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Discontinuous integral control for mechanical systems
Jaime A. Moreno

Abstract

For mechanical systems we present a controller able to trackan unknown smooth signal, converging in finite time and by
means of a continuous control signal. The control scheme is insensitive against unknown perturbations with bounded derivative.
The controller consists of a non locally Lipschitz state feedback control law, and a discontinuous integral controller, that is able
to estimate the unknown perturbation and to compensate for it. To complete an output feedback control a continuous observer
for the velocity is added. It is shown that the closed loop consisting of state feedback, state observer and discontinuous integral
controller has an equilibrium point that is globally, finitetime stable, despite of perturbations with bounded derivative. The proof
is based on a new smooth Lyapunov function.

I. I NTRODUCTION

We consider in this paper a second order system

ξ̇1 = ξ2
ξ̇2 = f (ξ1, ξ2, t) + ρ (t) + τ

(1)

whereξ1 ∈ R and ξ2 ∈ R are the states,τ ∈ R is the control variable,f (ξ1, ξ2, t) is some known function, while the term
ρ (t) corresponds to uncertainties and/or perturbations. System 1 can represent a mechanical system, whereξ1 is the position
andξ2 is the velocity. An important control task is to track a smooth time varying referencer (t), i.e. if one defines the tracking
error z1 = ξ1 − r andz2 = ξ2 − ṙ the objective is to asymptotically stabilize the origin of system

ż1 = z2
ż2 = f (ξ1, ξ2, t) + ρ (t)− r̈ (t) + τ .

(2)

With the controlτ = u− f (ξ1, ξ2, t) + r̈ (t) the system becomes

ẋ1 = x2

ẋ2 = u+ ρ (t) ,
(3)

where the perturbationρ (t) is a time varying signal, not vanishing at the origin (i.e. whenx = 0 the perturbation can still be
acting). We notice that it is possible not to feed the second derivative of the referencër (t) to the controlτ . In this case it
will be considered as part of the perturbation termρ (t).

Under the stated hypothesis it is well known that a continuous, memoryless state feedbacku = k (x) is not able to stabilize
x = 0. This is so, because the controller has to satisfy with the condition k (0) = 0, since the closed loop has to have an
equilibrium at the origin for vanishing perturbation. But if the perturbation does not vanish, then the origin cannot beanymore
an equilibrium point. Discontinuous controllers, as the first order Sliding Mode (SM) ones [6], [5] are able to solve the problem
for non vanishing (or persistently acting) bounded perturbations. However, they require the design of a sliding surface that is
reached in finite time, but the targetx = 0 is attained only asymptotically fast, and at the cost of a high frecuency switching
of the control signal (the so calledchattering), that has a negative effect in the actuator, and excites unmodelled dynamics
of the plant. Higher Order Sliding Modes (HOSM) [7], [14], [13], [11], [17] provide a discontinuous controller for systems
of relative degree higher than one to robustly stabilize theorigin x = 0 despite of bounded perturbations, but again at the
expense of chattering. A natural alternative consists in adding an integrator, i.e. defining a new statez = u+ ρ (t), with ż = v
and designing a third order HOSM controller for the new control variablev. This allows to reach the origin in finite time,
and it will be insensitive to Lipschitz perturbations, i.e.with ρ̇ (t) bounded. In this form a continuous control signalu will
be obtained, so that the chattering effect is reduced. However, this requires feedback not only the two statesx1 andx2 but
also the statez, which is unknown due to the unknown perturbation. Moreover, to implement an output feedback controller
(assuming that only the positionx1 is measured) it is necessary to differentiate two times the positionx1, with the consequent
noise amplification effect.

In the case of (almost) constant perturbationsρ (t) a classical solution to the robust regulation problem is theuse of integral
action, as for example in the PID control[1]. The linear solution would consist of a state feedback plus an integral action,
u = −k1x1 − k2x2 + z , ż = −k3x1. This controller requires only to feedback the position andthe velocity. For an output
feedback it would be only necessary to estimate the velocity(with the D action for example). In contrast to the HOSM
controller this PID control is only able to reject constant perturbations, instead of Lipschitz ones, and it will reach the target
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only exponentially fast, and not in finite time. By the Internal Model Principle it would be possible to reject exactly anykind
of time varying perturbationsρ (t), for which a dynamical model (so called an exosystem) is available. However this would
increase the complexity (order) of the controller, since this exosystem has to be included in the control law.

