef (&1, &, t) is some known function, while the term
p (t) corresponds to uncertainties and/or perturbations. 8y3tean represent a mechanical system, wiferis the position
and¢, is the velocity. An important control task is to track a smotitne varying reference (t), i.e. if one defines the tracking
errorz; = & — r and zp = & — 7 the objective is to asymptotically stabilize the origin gstem

(1)

2':1 = zZ9

2 o= f(&, &, t)+pt)—7F(1)+T. )
With the controlr = u — f (&1, &, t) + 7 (¢) the system becomes
il = X9
iy = u+p(t), (3)

where the perturbatiop (¢) is a time varying signal, not vanishing at the origin (i.e.emh: = 0 the perturbation can still be
acting). We notice that it is possible not to feed the secoerdvative of the referencé (¢) to the controlr. In this case it
will be considered as part of the perturbation tesrt).

Under the stated hypothesis it is well known that a contisyotemoryless state feedback= & (x) is not able to stabilize
x = 0. This is so, because the controller has to satisfy with thedition % (0) = 0, since the closed loop has to have an
equilibrium at the origin for vanishing perturbation. Biithie perturbation does not vanish, then the origin cannatrignore
an equilibrium point. Discontinuous controllers, as thstfarder Sliding Mode (SM) ones][6],/[5] are able to solve thebtem
for non vanishing (or persistently acting) bounded pewtidns. However, they require the design of a sliding sarfdat is
reached in finite time, but the target= 0 is attained only asymptotically fast, and at the cost of enHigcuency switching
of the control signal (the so callechattering), that has a negative effect in the actuator, and excitesodefied dynamics
of the plant. Higher Order Sliding Modes (HOSM) [71,_[14],3]1 [11], [17] provide a discontinuous controller for syste
of relative degree higher than one to robustly stabilize dhigin x = 0 despite of bounded perturbations, but again at the
expense of chattering. A natural alternative consists glirafan integrator, i.e. defining a new state= v+ p (¢), with 2 = v
and designing a third order HOSM controller for the new cointariablev. This allows to reach the origin in finite time,
and it will be insensitive to Lipschitz perturbations, ivith p (¢) bounded. In this form a continuous control signaill
be obtained, so that the chattering effect is reduced. Hewehis requires feedback not only the two statgsand z, but
also the stater, which is unknown due to the unknown perturbation. Morept@implement an output feedback controller
(assuming that only the positiary is measured) it is necessary to differentiate two times thgtipn 21, with the consequent
noise amplification effect.

In the case of (almost) constant perturbatipris) a classical solution to the robust regulation problem isutbe of integral
action, as for example in the PID contfal[1]. The linear $iolu would consist of a state feedback plus an integral actio
u = —kjx1 — kexo + 2z, 2 = —ksxp. This controller requires only to feedback the position #imel velocity. For an output
feedback it would be only necessary to estimate the veldeiith the D action for example). In contrast to the HOSM
controller this PID control is only able to reject constaettprbations, instead of Lipschitz ones, and it will realcé target
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only exponentially fast, and not in finite time. By the IntekiModel Principle it would be possible to reject exactly aiyd
of time varying perturbationg (¢), for which a dynamical model (so called an exosystem) islalvks. However this would
increase the complexity (order) of the controller, sinds #xosystem has to be included in the control law.

Here we provide a solution to the problem, that is somehownégrmediate solution between HOSM and PID control.
Similar to the HOSM control our solution uses a discontimiuegral action, it can compensate perturbations withnded
derivative p (¢) is Lipschitz) and the origin is reached in finite time. So ihc@olve not only regulation problems (whese
is constant) but also tracking problems (wjthtime varying) in finite time and with the same complexity o&tbontroller.
Similar to the PID control the proposed controller providesontinuous control signal (avoiding chattering) and guiees
only to feedback position and velocity. We also provide fofnan classical) D term, i.e. a finite time converging observe
to estimate the velocity. This basic idea has been alreaglyepted in our previous work [20]. In the present one we give a
much simpler Lyapunov-based proof, and we also include aerobr in the closed loop together with its Lyapunov proof.
Our solution can be seen as a generalization of the Supetifigvisontrol for systems of relative degree ohel[1[7], [7K][1
[11], [15] to systems with relative degree two.

