
VISUAL AUDITOR: Interactive Visualization for Detection and
Summarization of Model Biases

David Munechika1 Zijie J. Wang1 Jack Reidy2 Josh Rubin2 Krishna Gade2

Krishnaram Kenthapadi2 Duen Horng Chau1

B

C

Slice Settings Summary View

Notebook Usage

Train a classifier on data

(,) = data

.fit(,)
X y

classifier X y

Interact with Visual Auditor

find_slices_and_visualize

(

,

(,)

)

classifier
X y

Import the package

from import visual_auditor *

A

Figure 1: VISUAL AUDITOR provides an overview of underperforming data slices to show where intersectional biases exist. (A) The
Slice Settings sidebar contains options for filtering the data and modifying the visualization, such as customizing the size and color
encodings, showing the top k slices, or selecting particular features of interest. (B) The Summary View provides a visual overview of
the underperforming data slices. Here currently displays the Force Layout which shows underperforming data slices as nodes on a
grid. The location of each node is determined by the features that define the data slice. Users can view clusters of similar data slices
to better understand where intersectional bias might exist in their model. (C) VISUAL AUDITOR is an open-source tool that easily
integrates within existing data science workflows and can be accessed directly within computational notebooks.

ABSTRACT

As machine learning (ML) systems become increasingly widespread,
it is necessary to audit these systems for biases prior to their de-
ployment. Recent research has developed algorithms for effectively
identifying intersectional bias in the form of interpretable, underper-
forming subsets (or slices) of the data. However, these solutions and
their insights are limited without a tool for visually understanding
and interacting with the results of these algorithms. We propose
VISUAL AUDITOR, an interactive visualization tool for auditing
and summarizing model biases. VISUAL AUDITOR assists model
validation by providing an interpretable overview of intersectional
bias (bias that is present when examining populations defined by
multiple features), details about relationships between problematic
data slices, and a comparison between underperforming and overper-
forming data slices in a model. Our open-source tool runs directly
in both computational notebooks and web browsers, making model
auditing accessible and easily integrated into current ML develop-
ment workflows. An observational user study in collaboration with

1Georgia Tech. {dmunechika3|jayw|polo}@gatech.edu
2Fiddler AI. {jack|josh|krishna|krishnaram}@fiddler.ai

domain experts at Fiddler AI highlights that our tool can help ML
practitioners identify and understand model biases.

Index Terms: Human-centered computing—Visualization

1 INTRODUCTION

The growing success and popularity of machine learning (ML) has
led to widespread applications in the real world. It is therefore
necessary to ensure that deployed systems exhibit fair treatment
across all subgroups of people [5]. Without proper model auditing
and validation, we risk encoding prejudicial biases into our models,
thereby deploying systems in the real world that reflect our social
biases and result in user discrimination [5, 25].

An example can be found at the forefront of the ML fairness
debate, specifically surrounding the algorithms behind recidivism
prediction instruments (RPIs). Studies have found the predictive
accuracy of certain RPIs, such as the COMPAS [26] or PCRA [27] in-
struments, vary significantly between different demographic groups,
serving as evidence of algorithmic bias [12,17,35]. Similar concerns
about perpetuating discrimination through algorithmic unfairness
have been raised in other areas including credit card scoring, housing
advertisements, and mortgage systems [3]. Often, a high overall
model performance can cover up the unsatisfactory performance of
individual subgroups (or slices) of data [10, 30, 33].

To mitigate biases, recent researchers often identify slices of data

ar
X

iv
:2

20
6.

12
54

0v
1

 [
cs

.H
C

]
 2

5
Ju

n
20

22

mailto:david.munechika@gatech.edu
jayw@gatech.edu
mailto:polo@gatech.edu
mailto:jack@fiddler.ai
mailto:josh@fiddler.ai
mailto:krishna@fiddler.ai
mailto:krishnaram@fiddler.ai

that appear particularly problematic—these are characterized by
the ML model exhibiting unusually poor performance on the slice
compared to the model’s overall performance and the slice being
large enough to be significant rather than simply an outlier [30, 33].
While existing algorithms [30, 33] are capable of identifying prob-
lematic slices, they fail to provide effective [34], interpretable [24]
overviews of the model bias. Furthermore, existing tools [7,8, 37]
that aim to illustrate model performance and examine discrimination
in ML models require users to have prior knowledge about which
biases exist within the model.