Here we provide a solution to the problem, that is somehow an intermediate solution between HOSM and PID control.
Similar to the HOSM control our solution uses a discontinuous integral action, it can compensate perturbations with bounded
derivative (ρ (t) is Lipschitz) and the origin is reached in finite time. So it can solve not only regulation problems (whereρ
is constant) but also tracking problems (withρ time varying) in finite time and with the same complexity of the controller.
Similar to the PID control the proposed controller providesa continuous control signal (avoiding chattering) and it requires
only to feedback position and velocity. We also provide for a(non classical) D term, i.e. a finite time converging observer,
to estimate the velocity. This basic idea has been already presented in our previous work [20]. In the present one we give a
much simpler Lyapunov-based proof, and we also include an observer in the closed loop together with its Lyapunov proof.
Our solution can be seen as a generalization of the Super Twisting control for systems of relative degree one [17], [7], [14],
[11], [15] to systems with relative degree two.

The rest of the paper is organized as follows. In next SectionII we present the main result: The Discontinuous Integral
Controller with and without observer and give some discussion on the algorithms. Section III is dedicated to present the
Lyapunov-based proof of the convergence of the closed loop for the proposed control algorithms. In Section IV we give an
illustrative example with some simulations and in Section Vsome conclusions are drawn.

Notation 1: To simplify the presentation we introduce the following notation. For a real variablez ∈ R and a real number
p ∈ R the symbol⌊z⌉p = |z|psign(z), i.e. the signed powerp of z. Note that⌊z⌉2 = |z|2sgn(z) 6= z2, and if p is an odd
number then⌊z⌉p = zp. Note also in particular, that

⌊z⌉0 = sgn(z), ⌊z⌉0zp = |z|p

⌊z⌉0|z|p = ⌊z⌉p, ⌊z⌉p⌊z⌉q = |z|p+q .

II. D ISCONTINUOUS INTEGRAL CONTROLLER

For the robust finite time stabilization of the origin of system (3) we propose a nonlinear, homogeneous state feedback control
law, which is able to stabilize the origin in finite time in theabsence of non vanishing perturbations, and a discontinuous integral
controller is added to compensate for the persistently acting perturbations. In contrast to the continuous integral controller, that
can only compensate for (almost) constant perturbations, the discontinuous one can deal with time varying perturbations which
are Lipschitz continuous, that is, their derivatives existalmost everywhere and it is uniformly bounded. The control signal of
the controller is continuous, so that the chattering effectof the SM and HOSM controllers is avoided.

Theorem 1: Consider the plant (3) with Lipschitz continuous perturbation signalρ (t) with Lispchitz constantL. Then the
control law

u = −k1 ⌈x1⌋
1

3 − k2 ⌈x2⌋
1

2 + z

ż = −k3

⌈

x1 + k4x
3

2

2

⌋0 (4)

can stabilize the origin in finite time for anyk4 and appropriate designed gainsk1, k2, k3. �

This Theorem shows that with the addition of the discontinuous integral term it is possible to eliminate completely the effect
of the Lipschitz perturbationδ (t), that cannot be (fully) compensated by the state feedbacku = −k1 ⌈x1⌋

1

3 − k2 ⌈x2⌋
1

2 alone.
In fact, the integral controller can be interpreted as a perturbation estimator, sincez (t) = −δ (t) after a finite time.

It is remarkable, that the observer itself has not been designed to be robust against the perturbation, but the discontinuous

integral controller is able to compensate for it. Note also that the input to the discontinuous integratory = x1 + k4x
3

2

2 can be
a combination of the position (with relative degree two) andthe velocity (with a relative degree one). The value ofk4 can be
arbitrary (including zero), so that the velocity is not necessary for the integral action. Fork4 > 0 this output can be seen as a
passive output of the system(x1, x2). However, it is necessary to have the position in this signal, otherwise the closed loop
will be unstable.

By performing a linear transformation of the plant (3) with controller (4) ξ = λx, for any someλ > 0, it is easy to
show that if the gains(k1, k2, k3, k4) achieve the objective for a perturbation with Lipschitz constantL, then the gains
(