The rest of the paper is organized as follows. In next Sedilwe present the main result: The Discontinuous Integral
Controller with and without observer and give some disarssin the algorithms. Sectidn]lll is dedicated to present the
Lyapunov-based proof of the convergence of the closed loophie proposed control algorithms. In Sectiof IV we give an
illustrative example with some simulations and in Seclidsdrme conclusions are drawn.

Notation 1: To simplify the presentation we introduce the following atiin. For a real variable € R and a real number
p € R the symbol|z]? = |z|Psign(z), i.e. the signed powep of 2. Note that|z]? = |z|?sgn(z) # 22, and if p is an odd
number then z]? = z?. Note also in particular, that

20 = sgn(z), |22 = |27
121%1z]F = |27, 12]P|2]7 = |z|Pte

Il. DISCONTINUOUSINTEGRAL CONTROLLER

For the robust finite time stabilization of the origin of sst [3) we propose a nonlinear, homogeneous state feedbatkico
law, which is able to stabilize the origin in finite time in tabsence of non vanishing perturbations, and a discontswndegral
controller is added to compensate for the persistentiyggierturbations. In contrast to the continuous integratradier, that
can only compensate for (almost) constant perturbatitvesgiscontinuous one can deal with time varying perturiatishich
are Lipschitz continuous, that is, their derivatives eaishost everywhere and it is uniformly bounded. The contighal of
the controller is continuous, so that the chattering efeddhe SM and HOSM controllers is avoided.

Theorem 1: Consider the planfi3) with Lipschitz continuous pertuitratsignalp (¢) with Lispchitz constant.. Then the
control law

1 1
u = —ki|z1|® —kolza|2 4+ 2
1 [@1] 2§fO2J @
z = —/{3 ’V.Il + /{45622J
can stabilize the origin in finite time for ary, and appropriate designed gaiks k2, ks. |

This Theorem shows that with the addition of the discontirmimtegral term it is possible to eliminatg completelly tect
of the Lipschitz perturbation (¢), that cannot be (fully) compensated by the state feedback—k; [21 |3 — ko [22]2 alone.
In fact, the integral controller can be interpreted as aypbdtion estimator, since(t) = —4 (¢) after a finite time.

It is remarkable, that the observer itself has not been dedigo be robust against the perturbation, but the dIS(l(IxUlllﬂ
integral controller is able to compensate for it. Note alsat the input to the discontinuous integratoe x; + k4x2 can be
a combination of the position (with relative degree two) déimel velocity (with a relative degree one). The valuégfcan be
arbitrary (including zero), so that the velocity is not nesary for the integral action. Féy, > 0 this output can be seen as a
passive output of the systefm;, z3). However, it is necessary to have the position in this sigotilerwise the closed loop
will be unstable.

By performing a linear transformation of the plafi (3) withntroller [4) ¢ = Az, for any someX > 0, it is easy to
show that if the gaingki, k2, k3, k4) achieve the objective for a perturbation with Lipschitz sw@amt L, then the gains

Niki, M2ko, Mks, A" 2ky ) will also stabilize the system for a perturbation with Lipiz constant\L.

The implementation of ‘controllef](4) requires the mesunmenoé both states;, z». If only the position is measured a finite
time convergent observer far, can be implemented, so that an output feedback control Eiredat.

Theorem 2: Consider the planf{3) with Lipschitz continuous pertuitratsignal p (¢) with Lispchitz constant.. Then the
output feedback control law

®)



can stabilize the origin in finite time for appropriate desd gainsk, ko, ks, k4, {1 andls. |
Similarly to the previous case it follows that if the gaifls, k2, ks, k4, l1, l2) achieve the objective for a perturbation with
Lipschitz constant, then the gain )\%kl, )\%kQ, k3, )\*%Iu, /\%ll, /\%lz will also stabilize the system for a perturbation
with Lipschitz constanf\ L. SystemI(B) with controllef{5) is given by the dynamics