To address these limitations, we design and develop VISUAL
AUDITOR, an interactive, visual interface for model bias detection
and summarization. We aim to create a visual overview that enables
ML models to be audited so that underperforming subgroups can
be effectively surfaced and analyzed by human users. Our research
makes the following major contributions:

• VISUAL AUDITOR, an interactive visualization tool for audit-
ing and summarizing ML model biases. VISUAL AUDITOR fills
a critical research gap and practical need for visually summariz-
ing and auditing underperforming data slices. Underperforming
subgroups are identified using slice-finding algorithms [30] and
are visually displayed along with important accompanying infor-
mation including the size of the subgroup, how significantly it
is underperforming, and what features it is defined by. VISUAL
AUDITOR also complements existing research that focuses primar-
ily on algorithmic slice finding [30, 33]. It goes beyond simply
providing details about each data slice by identifying relationships
between similar problematic data slices and providing methods
for filtering these results to match the interest of the user.

• Design lessons distilled from a user study with Fiddler AI en-
gineers and data scientists. An observational user study with 4
domain experts highlights how VISUAL AUDITOR may be useful
when integrated within existing ML and data science workflows.
We discuss design lessons from our iterative design process and
the user study results.

• An open-source1 and web-based implementation to empower
ML practitioners to audit their models for bias. We developed
VISUAL AUDITOR with modern web technologies so that anyone
can access our tool directly in a web browser or computational
notebook. A demo video of VISUAL AUDITOR can be viewed at
https://youtu.be/ZGCVtu2fcbc.

It is our goal that VISUAL AUDITOR will encourage and improve
the process of model validation while better enabling the analysis
and eventual mitigation of intersectional bias in models.

2 BACKGROUND & RELATED WORK

Slice-Finding Algorithms. Auditing models trained on data defined
by numerous features is a non-trivial task. One must not only look
at subgroups defined by each particular feature but also consider the
intersectional bias which may result when defining subgroups by
multiple features. The number of potential subgroups of data grows
combinatorially, rendering it impractical for a human to perform this
type of model validation manually [33].

Existing research aims to address these computational issues
of data slicing for model validation. SliceFinder is one existing
framework for identifying problematic data slices. It uses statistical
techniques to find interpretable slices as opposed to arbitrary subsets
which are commonly the result of traditional clustering techniques.
SliceFinder considers how significant the difference in loss is be-
tween the slice and the model itself as well as how large the slice is.
It computes an effect size for each data slice which determines how
significant (in other words, problematic) a particular data slice is for
model validation—a higher effect size indicates higher significance.

1Code: https://github.com/poloclub/visual-auditor

This effect size metric is used to rank data slices and determine
which are the most problematic [30].

Similarly, SliceLine is an enumeration algorithm which attempts
to extend the SliceFinder algorithm by addressing the scalability
limitations of traditional methods. It leverages efficient sparse linear
algebra to enable slice enumeration even in complex datasets [33].

Visualization for Model Performance and Bias. The objectives
of ML fairness and understanding model performance has inspired a
wealth of literature [19, 28]. Proposed systems have emerged with
the intention of elucidating the behavior and interior of models and
improving the fairness of AI systems using various visualization
techniques. Uber’s Manifold [40] and ModelTracker [4] are two
systems that have been used in practice to provide performance
insights and comparisons for ML models. However, these tools are
solely focused on performance analysis without a specific aim on
identifying biases or mitigating algorithmic unfairness.

Other recent work has emerged within the visualization commu-
nity to specifically address model fairness. Audit AI [1], Google’s
What-If tool [37], Microsoft’s Fairlearn project [8], and IBM’s AI
Fairness 360 toolkit [7] are all different solutions aiming to mitigate
fairness issues within AI and ML models. They provide details
about fairness metrics of different subgroups of data and use vari-
ous statistical methods for comparing different groups. However,
these systems are limited by requiring a priori knowledge of the
discriminated groups. Users need to manually identify the protected
attributes as well as the privileged and unprivileged groups in order
for these systems to generate comparisons and evaluate potential
biases. It is infeasible for users to manually consider all potential
subgroups of data in order to identify biases [33]—therefore, without
combining bias detection with these visualization methods, these
tools are not easily integrated into current ML workflows.