λ
2

3 k1, λ
1

2 k2, λk3, λ
−

3

2 k4

)

will also stabilize the system for a perturbation with Lipschitz constantλL.
The implementation of controller (4) requires the mesurement of both statesx1, x2. If only the position is measured a finite

time convergent observer forx2 can be implemented, so that an output feedback control is obtained.
Theorem 2: Consider the plant (3) with Lipschitz continuous perturbation signalρ (t) with Lispchitz constantL. Then the

output feedback control law
˙̂x1 = −l1 ⌈x̂1 − x1⌋

2

3 + x̂2

˙̂x2 = −l2 ⌈x̂1 − x1⌋
1

3 − k1 ⌈x1⌋
1

3 − k2 ⌈x̂2⌋
1

2

u = −k1 ⌈x1⌋
1

3 − k2 ⌈x̂2⌋
1

2 + z

ż = −k3

⌈

x1 + k4x̂
3

2

2

⌋0

,

(5)
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can stabilize the origin in finite time for appropriate designed gainsk1, k2, k3, k4, l1 and l2. �

Similarly to the previous case it follows that if the gains(k1, k2, k3, k4, l1, l2) achieve the objective for a perturbation with

Lipschitz constantL, then the gains
(

λ
2

3 k1, λ
1

2 k2, λk3, λ
−

3

2 k4, λ
1

3 l1, λ
2

3 l2

)

will also stabilize the system for a perturbation
with Lipschitz constantλL. System (3) with controller (5) is given by the dynamics

ẋ1 = x2

ẋ2 = −k1 ⌈x1⌋
1

3 − k2 ⌈x̂2⌋
1

2 + z + ρ (t) ,
˙̂x1 = −l1 ⌈x̂1 − x1⌋

2

3 + x̂2

˙̂x2 = −l2 ⌈x̂1 − x1⌋
1

3 − k1 ⌈x1⌋
1

3 − k2 ⌈x̂2⌋
1

2

ż = −k3

⌈

x1 + k4x̂
3

2

2

⌋0

(6)

which is a discontinuous system, whose trajectories are defined in the sense of Filippov [9]. If we introduce the estimation
errorse1 = x̂1 − x1, e2 = x̂2 − x2 and the effect of the perturbationx3 = z + ρ (t), then the dynamics of the system can be
rewritten as

ẋ1 = x2

ẋ2 = −k1 ⌈x1⌋
1

3 − k2 ⌈x̂2⌋
1

2 + x3 ,

ė1 = −l1 ⌈e1⌋
2

3 + e2

ė2 = −l2 ⌈e1⌋
1

3 − x3 (t)

ẋ3 = −k3

⌈

x1 + k4 (x2 + e2)
3

2

⌋0

+ ρ̇ (t)

(7)

We will prove Theorem 2 by showing that(x1, x2, e1, e2, x3) = 0, which is an equilibrium point, is Globally Finite Time
Stable. An important property of the previous systems is thehomogeneity, that we recall briefly.

For a given vectorx = (x1, ..., xn)
T ∈ R

n, the dilation operator is defined as∆r
ǫx := (ǫr1x1, ..., ǫ

rnxn), ∀ǫ > 0, where
ri > 0 are the weights of the coordinates. Letr = (r1, ..., rn) be the vector of weights. A functionV : Rn → R (respectively,
a vector fieldf : Rn → R

n, or a vector-set fieldF (x) ⊂ R
n) is called r-homogeneous of degreem ∈ R if the identity

V (∆r
ǫx) = ǫmV (x) holds (resp.,f(∆r

ǫx) = ǫl∆r
ǫf(x), or F (∆r

ǫx) = ǫl∆r
ǫF (x)), [8], [13]. Consider that the vectorr and

dilation ∆r
ǫx are fixed. The homogeneous norm is defined by‖x‖

r, p :=
(

∑n

i=1
|xi|

p

ri

)
1

p

, ∀x ∈ R
n, for any p ≥ 1. The

set S = {x ∈ R
n : ‖x‖

r, p = 1} is the corresponding unit sphere. Homogeneous systems haveimportant properties as e.g.
that local stability implies global stability and if the homogeneous degree is negative asymptotic stability implies finite time
stability [8], [13]: Assume that the origin of a Filippov Differential Inclusion,ẋ ∈ F (x), is strongly locally Asymptotic Stable
and the vector-set fieldF is r-homogeneous of degreel < 0; then,x = 0 is strongly globally finite-time stable and the settling
time is continuous at zero and locally bounded.

System (7) is homogeneous, with weightsr = (3, 2, 3, 2, 1) for the variables(x1, x2, e1, e2, x3) and negative homogeneous
degreel = −1. From homogeneity arguments [13], [7], [14] one expects that the controllers have precision of order|x1| ≤ ν1τ

3

and |x2| ≤ ν2τ
2, whereτ is the discretization step andν1 andν2 are constants depending only on the gains of the algorithm.

