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Abstract—The complexity of modeling the anaerobic di- scale. Thisis done, by the addition of two new control inputs
gestion process meets the difficulty to describe and analyze reflecting the addition of a stimulating substrates in otder
them mathematically. In this paper, a simplified mathematial upgrade the produced biogas, while optimizing the system.

model for anaerobic digestion process of organic matter, . . . o
in a continuous stirred tank reactor is proposed. With the The first suggested control input is the acetate addition

aim of upgrading the produced biogas and integrate biogas Which is commonly used to increase the biogas quantity.
plants in a virtual power plant, new control inputs reflecting ~ However, the acetate addition caugd$ breakdown espe-
addition of stimulating substrates (acetatt_e and bicarbonte) are cially in low buffering capacity reactors, hence it is ahgay
added. Based on two step (acedogenesis-methanogenesissna accompanied bypH increase (increase tilpH = 8.5

balance non linear model, a step-by-step model parameter’'s . L.
identification procedure is presented in the first step, thenin [9]) of the inlet waste. Often, the wayli is increased

the second step, the yield coefficients and the microbial gegh IS Nnot optimal f.or the. process since it does not .tak.e i!ﬂto
rates are estimated when the later is assumed to be unknown account dynamics of inorganic carbon and alkalinity inside

a priori. the reactor. Therefore, we added the second control input to
Keywords-Anaerobic Digestion; Non-linear Models; Non- control the bicarbonate addition in function of the reactor
Linear Identification; Virtual Power Plants state.
The paper is organized as follows. In the next section I,
l. INTRODUCTION we describe the proposed six order mass balance non-linear

Anaerobic digestion process (AD) is a promising methodmodel followed by our proposed step-by-step identification
for solving both energy and ecological problems. It cossist procedure that is discussed in Section IIl. In Section IV, we
on degrading organic matter (proteins, fats and carbohypropose an adaptive estimation of the yield coefficients and
drates) through a series of chemical and physicochemicdhe specific reaction rates when no a priori knowledge about
reactions mediated, by anaerobic bacteria, to become the biomass growth rates is available. Finally, we conclude
in biogas. The later is a potential energy which could bethe paper in Section V.
used to stabilize the power network. Despite the numerous
advantages of the AD process, it is still bad responded i _ _ )
in industry due to its instability characteristic, high sen It is well known that AD is a delicate process involving
costs and difficult measurement procedures. Therefore, $€veral microbial species [2], [3], and [7], and usually the
mathematical modeling and software sensors are a greg@odel complexity is directly linked to the considered in-
alternative to improve the process. volved bacteria. Therefore, a two-step process (acedsgene

Modeling the AD process has been widely investigated irand methanogenesis) has often been reported in the literatu
the last decades, we can find more ttfnmodels in the 0 be suitable for the control purpose [5],[6], [7], and [10]
literature [1], and [2]. However, most of the existing maglel Hep_ce, similarly the proposed model consider the following
focus on the comprehension of the biological process, as #miting steps:
the case ofADM 1 for instance [3], and result in complex 1) Acidogenesis with reaction rate = y; X
models unsuitable for control. Similarly much of those buil r
for control purpose, allow it only by acting on the waste fS1 = X1+ ka2 + kaCO; @)
feed rate to the digester [5], [10]. This means that the 2) Methanogenesis with reaction rate= ;12 X»
constraints on the waste storage and the plant infrasteictu r
were not considered, whereas this is far away for being true k32 = Xo + ks COs + kCHa 2)
in the real life. However, some of waste treatment plants are where in the first step, acedogenic bactea) consume
constrained to treat a precise quantity of waste per day. the organic substrateS() and produce volatile fatty acids

Therefore, to overcome the mentioned constraint, we profVFA) and COs. In the second step, the produced VE&A)
pose a simplified model allowing the transfer of the experi-are consumed by methanogenic bactekia)(for growth and
mental results from a laboratory scale to a real life operati produceC' O, and methane.