The SliceFinder GUI attempts to solve this issue by combining
a user interface with the SliceFinder algorithm [13]. However, this
visual system only presents the textual outputs of the algorithm in a
table without offering additional details about the data slices. It lacks
capabilities to analyze problematic slices or understand model bias
at a higher level. In contrast, our tool synthesizes bias detection with
interpretable visualizations to address the limitations of these exist-
ing systems. It effectively summarizes data slices, allows filtering by
desirable characteristics, displays fairness metrics, illustrates related
overlapping slices as well as clusters of similarly-defined slices, and
is easily integrated within current workflow environments.

3 DESIGN GOALS

Through close collaboration with engineers and scientists at Fid-
dler AI since August 2021, we have learned about the need for an
interactive visual tool that helps ML practitioners summarize and
analyze model bias. Through a literature review, we have identified
four design goals of VISUAL AUDITOR.

G1. Visual summary of problematic data slices. Depending on
the hyperparameters of the slice-finding algorithm (such as the
degree, effect size threshold, or maximum number of slices),
the number of problematic slices found by slice-finding al-
gorithms can vary from only a few to over a hundred [30].
Without effective visual techniques, it is challenging for users
to understand and explore existing bias in their model [31].
Therefore, we designed scalable visualizations to summarize
the problematic data slices to help users better understand
where their model is underperforming (Sect. 4.1).

G2. Ability to filter slices by desirable characteristics. To effec-
tively audit their models, users need the ability to narrow their
focus down to problematic slices that are of particular interest
to them [31]. These might be slices with important and po-
tentially sensitive features [15], slices of a particular size (to
eliminate outliers), or slices characterized by an unusually high
or low associated fairness metric [32] (Sect. 4.2).

https://youtu.be/ZGCVtu2fcbc
https://github.com/poloclub/visual-auditor

G3. Comparing slices and analyzing slice relationships. Exam-
ining similar data slices can be useful to understand feature
importance or identify larger, generalized slices (as the result
of merging similar slices) [10, 16, 39]. This would be useful
for identifying efficient bias mitigation techniques that tar-
get clusters of similar problematic slices in order to yield the
greatest improvement in model performance (Sect. 4.3). The
inclusion of overperforming slices for comparison can also
be useful, especially in inbalanced datasets [11]. Comparing
the differences in characteristics between underperforming and
overperforming slices can yield useful insights regarding the
performance of a particular model in order to identify strategies
for mitigating existing model bias [6, 18, 23] (Sect. 4.4).

G4. Integrating into common development workflows. Modern
data science workflows rely on the use of computational note-
books such as Jupyter Notebook [21]. Data scientists and ML
practitioners frequently work within computational notebooks
to develop and train ML models [29]. To ensure model au-
diting is accessible within the current workflow, we designed
VISUAL AUDITOR to run in a web browser and as an interactive
widget in computational notebooks. Finally, we open-sourced
our tool to encourage and support future design, research, and
development of model auditing and bias mitigation (Sect. 4.5).

4 SYSTEM DESIGN

Following the design goals, VISUAL AUDITOR (Fig. 1) tightly
integrates four components: the Force Layout (Sect. 4.1), the Slice
Settings panel (Sect. 4.2), the Graph Layout (Sect. 4.3), and the
Overperforming Slices (Sect. 4.4).

4.1 Summarizing the Problematic Slices

VISUAL AUDITOR uses the SliceFinder [13] algorithm in the back-
end for identifying problematic data slices but extends its inter-
pretability and actionability. We limit intersectional biases to be
defined by at most two features to ensure interpretable slices with a
significant effect size are identified. To help users efficiently under-
stand and analyze the potentially large number of problematic slices
produced by the algorithm, we present these in a summary view.