Moreover, it is easy to show that for the Lyapunov functions the following inequality is satisfied

V̇ (x) ≤ −κV
4

5 (x) ,

from which finite time convergence can be deduced. With the value of κ it is possible to estimate the convergence time as

T (x0) ≤
5

κ
V

1

5 (x0) .

III. L YAPUNOV FUNCTION FOR THE CLOSED LOOP SYSTEM

We show, by using homogeneous and smooth Lyapunov Functions, that Theorems 1 and 2 are valid.

A. Proof of Theorem 1

Consider the closed loop system of plant (3) with the controller (4), with the variablex3 = z + ρ (t)

ẋ1 = x2

ẋ2 = −k1 ⌈x1⌋
1

3 − k2 ⌈x2⌋
1

2 + x3

ẋ3 = −k3

⌈

x1 + k4x
3

2

2

⌋0

+ ρ̇ (t) .

(8)

Consider the homogeneous and smooth Lyapunov Function

V (x1, x2, x3) = γ1 |ξ1|
5

3 + γ12ξ1x2 + |x2|
5

2 +
1

5
|x3|

5
,
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whereξ1 = x1 −
1

k3

1

⌈x3⌋
3. We recall Young’s inequality.

Lemma 3: [10] For any positive real numbersa > 0, b > 0, c > 0, p > 1 and q > 1, with 1

p
+ 1

q
= 1, the following

inequality is always satisfied

ab ≤ cp
ap

p
+ c−q b

q

q
. �

From Lemma 3 it follows easily that givenγ12 it is always possible to renderV positive definite selectingγ1 sufficiently large.
Its derivative along the trajectories of (8) is given by

V̇ = W1 (ξ1, x2) +W2 (ξ1, x2, x3) +W3 (x, ρ̇) ,

where

W1 =

(

5

3
γ1 ⌈ξ1⌋

2

3 + γ12x2

)

x2 −
5

2
k2

(

2

5
γ12ξ1 + ⌈x2⌋

3

2

)(

k1
k2

⌈ξ1⌋
1

3 + ⌈x2⌋
1

2

)

W2 = −k1

(

γ12ξ1 +
5

2
⌈x2⌋

3

2

)

α (ξ1, x3) ,

α (ξ1, x3) =

⌈

ξ1 +
1

k31
⌈x3⌋

3

⌋
1

3

−

⌈

1

k31
⌈x3⌋

3

⌋
1

3

− ⌈ξ1⌋
1

3 ,

W3 (x, ρ̇) =

(

k3

⌈

x1 + k4x
3

2

2

⌋0

− ρ̇ (t)

)

|x3|
2

[

3

k31

(

5

3
γ1 ⌈ξ1⌋

2

3 + γ12x2

)

− ⌈x3⌋
2

]

.

Consider firstW1. If we set

γ12 =
5

2

(

k1
k2

)3

then we get

W1 =
5

2

(

k1
k2

)3
(

2

3

(

k2
k1

)3

γ1 ⌈ξ1⌋
2

3 + x2

)

x2 −

5

2
k2

(

(

k1
k2

)3

ξ1 + ⌈x2⌋
3

2

)

(

k1
k2

⌈ξ1⌋
1

3 + ⌈x2⌋
1

2

)

The second term is negative semidefinite in(ξ1, x2), and it becomes zero only at the setS1 =

{

x2 = −
(

k1

k2

)2 ⌈

x1 −
1

k3

1

⌈x3⌋
3
⌋

2

3

}

.

On S1 the value ofW1 becomes

W1 |S1
= −

5

2

(

k1
k2

)5
(

2

3

(

k2
k1

)3

γ1 −

(

k1
k2

)2
)

|ξ1|
4

3 ,

which is negative if

γ1 >
3

2

(

k1
k2

)5

,

i.e. γ1 is set sufficiently large. We recall the following well-known property of homogeneous functions
Lemma 4: [18], [19] Let η : Rn → R andγ : Rn → R+ be two homogeneous functions, with weightsr = (r1, ..., rn) and

degreesm, such that the following holds

{x ∈ R
n \ {0} : γ(x) = 0} ⊆ {x ∈ R

n \ {0} : η(x) < 0},

Then, there exists a real numberλ∗ such that, for allλ ≤ λ∗ for all x ∈ R
n \{0}, and somec > 0, η(x)−λγ(x) < −c ‖x‖

m

r, p.
�

Using Lemma 4 it follows thatW1 < −c ‖(ξ1, x2)‖
4

r, p for k2 sufficiently large.
Now we consider the continuous function, appearing in the third term