II. MODEL DESCRIPTION



To model the considered limiting steps (1) and (2) whilethe digester with dilution raté);, D, is the dilution rate
including the new control inputs, we assume that the reactdior the first added stimulate substrate (acetate) with aonce
is perfectly stirred (thus biomass is uniformly distribdiie@  tration Sé), and Djs is the dilution rate for the second added
the reactor)pH and temperaturel{) range betweel to 8 stimulate substrate (sodium bicarbonate) with conceatrat
and 35 to 38°C, respectively, and finally VFAS:) behave C’(’J. D is the total dilution rate ) = D1 + D2 + Ds3).

like pure acetate.
B. Model Steady States

A. Model Equations It is well known that biological processes exhibit multiple
We denote the state vector by¢ = equilibrium states and the AD process takes part too. If we

[X1,S51, X2, 52, C, Z]T, where” represents the transposed do not consider the washout of bacteria steady stste=¢ 0

operator. The state vector is described by the followingor X»> = 0), the steady states of the state model of the Eq.

equations. (3) are given by:
X1 = (m(&) - D)X,
Si =~k (€)X1 — DSy + D1 S1in m(S) =D (72)
Xo = (u2(€) — D)X, p2(S2) = D (7b)
Sz = ko (§) X1 — k3p2(§) X2 — DS, 3) St = ksli (7¢)
) + D1S%, + DQSO ) Himae — D
C = /{4/14(5))(1 =+ k5ﬂ2{(€)X2 — DC 52 + S*(l _ M?mam) + k32 -0 (7d)
. + D1Cyp + Dgco — Q¢ kro D
Z=-DZ+ D1Z X; = ki < Stin — > (7e)
each one of the elements of Eq. (3) reflects the mass balance 1 ko /D
of its corresponding state. Her&, (g.L~1), S1(g.L™1), S, X;=— <( Soin — ) 4+ 22 (_1glm _ ST)>
(mmole.L™1), andu;(€)(day~1) are the bacteria concentra- ks ki \ D
tion, the associated substrate concentrations, and thertzac 4+ =2 S' (7f)
growth rates. Both rates are given by: ksD"™°
«_ D
ul(Sl) = HUlmazx Slf-lks1 (MOTLOd) Z = 621 (7g)
(4) «_ (Fka  kska\ (D1, .
/LQ(SQ) = H2maz 5‘2.’_]@?:—_‘_:_% (Haldane) " = ky + sk, D Stin Sl
g 12 I{J5 .
With the undertakep H and the temperaturdj assump- + ks ( S2in — 52)
tions, the total dissolved inorganic carbon concentratibn 1 . ,
mmole.L~") is the sum of bicarbonateBgc) and the - —0+ 1Cin + D3Cy — Q.
le.L 1) is th f bicarbonateBic) and th 5 55§+ DiCin + DsCl — Qul€7) ) ()
dissolvedCO, concentrations. Similarly, the alkalinity con- N
centrationZ (mmole.L™") is the sum of bicarbonate3(c) Qu(€) = 2 ((D1Soin — D.SE)) +
and dissociated acid$; (mmole.L~!) mainly acetate. They L k3
are given by: kj (( L Syin — D.SY))
Z = Bic+ Sy k ,D .
{ C = CO, + Bic 5) + =5 (7i)
pu(§) = —10g10(Kb Bic 2)

Solutions of Eq. (7d) are the possible steady states for ac-
The gaseous flow rate§. and Q@ of CO; and CHys,  etate (,), where the largest one corresponds to methanogen-
respectively, are given as proposed in th@/2G model  esis inhibition phase (a detailed study of the correspandin
[4]. equilibrium can be found in [4]).
Qc(€) = prrara (i Pe—oon @M Equilibrium of the dissolved inorganic carbod’) are
(6) obtained from Egs (5), (6) and (7h). They are solutions of
the following second degree equation:

Qum(§) = kop2(§) X2

. . . . 0 = DBC*?
Whe_rey is the dimensionless parameter mtroduged by Hess ZDC*(Pr + B(KuPr+ Z* — S5 + kaX7)
[4] in order to reduce the expression complexity between X . « , Dy Dy
. — DC*(+ks X5 + ke X5 + Fcin + fco) @)
the dissolved a_nd the ga_ls_eoGQQ. _ _ . 4 D(Pr+ B(KuPr + 2° = 3)(ka X7 + ks X3)
K; are the yield coefficients defined in (I) and () with + D(ke X3 + 2LCy + 220y))

other parameterg;, are inlet waste concentrations fed to + DB(Z* — S5)ke X5



with 5 = RT7. The two separate considered groups of parameters are the
In order to analyze (8), we rewrite it in the standard formkinetic parameterski(i, ks2, k1o, timaz, Homaz) @nd the

as: coefficienty in the first group, while the yield coefficients
= f(C*) =aC** —bC* +d (9) in the second one.
wherea, b andd are positive values. A. Kinetic Parameters ang Identification