Force Layout. The Force Layout (Figure 1B) summarizes the
problematic slices in a dataset (G1). Each slice is displayed as a node
on a grid and mapped to an area defined by the intersection of its
features. Slices will be spatially located next to other slices defined
by similar features. By default, the color of each node maps to the
percent difference of its log loss compared to the overall model (a
darker color indicates worse log loss and more severe underperfor-
mance). Similarly, the size of each node represents the sample size
of the slice standardized on a log scale. However, both the color and
size encodings can be customized based on user preference. Users
can also hover over a specific node to display a tooltip containing
details about that particular slice. Overall, the Force Layout is an
effective visualization design because it immediately draws attention
to the largest and most problematic slices through color and size
encodings (G1) while simultaneously conveying information about
relationships through clusters of similarly defined slices (G3).

4.2 Slice Filters and Visualization Settings

The Force Layout by default displays an overview of all of the slices.
To enable users to focus on particular slices of interest (G2), the
Slice Settings sidebar (Figure 1A) offers a collection of options for
modifying the visualization and filtering the visible slices.

The Color Represents and Size Represents dropdown menus allow
the user to customize each of these encodings. For example, the
respective default encodings of log loss and sample size could be
changed to a fairness metric such as balanced accuracy, if desired.
Additionally, the Show Top k Slices slider and Sorted By dropdown

Figure 2: Users can also view overperforming slices to compare and
learn from. This figure shows the Graph Layout which connects two
slices with an edge if they share many data instances. Thicker edges
indicate stronger relationships between slices and a darker node color
indicates higher performance compared to the overall model.

allow users to specify a dimension (e.g. sample size, log loss, bal-
anced accuracy) to sort the slices by and filter down to only the top
k slices for that particular dimension.

The Minimum Slice Size slider sets a threshold for the smallest al-
lowed slice sample size which is useful to filter out outlier slices that
are composed of only a few samples and not necessarily representa-
tive of an existing bias. Similarly, the Features checkboxes enable
users to specify features of interest and only display slices that in-
clude these features in their definitions. This is particularly helpful
when dealing with model fairness because usually some attributes
will be considered “protected” or more sensitive than others [38].

These various filtering options allow users to quickly identify
the most problematic slices within their data and slices that are of
particular importance to them. This effectively speeds up the process
of identifying the most significant slices hurting model performance
and understanding how to mitigate the existing bias.

4.3 Similar Slice Relationships
Graph Layout. While the Force Layout displays slices with similar
features in distinct clusters on a grid, it does not allow the user to
identify similar slices and relationships between slices. We define
similar slices to be those that share a high number of data instances
(i.e. overlapping samples) [10]. To display the relationships between
slices (G3), we design the Graph Layout (Figure 2) which is an
extension of the Force Layout that includes edges connecting nodes
which represent similar data slices.

The number of overlapping samples between two slices deter-
mines the thickness of that particular edge, and the strength of the
force pulling the nodes together. This results in nodes that share
many common data samples being clustered closer together. The
Edge Force Strength slider can be used to control the strength of the
force of attraction between two connected nodes (with an edge force
strength of zero degenerating into the Force Layout). Furthermore,
the Edge Filtering slider can set the minimum number of overlapping
samples necessary for an edge to exist between two nodes.

Strongly agree (7) Strongly disagree (1)

Easy to understand5.75

Easy to use5.50

Enjoyable to use6.75

Would use in the future6.75

Help you understand model bias6.75

Helps you audit your model for performance6.50

Helps you mitigate bias in your model6.25

Average Usability & Usefulness Ratings from Domain Experts

Figure 3: In our user evaluation, participants thought VISUAL AUDITOR
was easy and enjoyable to use. The domain experts rated the useful-
ness of the tool very favorably, providing support that our interactive
tool is effective at summarizing and analyzing model bias.

4.4 Overperforming Slices
Viewing which intersections of features yield the highest accuracies
presents users with an additional insight into the performance of their
model. To support the analysis of overperforming data slices (G3),
we automatically compute these slices as part of the algorithm when
the problematic slices are found. Users can switch to viewing over-
performing slices by toggling on the Overperforming switch in the
Slice Settings sidebar when viewing any visualization (Figure 2).