α (ξ1, x3) =

⌈

ξ1 +
1

k31
⌈x3⌋

3

⌋
1

3

−

⌈

1

k31
⌈x3⌋

3

⌋
1

3

− ⌈ξ1⌋
1

3 ,

which is homogeneous of degree1. Note thatα (ξ1, 0) = 0 and alsoα (0, x3) = 0. Sinceα (ξ1, x3) is homogeneous inξ1 it
follows that

|α (ξ1, x3)| ≤ δ (x3) |ξ1|
1

3 ,
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whereδ (x3) ≥ 0 is continuous inx3 andδ (0) = 0. This implies that, for someβ > 0

|W2| ≤ δ (x3)β ‖(ξ1, x2)‖
4

r, p ,

and therefore, for small values ofx3

W1 +W2 ≤ − (c− βδ (x3)) ‖(ξ1, x2)‖
4

r, p

≤ −c2 ‖(ξ1, x2)‖
4

r, p .

Due to the homogeneity ofW1 + W2 this must be valid globally. Note thatW1 (ξ1, x2) + W2 (ξ1, x2, x3) = 0 on the set
S2 = {(ξ1, x2) = 0}. Finally, the value ofW3 on the setS2 is given by

W3 |S2
≤ − (k3 − L) |x3|

4
,

which is negative forL < k3. Again, Lemma 4 implies thaṫV < 0 selectingk3 (andL) sufficiently small.

B. Proof of Theorem 2

We first prove that the closed loop system, without perturbation and without integral controller, that we can write as (see
(7))

ẋ1 = x2

ẋ2 = −k1 ⌈x1⌋
1

3 − k2 ⌈x2⌋
1

2 + ω (x2, e2)

ė1 = −l1 ⌈e1⌋
2

3 + e2

ė2 = −l2 ⌈e1⌋
1

3

ω (x2, e2) = k2 ⌈x2⌋
1

2 − k2 ⌈x2 + e2⌋
1

2 ,

(9)

is globally finite time stable.
We use the homogeneous and smooth LF

V (x, e) = V1 (x) + µV2 (e) ,

whereµ > 0,

V1 (x) = γ1 |x1|
5

3 +
5

2

(

k1
k2

)3

x1x2 + |x2|
5

2 ,

V2 (e) = |ǫ1|
5

3 + γ2 |e2|
5

2 ,

andǫ1 = e1 −
1

l
3

2

1

⌈e2⌋
3

2 . V2 is obviously p.d. forγ2 > 0, while for V1 it follows from Young’s inequality (as in the previous

subsection) that it is positive definite selectingγ1 sufficiently large. The derivative ofV2 is

V̇2 (e) = −
5

3
l1

⌈

e1 −
1

l
3

2

1

⌈e2⌋
3

2

⌋
2

3 (

⌈e1⌋
2

3 −
1

l1
e2

)

−
5

2
l2γ2 ⌈e1⌋

1

3 ⌈e2⌋
3

2 .

The first term is negative, except at the setS3 =

{

e1 = 1

l
3

2

1

⌈e2⌋
3

2

}

, on which the value ofV̇2 is

V̇2 |S3
= −

5

2

l2

l
1

2

1

γ2 |e2|
2 < 0 .

And therefore, due to Lemma 4, it is possible to renderV̇2 < 0 selectingγ2 sufficiently small. The derivative ofV1 along the
trajectories of (9) is given by

V̇1 (x) =

(

5

3
γ1 ⌈x1⌋

2

3 +
5

2

(

k1
k2

)3

x2

)

x2 −
5

2
k2

(

(

k1
k2

)3

x1 + ⌈x2⌋
3

2

)

(

k1
k2

⌈x1⌋
1

3 + ⌈x2⌋
1

2

)

+
5

2
k2

(

(

k1
k2

)3

x1 + ⌈x2⌋
3

2

)

ω (x2, e2) .

The second term is negative, except at the set

{

x1 = −
(

k2

k1

)3

⌈x2⌋
3

2

}

, at which the value ofV̇1 is

V̇1 (x1, x2) = −

(

5

3

(

k2
k1

)2

γ1 −
5

2

(

k1
k2

)3
)

|x2|
2
,
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that is negative ifγ1 is sufficiently large, i.e.

γ1 >
3

2

(

k1
k2

)5

.