By definition sum and product of this polynomial roots  From Eq. (7a) we obtain:
are positive, given by: 1 1 i ]
sl
+

C* = M (10) D Himaz Himax Sl ( )
_ - 2a that can be used to estimatg,,.. and ks; by a linear
and evidently have positive real part. regression.
To show that the roots (10) are real, we study the real gjmjlarly from Eq. (7b), we obtain the following relation-
function f. ship:
It can be easily shown from (8) thaf(0) > 0 and 1 1 i 1 1 1
lime_ 100 f(C) = +00. Moreover, the retained root should — = + 2 4 — Sy (13)
verify the positivity of CO, flow rate 2 > 0) at the steady D pomar  H2maz Sz K12 H2mas
state. From (6), this condition is verified if: which is used to estimatg;s, ks and pomq.. by a linear
. Pr+B(KuPr+2*—5S; regression too.
cr < L ClGiS: ﬁT ) =Ce From Egs. (5) and (6), we express the following relation-
ship:
If, we calculate the polynomial (8) value far., we find: P 1 _ 1 Pr 1
Q. Y RT(C*Z‘FSQ) Qnr
f(Ce) = —(Pr+ BKgPr)ksX; <0 (11) L (14)
_ i (M) L
From (10), we know that the polynomial has two roots and C—Z+5; QM

it is of sign —a in between. Hence, we deduce from (11) from which a linear regression gives the value of the
that 7 < C. < (5 and we conclude that'; is the only  gimensionless parameter

phyS|caIIy adm|SS|bIe root in the case of normal operating
point. B. Yield Coefficients Identification

Using steady state equations given in Eqgs. (6), (7h), and

(7i1), and the mean measurement values used previously, we

Since new inputs have been introduced in the model givegan estimate the ratio of yield coefﬂmenﬁ%, k2’ ki and
1
by Eq. (3), it is mandatory to precise some of input's coeffi- % by a linear regression applied to the following equations:

cients. Unfortunately, the not differentiability of paraters

IIl. PARAMETERS IDENTIFICATION

for such models is a well known issue. It has been reported  Q,; = k—ﬁ((Dlsgm — DS5)
in [13] [12] that different sets of coefficients can provide (15)
similar simulation results, and more, different coefficien k_2(D1811n - DSY)) + %DQS{J

3

values result for different particular organic matter [[10]

[11], [12]. Therefore a step-by-step identification proced — . —
is often applied to solve this problem. Qe = (% + %) (D151 — DS1)
Hence, taking advantageous from the cascade structure of
the model proposed in (3), we separate the parameters in k—“(Dlsgm — DSy +( 286 +D30{J) (16)
different groups in order to identify them as independently
as possible from each other. In the first step, we proceed +(D1Cy,, — DC)

as reported in [6] while estimating the parameters in steady
state to force the model to correctly predict the equilibriu
state to be reached by the system. In the second step, a
calibration procedure based on non-linear optimizatiolis ¢, = ke (D1S1m D51)+ QMJF(DICW_DC) (17)

be performed.

While building the model, one should exploit as much As it can be seen from Eqs. (15), (16) and (17), only
as possible the available measurements and has to choabe ratio of yield coefficients can be estimated from the
carefully the experiment conditions so as to cover as muclhised measurements. This issue was widely discussed in
as possible the range of the expecting operation situationditerature (see [6] and [10]). In fact, yield coefficientsnca

Therefore, for the first step mean values of different steadye estimated only if acidogenic and methanogenic bacte-

states forS1, Sz, Z, C, pH, Q. and@,, are to be used.  ria measurementsX(; and X, respectively) are available.

So, the Eq. (16) can be rewritten using the methane flow
rate measurement as foIIow



Hence, we need to estimate the separate yield coefficients if Many optimization tools for non-linear identification with
we want to obtain the biomass concentration in the reactogenerated data from known models can be used to find the
However, measuring biomass concentrations is unsuitabléesired parameters. At this step, we use the previouslydfoun
due to its complexity. Bernard et al. [6] proposed to useyield coefficients at steady state to initialize the nondine
the volatile suspended solids (VSS) measurement as a rougistimation algorithm and hence, we avoid biased estimates
approximation for the total biomass concentration+ X,.  which usually occur when the algorithm is bad initialized.
Then, estimate each concentration separately using tiee ratActually, a simple iterative parameter estimation based on
v = 0.2 of acidogenic and methanogenic bacteria taken fromsensitivity analysis and non linear optimization methods h
[14]. Hence, by using the equilibrium steady state (7€), webeen proposed in [13]. We, suggest to use while initializing
have: it by the previously found yield coefficients.