T = @
T2 = —h ﬂ’clJ‘%—’gz [2]% + 24 p (1) ,
i?l = =l [& - 581]? + 22 ) ] (6)
Ty = [T — «lei_okl [21]3 — ko [22]2
P o= —ky [xl n k@;J

which is a discontinuous system, whose trajectories araetkfin the sense of FilippoV][9]. If we introduce the estirati
errorse; = &1 — x1, ea = Iy — xo and the effect of the perturbatiary = = + p (¢), then the dynamics of the system can be
rewritten as

x'l = X2
1 1
By = —ki[x1]® — ko [22]2 + a3,
2
er = —lh felJf +e2 (7)
é2 = —ZQ |—€1J 3 — I3 (t)
. 310 .
T3 = —kg ’V.Il + /{4 (IQ —+ 62)2J +p (t)

We will prove Theoreni]2 by showing thét:, =2, €1, e2, z3) = 0, which is an equilibrium point, is Globally Finite Time
Stable. An important property of the previous systems ishthimogeneity, that we recall briefly.

For a given vectorr = (z1,...,x,)7 € R", the dilation operator is defined &'z := (e"'x1,...,e™x,), Ve > 0, where
r; > 0 are the weights of the coordinates. ltet (r4,...,7,) be the vector of weights. A functiol : R” — R (respectively,
a vector fieldf : R®™ — R™, or a vector-set field?”(z) C R™) is calledr-homogeneous of degrea € R if the identity
V(ATz) = e™V(x) holds (resp.f(Arx) = AT f(z), or F(ATz) = €ATF(z)), [8], [13]. Consider that the vector and

» S

dilation Afz are fixed. The homogeneous norm is defined|ldy, , := (Z?:l | *) " Vax € R", for anyp > 1. The

setS = {z € R" : |z[|, , = 1} is the corresponding unit sphere. Homogeneous systemsiimpgetant properties as e.g.
that local stability implies global stability and if the hageneous degree is negative asymptotic stability impli@gefiime
stability [8], [13]: Assume that the origin of a Filippov Dérential Inclusiong € F'(z), is strongly locally Asymptotic Stable
and the vector-set fieldl" is ~-homogeneous of degrée< 0; then,z = 0 is strongly globally finite-time stable and the settling
time is continuous at zero and locally bounded.

System([(¥7) is homogeneous, with weights: (3, 2, 3, 2, 1) for the variablegz,, x2, e1, e2, 23) and negative homogeneous
degred = —1. From homogeneity arguments [13]] [7],[14] one expectsithacontrollers have precision of ordef | < v, 73
and|xs| < 172, wherer is the discretization step and andv, are constants depending only on the gains of the algorithm.
Moreover, it is easy to show that for the Lyapunov functidms following inequality is satisfied

V(z) < —kVi(z),

from which finite time convergence can be deduced. With tHeevaf « it is possible to estimate the convergence time as

T(x0) < %V%(xo).

I1l. L YAPUNOV FUNCTION FOR THE CLOSED LOOP SYSTEM
We show, by using homogeneous and smooth Lyapunov FunctivatsTheoremE]1 arid 2 are valid.

A. Proof of Theorem[T
Consider the closed loop system of pldnt (3) with the colerdH), with the variablecs = z + p (¥)

r1 = X2
1 1
iy = —ki[z1]® — ko f%?fzJ 7+ a3 (8)
3
i?g = —kg ’VIl + k4$22J —|— p (t) .

Consider the homogeneous and smooth Lyapunov Function

5 5 1
V(x1, 22, 23) = 71 [&]® + 7128122 + |22]2 + = |z3)”



whereé; =z — klg [23]%. We recall Young's inequality.
1
Lemma 3: [10] For any positive real numbeis > 0, b > 0, ¢ > 0, p > 1 andq > 1, with % + % = 1, the following
inequality is always satisfied
aP b
ab<cP— ¢ 91—, [ |
p

From LemmadB it follows easily that given it is always possible to rendéf positive definite selecting; sufficiently large.
Its derivative along the trajectories @fl (8) is given by

Vo= Wi(&, z2) + Wa (&1, o2, x3) + Wi (2, p) ,
where
Wy = (g’h (fljg + 712172) To — ng <§’71251 + fIQJ%) (:—; (flJ% + [IQJ%)
Wy = -k (71251 + g fwzjg) a (&, x3) ,

alen )= |6+ 35 f:csﬁf - | fal?| = et

ol

v

Ws(z, p) = (ks [Il + k4~’02%J0 - p(t)> a3 | [% <g% [€1]° +’Yl2~’02) - (%JQ} -

Consider firstiV;. If we set
3
5 (ks
279\ ks

5 ()
ok <(Z—>f + mﬁ) (R 1)t + o)