Thanks to Lemma 4 the first two terms iṅV can be made n.d. selectingk2 sufficiently large. Note furthermore that the function
⌈x⌋

1

2 is Hölder continuous, and therefore
|ω (x2, e2)| ≤ ck2 |e2|

1

2

everywhere, for somec > 0. We obtain therefore

V̇ ≤ −α1 ‖x‖
4

r, p + α2ck2 ‖x‖
3

r, p ‖e‖r, p − µα3 ‖e‖
4

r, p ,

for some positiveαi. Selectingµ sufficiently large we obtaiṅV < 0. Q.E.D.
We notice that system (9) is not insensitive to the perturbation ρ (t). However, as in the previous case adding the discontinuous

integral controller a Lipschitz continuous perturbation can be completely compensated. The proof is similar to that case.

IV. SIMULATION EXAMPLE

We illustrate the behavior of the proposed integral controllers by some simulations. Consider the dynamics of a simple
pendulum without friction

ẋ1 = x2

ẋ2 = − g

l
sin (x1) +

1

ml2
u+ ρ (t) ,

wherex1 = θ is the position angle,x2 = θ̇ is the angular velocity,m is the mass of the bob,g is the gravity acceleration,l
is the length of the bob, the controlu is the torque applied to the pendulum, and the perturbationρ (t) = 0.4 sin (t), that can
be interpreted also as the second derivative of a reference signal (in this case the statex corresponds to the tracking error).
For the simulations we have used the following parameter valuesl = 1 [m], m = 1.1 [Kg], g = 9.815 [m/s2], and the initial
conditionsx1 (0) = 2, x2 (0) = 2.

We have implemented three controllers:
• A State Feedback (SF) controller with discontinuous integral term, as given by (4), with gainsk1 = 2, k2 = 5, k3 = 0.5,

k4 = 0, and initial value of the integratorz (0) = 0.
• An Output Feedback (OF) controller with discontinuous integral term, as given by (5), with controller gainsk1 = 2λ

2

3 ,
k2 = 5λ

1

2 , k3 = 0.5λ, k4 = 0, λ = 3, observer gainsl1 = 2L, l2 = 1.1L2, L = 4, observer initial conditionŝx1 (0) = 0,
x̂2 (0) = 0, and initial value of the integratorz (0) = 0.

• A Twisting controller [17], [7], [14], given byu = −k1 ⌈x1⌋
0
− k2 ⌈x2⌋

0, with gainsk1 = 1.2, k2 = 0.6.
The simulations for the three controllers are presented in Figures IV-4. In Figure IV the evolution of the position is presented
and also the evolution of the estimated position given by theobserver for the OF, which converges very fast. All controllers
are able to bring the position to zero in finite time.
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Fig. 1. Behavior ofx1 with Twisting and the Discontinuous Integral Controller

Figure IV presents the time evolution of the velocity and itsestimation by the observer for the OF, which converges in finite
time around the time15. We see also the typical zig-zag behavior for the Twisting controller. All controllers are able to bring
the velocity to rest in finite time.
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Fig. 2. Behavior ofx2 with Twisting and the Discontinuous Integral Controller
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Fig. 3. Behavior of the state of the discontinuous Integrator and the negative value of the perturbation−ρ (t).

In Figure 3 the integrator state is presented for both controllers OF and SF, and the (negative) value of the perturbation
(−ρ (t)). We note the zig-zag behavior of the integral controller, due precisely to its discontinuous character. We appreciate
also that the integrator signal reconstructs after a finite time the (negative value of the) perturbation, and this is thereason for
it to be able to fully compensate its action on the plant.

Finally, Figure 4 presents the control signalu for the three controllers. We see that, while the OF and the SFcontrollers with
discontinuous Integral action provide a continuous control signal, the Twisting controller provides a switching (discontinuous)
control signal, with an extremely high frequency when the equilibrium has been reached, which corresponds to the (undesirable)
chatttering phenomenon.

V. CONCLUSION

We present in this paper a Discontinuous Integral Controller, which shares the properties of the classical PID control and
the HOSM controllers: Similar to HOSM it is able to fully compensate a Lispchitz perturbation or to track an (unknown) time
varying reference with bounded second derivative, it has high precision due to the homogeneity properties, and it stabilizes the
origin globally and in finite time. Similar to the PID controlit has a continuous control signal. In order to achieve an Output
Feedback scheme we introduce a finite time converging observer. The stability proofs are performed with a novel Lyapunov
method. It is possible to extend this idea to systems with higher relative degree, and this will be done in future work.
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Fig. 4. Control signal for OF and SF controllers with discontinuous Integral action and for the Twisting controller.
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