X, Dig. _g
v= —Xl— ~ D - (18) IV. ADAPTIVE PARAMETERS ESTIMATION
X1 +Xy, K1 VSsS )
if v is assumed to be constaht is estimates by: In this section, we describe briefly how to estimate
. simultaneously the yield coefficients and the growth rates
1 77 51in — 51 when no a priori knowledge of the later analytic expression
kg = —4—— a9 . . i
v USS is available. This means that the operator have no knowledge
Now, using Egs. (7€) and (7f), we get: about the factors which can influence the biomass growth.
. For seek of brevity, we describe the steps of the method
V= 33X without going in the mathematical details. First, lets rigsvr
DLS1in—51 (20)  the state model (3) in a matricial form:

(B2 +%2) (5 S1in—S1)+ 72 S2in— S+ 2 5,

. X1 1 0 X1
thus ks, can be estimated as follows: Sl k0 S,
Dy P Dy ¢ Xg 0 1 ,ule X2
k3 = k1 (13 ) <% DSZL;T St DSO) (21) Sy | T ke —ks3 [M2X2 ]_D So
v 1 FSM” -5 .
C ky ks C
Finally, by using the yield coefficient ratios identified be, VA 0 0 Z
we can deduce all the yield coefficients estimates. 0 0
C. Calibration 0D151m 8
Till now the yield coefficients for the steady state were + D1 Soin + DQS{) 0
estimated. This was possible by taking some assumptions D1Chin + DsC, Q.
like the constancy of the acidogenic and methanogenic ratio D1 Zin 0
v, and the correlation betwednSS measurement and the (23)
biomass concentration in the reactor and, last but not,leasThe general form of (23) is as follows:
the certainty of measurements at steady state. Therefore,
to enable the model to predict as correct as possible the §=Ko(§) —DE+F-Q (24)

process behavior in both steady and transient states, Wow, we split the state vector to tow sub-state vectgrs:

propose to calibrate the yield coefficients using onlineadat
measurements.

Usually, very restrictive information about the process ca
be obtained and only acetat®, alkalinity Z, and gaseous

flow rates are measured for known inputs (often uncertain

input concentrations). Therefore, we assume tBat Z

Q. and Q,; are measured online to perform the nonlinear d
§a and gy

identification depicted in Fig. 1. where the criteriafmto
minimize is:
J = IniIlp Z[LI(SQmes - Sdel)2
+L2(Ql\lmes - QMmdl)2

+L3(Qcmes — Qomar)?
+L4(Zmes - Zmdl)Q]

with L; are weight coefficients, anf# a vector containing
the parameters to be estimated.

(22)

contains the measurable states, &ndontains the remained
not measurable states:

§1 = K16(§) — D&+ Fr — Qy
§2 = K2¢(§) — D& + Fo — Q2

Then, we introduce an auxiliary stafe= A&, + &, Where
are a nice partition allowing suppression of the
unknown parameters from the dynamic @f henceAdy =
—K>K;'. Applying this model partition, widely discussed
in [10], to the model (23) forg, = [X1, Xo]T and &, =
[S1,S2,C, Z]T, we get the following relationship:

(25)

kl 0 Sl
—ko k3 X1 S

= 26

¢ ki ks { X, ] Tl (26)
0 0 A



Noise

)
Quexp, Qcexp, S2exp, Cexp, Zexp
Process
~—
Inputs &in p Error

D1, D2, D3, S’o, C'o ﬁ’ =

Model Qvmdl, Qcmdl, S2mdl, Cmdl Zmdl

Nonlinear
optimization
method

Minimization ]

Criterion J

Figure 1. Non-Linear Identification Scheme.

and thus, the dynamic af is given by: Now the new state model to be processed contaiasd ¢,
¢ described by (26) and (29), respectively.
! G In order to estimate the unknown yield coefficients and