2 3
The second term is negative semidefinitégn z3), and it becomes zero only at the $gt= { 22 = — (E) [xl — (x3J3J ’ }

On S; the value ofi¥; becomes

o 5 kl g 2 kg 3 kl 2 %
Wils, = —3 (E) (g (k_1) 71—<k—2> [STE

_3 (ks °
N7 9\k)
i.e. v; is set sufficiently large. We recall the following well-knowproperty of homogeneous functions

Lemma 4: [18], [19] Letn : R — R and~ : R® — R be two homogeneous functions, with weights- (r4, ..., 7,) and
degreesn, such that the following holds

{z € R"\ {0} : y(x) = 0} € {w € R" \ {0} : () < 0},

Then, there exists a real number such that, for alh < \* for all z € R™\ {0}, and some: > 0, n(z) — My(z) < —c|lz|",.

|
Using Lemmd¥4 it follows thatV; < —c||(&1, :z:Q)Hf,p for ko sufficiently large.
Now we consider the continuous function, appearing in tliel tterm

which is homogeneous of degréeNote thata (£1, 0) = 0 and alsoa (0, z3) = 0. Sincea (¢1, x3) is homogeneous if; it
follows that

then we get

Wy =

which is negative if

1
3

- (§1J% ;

la (&1, 23)| < 8 (z3) |&1]7



whered (z3) > 0 is continuous inzg andé (0) = 0. This implies that, for somé& > 0
(Wa| <6 (x3) Bl(&, z2)ly.,
and therefore, for small values of
Wi+ We < —(e— B0 (x3) (6, 22y,
< —al&, )y, -

Due to the homogeneity dfi’; + W5 this must be valid globally. Note that; (&1, x2) + Wa (&1, 2, x3) = 0 on the set
Sy = {(&1, z2) = 0}. Finally, the value ofi’s on the setS; is given by

W3 |$2 < - (k3 - L) |':C3|4 )

N

which is negative for. < k3. Again, Lemmd# implies tha” < 0 selectingks (and L) sufficiently small.

B. Proof of Theorem[2
We first prove that the closed loop system, without pertuobaand without integral controller, that we can write ase(se

@)

il = X9

Ty = —ky Dclﬁ — ko fxgjé + w (z2, €2)
e1 = —lfe)? +es )
o = —lafer)?

w(xe, €2) = ko DCQJ% — ko[22 —l—ng% ,

is globally finite time stable.
We use the homogeneous and smooth LF

Viz, e)= Vi(z)+uale)

wherey > 0,
505 (k\° 5
Vi(x) = mle]® + 2 i 12 + |x2]?
2 \ ks
5 5
Va(e) = lal® +721e2?,

ande; =e; — & (egjg. V4 is obviously p.d. forys > 0, while for V4 it follows from Young'’s inequality (as in the previous
l2
subsection) that it is positive definite selecting sufficiently large. The derivative df; is

Va(e) = —gll {61—%T62J J (MJ‘

Wl
v
Wl
wlw

1 5
- l—ez) - 51272 [e1]® [ez]
1

The first term is negative, except at the Sgt= {el =31 [egjg}, on which the value of/ is
17

ly

. 5
Vals, = —3 2 lea]* < 0.

T
2
ll

And therefore, due to Lemnia 4, it is possible to rendek 0 selectingy, sufficiently small. The derivative of; along the
trajectories of[(P) is given by
k
)(éwu )

3
+gk2 ((Z—;) T+ f$2J3> w (z2, €2) .

3

3 .
The second term is negative, except at the{se; = - (k—2) [x2]2 } at which the value ot/ is

: 5 (ka\’ 5 (k\?
e = =(3() -3 () )

(MY

Wl
N

+ [@2]



that is negative ify; is sufficiently large, i.e.
NENEAY
At A .