4.5 Accessible, Open-source Implementation
VISUAL AUDITOR is a web-based, interactive visualization tool
built with D3.js [9] and React.js [2]. Users can access the tool using
a web browser or directly within a computational notebook (G4).
To increase the accessibility of our tool, we have released VISUAL
AUDITOR on the Python Package Index (PyPI) 2. Computing slices
and generating the visual interface can be done in only a few lines
of code (Figure 1C). We also open-sourced our implementation so
future researchers can extend the tool’s design and functionality.

5 USER STUDY

The VISUAL AUDITOR project started in August 2021. Internal
design iterations with two data scientists from Fiddler AI were per-
formed to gather feedback and further refine the tool. Finally, a user
study was conducted with 4 additional data scientists and engineers
(P1-P4) to investigate the effectiveness and usability of VISUAL
AUDITOR. All participants were domain experts who indicated the
highest level of familiarity with ML and data science. Participants
received no compensation for taking part in the study.
Data. Participants were given the option of working with either
the Adult Census Income dataset [22], which predicts whether or
not an individual’s income exceeds $50k per year, or the Statlog
(German Credit) dataset [14], which classifies people as good or bad
credit risks according to a set of attributes. Both of these datasets are
popularly used in research related to algorithmic fairness [7, 20, 36].
Procedure. The study duration was one hour per participant. In
each study, participants was invited to an individual Zoom meeting.
First, they were asked to fill out a pre-study background survey
and sign a consent form. They were given a brief tutorial that
explained the purpose of VISUAL AUDITOR and demonstrated its
capabilities. Following the tutorial, the participants selected a dataset
to use and were provided with the relevant feature names and textual
descriptions. They were also given the link to a Jupyter Notebook
hosted on Binder3 for testing VISUAL AUDITOR with their particular

2PyPI Package: https://pypi.org/project/visual auditor/
3User Study Binder: https://mybinder.org/v2/gh/davidmunechika/visual-

auditor-demo-repo/master

dataset. Within this simulated data science workflow, participants
were asked to explore VISUAL AUDITOR and analyze problematic
slices in their model while thinking aloud. The exploration of the
tool was screen-recorded over Zoom. During this meeting they
were informed that they could ask design- or functionality-related
questions to the researchers. Each session ended with a usability
questionnaire and post-study exit survey to finalize their evaluation.
Results. Average ratings for VISUAL AUDITOR’s usability and
usefulness are shown in Figure 3. All participants found the tool
to be easy to understand and enjoyable to use. The domain ex-
perts also agreed that this tool provides new functionality for under-
standing model bias, auditing models for performance, and finding
approaches to mitigate ML bias that did not previously exist.

Through the user study, we learned that the Force Layout was
an effective visual design for summarizing model bias. P2 com-
mented, “the key feature I found most helpful was being able to
visualize sample size and performance of all the slices at once. My
eye was immediately drawn to underperforming slices with a large
sample size.” This layout was also interpretable and understandable
for participants as they found the visual representation of slices to
be inherently intuitive. P3 noted that VISUAL AUDITOR provided a

“great visual representation of problematic slices [making] it easier
to debug the model. The tool did a great job of representing sizes
and relative performances of the slices using colors, so I was able
to quickly understand and use the tool.”

Participants appreciated the sample size scaling and slice fil-
tering options. Multiple participants identified the ability to filter
the top k slices and set a minimum slice size as one of the most use-
ful features. P1 said these filters helped them “hone in on the most
problematic slices”. Other participants found the Graph Layout
to be effective at identifying relationships between slices. P1 was
particularly interested in examining the groups of densely connected
nodes in the “Graph Layout to target a bigger subsection.” Their
strategy was to identify generalized data slices connecting multiple
problematic slices so that targeting these slices would result in the
greatest performance improvement in the model.

Lastly, the notebook support and ease of integration into
current workflows was viewed very favorably by participants.
From an initial background survey, all participants rated their note-
book usage at either the highest level (“every day”) or next highest
level (“very frequently”). Every participant expressed an interest in
using VISUAL AUDITOR in the future, and one participant (P4) with
expertise specifically in mitigating intersectional fairness issues said
they would “absolutely use this tool in [their] visualization work.”