C2 = -D G2 the specific reaction rates, we separate the known measure-
G Cs ments from the unknown parameters. Therefore, the missed
G4 Ca (27)  measurements are expressed in functiog,cdnd(. Hence,
D151in , the dynamic expression @f is given as follows:
4 D1S2in + D25,
D1Chin + D3Cp — Q. &1 =9(&,00 — D& + 1 — G (31)
D1 Z;

with \If(gl,C) is given by (32),9 = [al,kloq, a2, kQOLQ,
Actually, now we can proceed for the yield and growth ratesksas, kyay, kikaay, ksag, keksas, ksksas]”, Fy = [0,0,
estimations using the new system containing the auxiliaryD,C;,, + Ds + C]” and finallyQ; = [0,0, Q.].
state¢ and the measured stafg as described below. But,  On the grounds of the previous transformations and def-
before proceeding with that we rewrite the produgk’; as initions the vectord (hence the unknown parameters) can
the product of the specific reaction, and the responsible be estimated using an observer based estimator like the
components involved in the chemical reaction [10], thus wefollowing:
have: .

mX1 = a151X; (28) (=-DE+Fy—Qy

HaXy = %X 51 =V(6,0)0 - D&+ P —Q1— Q& — &) (33)
It has been already proved in the previous sections that , _ W(€1,5)F(§1 —51)
yield coefficients can be estimated only if the biomass
concentrations are measured. Hence, we assumedthat Where2 andI" are design parameters, to be fixed by the
[X1, X3, C]T where using (28) its dynamic is given by: designer so that the states given by the estimated parameter
fit well the experiments data.

X, 1 0 X,
X, | = 0 1 { S X, ] —D| X, V. CONCLUSION
. 252 X2
¢ ka ks ¢ In order to facilitate the modeling aspect to control
0 0 efficiently the anaerobic digestion process, we proposed
+10 LT 0 a mathematical (formal) framework that describes how
D1 Chin + D3C Qe new stimulating substrates (acetate and bicarbonate) €an b
(29)  added to this process. This was motivated by the aim of

Hence, the matriced; and A, are the following: controlling the quantity and the quality of the produced

k1 0 0 1 00 biogas from treatment plants in order to integrate them in

A — —ke —ks O A — 0 1 0 30 a virtual power plant. To identify the model parameters,
V7 kg ks 1727100 0 (30) we proposed a step-by-step identification procedure based
0 0 0 1 00 on two steps (acedogenesis-methanogenesis) mass balance



X161 X2 0 0 0 0 0 0 0 0
o=10 0 X2 X1X2 -X2 0 0 0 0 0 (32)
0 0 0 0 0 X161 —X? Xole X1Xo -—-X2
non linear model. Further, we described an online adaptive Acronyms __ Units i i i
k1 g.g— 1 of acidogenic bacteria

algorithm for yield coefficients and specific reaction rates
estimation when no knowledge about the factors influencing
the biomass behavior is available.

The research that we have initiated in this paper sets
the fundamentals for further fully automatic modelling and
analysis of biogas systems. First, we intend to validate our
model on more realistic parameter. Then, we will propose
new strategies of control to integrate the biogas plants in a
virtual power plant to stabilize the power network.
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VI. NOMENCLATURE
Acronyms  Definition
k1 Yield for substrate degradation
ko Yield for VFA production (5]
k3 Yield for VFA consumption
kq Yield for CO> production
ks Yield for CO> production
ke Yield for Chy production [6]
Himaz Maximum acedogenic bacteria growth rate
H2maz Maximum methanogenic bacteria growth rate
ks1 Half saturation constant associated wih
ks Half saturation constant associated wih [71
Ko Inhibition constant associated with
Ky Acidity constant of bicarbonate [8]
Ky Henry s constant
R Gas constant
Pr Total preasure [9]
T Temperature
o' dimonsionless parameter introduced by Hess [4]

TABLE |
NOMENCLATURE

ko mmole.g—! of acidogenic bacteria
k3 mmole.g—! of methanogenic bacteria
ka mmole.g™!
ks mmole.g—!
ke mmole.g—!
Hlmazx day71
H2mazx day71
ksl g~l71
kso mmol.l~ L
Ko mmol.l~1
Ky mmole. L™ 1.atm™—1
R L.atm.K~1.mol™o°!
Pr atm
T Kelvin
TABLE Il
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Anaerobic DigesterProceedings of the 5th Symposium on Mathemat-
ical Modeling, Vienna, Austria, MATHMOD.

V. Lubenova, I. Simeonov, |. Queinnec 200Bvo Step Parameter and
State Estimation of The Anaerobic DigestidRAC, 15t Terminal
World Congress, Barcelona, Spain.
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of Bioreactors Elsevier Science Publishers, Amsterdam and New York.
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