Thanks to LemmAl4 the first two terms ihcan be made n.d. selectirtg sufficiently large. Note furthermore that the function
1
[x]? is Holder continuous, and therefore
1
|w (22, €2)] < ckz |ea]?

everywhere, for some > 0. We obtain therefore
: 4 3 4
V < —anlzlly,, + azcka |lzll; , llelly, , — pas lelly, ,
for some positiver;. Selectingu: sufficiently large we obtaiV < 0. Q.E.D.
We notice that systerfi](9) is not insensitive to the pertimbat (¢). However, as in the previous case adding the discontinuous
integral controller a Lipschitz continuous perturbati@ande completely compensated. The proof is similar to theg¢.ca

IV. SIMULATION EXAMPLE

We illustrate the behavior of the proposed integral cotdrslby some simulations. Consider the dynamics of a simple
pendulum without friction
j?l = X2
iy = —Isin(21)+ Zzutp(t),

wherez; = 6 is the position angler, = 6 is the angular velocityy is the mass of the boly, is the gravity acceleratior,
is the length of the bob, the contralis the torque applied to the pendulum, and the perturbati@gh = 0.4 sin (¢), that can
be interpreted also as the second derivative of a referagnalgin this case the state corresponds to the tracking error).
For the simulations we have used the following parametesesd = 1 [m], m = 1.1[Kg], g = 9.815[m/s?], and the initial
conditionszy (0) = 2, z2 (0) = 2.
We have implemented three controllers:
« A State Feedback (SF) controller with discontinuous irdeterm, as given by[{4), with gainls = 2, ko = 5, k3 = 0.5,
k4 = 0, and initial value of the integrator(0) = 0.
« An Output Feedback (OF) controller with discontinuous gmé term, as given by[15), with controller gaiks = 23,
ko = 5A7, k3 = 0.5\, ks = 0, A\ = 3, observer gaing, = 2L, I, = 1.1L%, L = 4, observer initial conditions; (0) = 0,
%2 (0) = 0, and initial value of the integrator(0) = 0.
« A Twisting controller [17], [7], [14], given byu = —k; [21]° — ks [22]°, with gainsk; = 1.2, ky = 0.6.
The simulations for the three controllers are presenteddgnrEsIME4. In Figuré TV the evolution of the position is pented
and also the evolution of the estimated position given byabgerver for the OF, which converges very fast. All conénll
are able to bring the position to zero in finite time.

—OF
‘' Obs
SF

- - = Twisting
KRl

Position

Fig. 1. Behavior ofr; with Twisting and the Discontinuous Integral Controller

Figure[IM presents the time evolution of the velocity andeissimation by the observer for the OF, which converges itefini
time around the timé5. We see also the typical zig-zag behavior for the Twistingtagler. All controllers are able to bring
the velocity to rest in finite time.
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Fig. 2. Behavior ofzs with Twisting and the Discontinuous Integral Controller

—oOF

== Perturbation

Integrator State
. )

time

Fig. 3. Behavior of the state of the discontinuous Integratwd the negative value of the perturbatiem ().

In Figure[3 the integrator state is presented for both cdateoOF and SF, and the (negative) value of the perturbation
(—p (t)). We note the zig-zag behavior of the integral controllere ¢recisely to its discontinuous character. We appreciate
also that the integrator signal reconstructs after a fimibe the (negative value of the) perturbation, and this isrdason for
it to be able to fully compensate its action on the plant.

Finally, Figurd 4 presents the control signalor the three controllers. We see that, while the OF and thedfrollers with
discontinuous Integral action provide a continuous cdrdignal, the Twisting controller provides a switching @bistinuous)
control signal, with an extremely high frequency when theildarium has been reached, which corresponds to the (linadides)
chatttering phenomenon.

V. CONCLUSION

We present in this paper a Discontinuous Integral Controlldhich shares the properties of the classical PID contndl a
the HOSM controllers: Similar to HOSM it is able to fully compsate a Lispchitz perturbation or to track an (unknowngtim
varying reference with bounded second derivative, it hgh precision due to the homogeneity properties, and it l&tabithe
origin globally and in finite time. Similar to the PID contritlhas a continuous control signal. In order to achieve armp@ut
Feedback scheme we introduce a finite time converging obsefhe stability proofs are performed with a novel Lyapunov
method. It is possible to extend this idea to systems witlndrigelative degree, and this will be done in future work.
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Fig. 4. Control signal for OF and SF controllers with diséonbus Integral action and for the Twisting controller.
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