6 CONCLUSION & DISCUSSION

Mitigating bias and maximizing performance should be important
considerations during the development of ML models. VISUAL AU-
DITOR addresses these issues by providing an overview of problem-
atic data slices through the use of interactive visualization techniques.
Our user study has shown that VISUAL AUDITOR is effective at sum-
marizing and analyzing model bias and can be easily integrated
into existing development workflows. For future work, we plan to
extend VISUAL AUDITOR’s capabilities to offer more actionable
methods for mitigating existing bias. Intersectional bias can exist
in a model for various reasons, including insufficient training data,
explicitly or implicitly encoded social biases, or an overly-simple
model architecture. A tool that identifies which solution would be
most effective for addressing model bias would make the model
validation process more efficient. We also plan to enhance VISUAL
AUDITOR by improving graph view readability and allowing for
the summarization of intersectional bias generated from more than
two features. By interactively exploring the intersectional bias that
exists in a model and providing effective bias mitigation strategies,
VISUAL AUDITOR will help to ensure models deployed in the real
world exhibit fair treatment across all subgroups of people.

https://pypi.org/project/visual_auditor/
https://mybinder.org/v2/gh/davidmunechika/visual-auditor-demo-repo/master
https://mybinder.org/v2/gh/davidmunechika/visual-auditor-demo-repo/master

REFERENCES

[1] Audit ai. https://github.com/pymetrics/audit-ai. Accessed:
2022-04-25.

[2] React.js. https://github.com/facebook/react. Accessed: 2022-
04-25.

[3] J. A. Allen. The color of algorithms: An analysis and proposed research
agenda for deterring algorithmic redlining. Fordham Urb. LJ, 46:219,
2019.

[4] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and
J. Suh. Modeltracker: Redesigning performance analysis tools for
machine learning. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pp. 337–346, 2015.

[5] S. Barocas and A. D. Selbst. Big data’s disparate impact. Calif. L. Rev.,
104:671, 2016.

[6] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard. A study of the
behavior of several methods for balancing machine learning training
data. SIGKDD Explor. Newsl., 6(1):20–29, jun 2004. doi: 10.1145/
1007730.1007735

[7] R. K. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kan-
nan, P. Lohia, J. Martino, S. Mehta, A. Mojsilovic, et al. Ai fairness
360: An extensible toolkit for detecting, understanding, and mitigating
unwanted algorithmic bias. arXiv preprint arXiv:1810.01943, 2018.

[8] S. Bird, M. Dudı́k, R. Edgar, B. Horn, R. Lutz, V. Milan, M. Sameki,
H. Wallach, and K. Walker. Fairlearn: A toolkit for assessing and
improving fairness in ai. Microsoft, Tech. Rep. MSR-TR-2020-32,
2020.

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 2011. doi: 10.1109/TVCG.2011.185

[10] Á. A. Cabrera, W. Epperson, F. Hohman, M. Kahng, J. Morgenstern,
and D. H. Chau. Fairvis: Visual analytics for discovering intersectional
bias in machine learning. CoRR, abs/1904.05419, 2019.

[11] N. V. Chawla. Data mining for imbalanced datasets: An overview.
Data mining and knowledge discovery handbook, pp. 875–886, 2009.

[12] A. Chouldechova. Fair prediction with disparate impact: A study of
bias in recidivism prediction instruments, 2016.

[13] Y. Chung, T. Kraska, N. Polyzotis, K. H. Tae, and S. E. Whang. Slice
finder: Automated data slicing for model validation. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 1550–1553.
IEEE, 2019.

[14] D. Dheeru and E. Karra Taniskidou. Uci machine learning repos-
itory. https://archive.ics.uci.edu/ml/datasets/Statlog+
%28German+Credit+Data%29, 2017. Accessed: 2022-04-25.

[15] J. Dong and C. Rudin. Exploring the cloud of variable importance for
the set of all good models. Nature Machine Intelligence, 2(12), 2020.

[16] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness
through awareness, 2011. doi: 10.48550/ARXIV.1104.3913

[17] A. W. Flores, K. A. Bechtel, and C. T. Lowenkamp. False positives,
false negatives, and false analyses: A rejoinder to ”machine bias:
There’s software used across the country to predict future criminals.
and it’s biased against blacks”. Federal Probation, 80:38, 2016.

[18] H. He and E. A. Garcia. Learning from imbalanced data. IEEE
Transactions on Knowledge and Data Engineering, 21(9):1263–1284,
2009. doi: 10.1109/TKDE.2008.239

[19] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics
in deep learning: An interrogative survey for the next frontiers. IEEE
transactions on visualization and computer graphics, 25(8):2674–2693,
2018.

[20] M. Kearns, S. Neel, A. Roth, and Z. S. Wu. An empirical study of
rich subgroup fairness for machine learning. In Proceedings of the
conference on fairness, accountability, and transparency, pp. 100–109,
2019.

[21] T. Kluyver and others. Jupyter Notebooks - a publishing format for
reproducible computational workflows. ELPUB, 2016.

[22] R. Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A
decision-tree hybrid. In Kdd, vol. 96, pp. 202–207, 1996.

[23] M. Kubat, S. Matwin, et al. Addressing the curse of imbalanced training
sets: one-sided selection. In Icml, vol. 97, p. 179. Citeseer, 1997.

[24] M. S. A. Lee and J. Singh. The landscape and gaps in open source

fairness toolkits. In Proceedings of the 2021 CHI conference on human
factors in computing systems, pp. 1–13, 2021.

[25] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan.
A survey on bias and fairness in machine learning. ACM Computing
Surveys (CSUR), 54(6):1–35, 2021.

[26] Northpoint. Compas risk & need assessment system: Selected ques-
tions posed by inquiring agencies., 2012.

[27] A. O. of the United States Courts Probation and P. S. Office. An
overview of the federal post conviction risk assessment, 2018.

[28] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison. Investigating
statistical machine learning as a tool for software development. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 667–676, 2008.

[29] J. M. Perkel. Reactive, reproducible, collaborative: Computational
notebooks evolve. Nature, 593(7857), May 2021.

[30] N. Polyzotis, S. Whang, T. K. Kraska, and Y. Chung. Slice finder:
Automated data slicing for model validation. In Proceedings of the
IEEE Int’ Conf. on Data Engineering (ICDE), 2019, 2019.

[31] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong.
Interpretable machine learning: Fundamental principles and 10 grand
challenges. Statistics Surveys, 16, Jan. 2022.

[32] K. K. S. The impossibility theorem of machine fairness - A causal
perspective. CoRR, abs/2007.06024, 2020.

[33] S. Sagadeeva and M. Boehm. SliceLine: Fast, Linear-Algebra-Based
Slice Finding for ML Model Debugging, p. 2290–2299. Association
for Computing Machinery, New York, NY, USA, 2021.

[34] D. Saha, C. Schumann, D. Mcelfresh, J. Dickerson, M. Mazurek,
and M. Tschantz. Measuring non-expert comprehension of machine
learning fairness metrics. In International Conference on Machine
Learning, pp. 8377–8387. PMLR, 2020.

[35] J. L. Skeem and C. T. Lowenkamp. Risk, race, and recidivism: Predic-
tive bias and disparate impact. Criminology, 54(4):680–712, 2016.

[36] S. Verma and J. Rubin. Fairness definitions explained. In 2018 ieee/acm
international workshop on software fairness (fairware), pp. 1–7. IEEE,
2018.

[37] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and
J. Wilson. The what-if tool: Interactive probing of machine learning
models. IEEE Transactions on Visualization and Computer Graphics,
26(1):56–65, 2020. doi: 10.1109/TVCG.2019.2934619

[38] Z. Yu. Fair balance: Mitigating machine learning bias against multiple
protected attributes with data balancing. CoRR, abs/2107.08310, 2021.

[39] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair
representations. In International conference on machine learning, pp.
325–333. PMLR, 2013.

[40] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert. Manifold: A
model-agnostic framework for interpretation and diagnosis of machine
learning models. IEEE transactions on visualization and computer
graphics, 25(1):364–373, 2018.

https://github.com/pymetrics/audit-ai
https://github.com/facebook/react
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

	Introduction
	Background & Related Work
	Design Goals
	System Design
	Summarizing the Problematic Slices
	Slice Filters and Visualization Settings
	Similar Slice Relationships
	Overperforming Slices
	Accessible, Open-source Implementation

	User Study
	Conclusion & Discussion

