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TABLE I: Sample Raw Access Log Data of Two Users

User Entry Exit Location Reason
X Aug 13,2020 15:30 Aug 13,2020 18:30 EITC-2 Lab-1 work
Y Aug 13,2020 15:00 Aug 13,2020 19:30 EITC-2 Lab-1 work
X Aug 16,2020 10:30 Aug 16,2020 18:30 EITC-2 Lab-1 work
Y Aug 16,2020 15:00 Aug 16,2020 20:30 EITC-2 Lab-1 work
X Aug 17,2020 15:30 Aug 17,2020 16:30 EITC-2 Lab-1 work
Y Aug 17,2020 10:00 Aug 17,2020 19:30 EITC-2 Lab-1 work
Y Aug 19,2020 12:00 Aug 19,2020 19:30 EITC-2 Lab-1 work

TABLE II: Sample Raw Religious Institution Attendance Data

User Prayer 1 Prayer 2 Prayer 3 Prayer 4 Prayer 5
X X X X X
Y X X X X X
Z X

sleepwalking into the surveillance state, now we are panic-
running into a super-surveillance state.” It may sound like
an alarmist plea. However, prevalence of access monitoring at
organizational level and contact tracing applications at national
level do support her statement as most of the time these
systems do not maintain proper privacy requirements needed.

For instance, In order to comply with the building occu-
pancy limit set by the health officials, the University of Man-
itoba in Winnipeg, Canada recently implemented an access
monitoring system. This step involves everyone who intend
to access the campus buildings register their intended time
and reason of visit prior to visiting. Another example is the
MIA’s (Manitoba Islamic Association) recent guideline to limit
the capacity of all mosques during each prayer time and
implement an online registration system in order to ensure that.
Let’s take a look at more concrete examples, to understand the
privacy concerns presented by systems like the ones mentioned
in the preceding statements.

Example 1: Table I represents an access monitoring system
data for two users X and Y. It can be seen from the table
that there were multiple encounters between two users over
a given period of time and based on that it can be inferred
with reasonable confidence that these two individual know and
interact with each other. We consider this a privacy breach
and in the subsequent sections of this work we call this as
exposure of social interaction graph of an user.

Example 2: Table II represents raw access log data from a
religious institution for three users X,Y and Z. Based on the
frequency of their prayer attendance, a reasonable inference
can be made about their level of religiousness which is a gross
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Abstract—During pandemics, health officials u sually recom-
mend access monitoring and regulation protocols/systems in 
places that are major activity centers. As organizations adhere 
to those recommendations, they often fail to implement proper 
privacy requirements to prevent privacy loss of the users of 
those protocols or systems. This is a very timely issue as 
health authorities across the world are increasingly putting 
these regulations in place to mitigate the spread of the current 
pandemic. A number of solutions have been proposed to mitigate 
these privacy issues existing in current models of contact tracing 
or access regulations systems. However, a prevalent pattern 
among these solutions are they mainly focus on protecting users 
privacy from server side and involve Bluetooth based ephemeral 
identifier e xchange b etween u sers. A nother p attern i s a ll the 
current solutions try to solve the problem in city-wide or nation-
wide level. In this paper, we propose a system, PAARS, which 
approaches the privacy issues in access monitoring/regulation 
systems from a micro level. We solve the privacy issues in 
access monitoring/regulation systems without any exchange of 
any ephemeral identifiers between users. Moreover, our proposed 
system provides privacy on both server side and the user side by 
using secure hashing and differential privacy mechanism.

Keywords—Contact Tracing, Access Regulation, Differential 
Privacy, Privacy Aware System Design

I.I NTRODUCTION

Pandemics often spread by contact events and therefore,
require contact tracing by government or public health officials
to mitigate the spread of the pandemic. Public health officials
also recommend access regulation/restriction for institutions
with higher activity level such as banks, educational institu-
tions, religious organizations etc. While these organizations
adhere to the regulations set by the public health authorities
strictly, they often fail to understand the value of privacy when
they take these recommended steps.

In pre-pandemic era, the topic of privacy was extensively
explored in literature. However, privacy issues in contact trac-
ing systems didn’t attract much attention from the academia.
With the unprecedented spread of the pandemic, governments
and public health officials of a number of countries resorted to
digital contact tracing to mitigate the spread of the pandemic
which resulted in a new debate over privacy requirements
and citizen’s rights both in mainstream media and academia.
Arundhati Roy, 1997 Man Booker prize winner for “God
of Small Things” famously quoted recently in the wake of
the government contact tracing apps: “Pre-corona, if we were
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privacy violation.
Recent works on privacy preserving contact tracing appli-

cations in both industry and academia focused on the privacy
of contact tracing/access regulation problem in a macro level.
In most of these works, the users were to exchange some
kind of pseudo-random tokens that can not be traced back to
them via Bluetooth of their smartphone and the tokens would
be later used to determine whether the user in question have
been in contact with someone who were positively diagnosed
for the disease. While these systems try to offer a trade
off between strong privacy and utility, they are difficult to
implement due to the infrastructure requirement and reluctance
of users to adopt new technology. With no end of pandemic in
sight, governments across the world are trying to reopen the
economies around the world and allow the population to return
to normal state of life. In order to do this, the spread of the
pandemic must be controlled and digital contact tracing/access
regulation with proper privacy can not be discarded as an
option for that.

Privacy needs:“[Some of my patients] were more afraid
of being blamed than dying of the virus” - Lee Su-Young,
Psychiatrist at Myongji Hospital, South Korea [17]. This quote
shows that the social stigma can be worse than the disease
and the cost of privacy loss is much higher than generally
perceived. Therefore, it is important to understand the privacy
requirements of a system before designing it. Firstly, in the
design of our proposed system, we intended to ensure that
the system will not reveal any information to one user that
helps him/her to determine the infection status of another user.
Secondly, the system design and data flow must not reveal
any sensitive data to the server so that the social interaction
graph of any user can be deduced. Thirdly, the system design
should not allow any malicious adversary to gain access to the
communication between entities within the system. A detailed
analysis on the security of the system design can be found in
section V.

Information Needs: Our proposed system design should be
able to satisfy two core information needs. Government health
officials have set the limit of building occupancy level during
the pandemic to no more than 50%. In order to comply with
that regulation, the first information need from the system is
the current state of the building occupancy level. The proposed
system should be able to monitor this and alert authority if
any intervention is required. The second information need is
to enable the users to be alerted in case they have significant
probability of being positively diagnosed for the disease. Once
the users are notified about their probability of being positively
diagnosed, they can decide to whether self-isolate or seek help
from medical professionals. This action helps to minimize
panic among all users as only users with significant probability
will act on the information. In addition to these information
needs, there are certain desirable traits in system design. For
instance, the proposed system design should be practical. It
should not require any addition to the infrastructure within
the system environment which is discussed more in subsection
VI-C.

Contributions: We decided to address the privacy issues
in the access regulation and contact tracing systems at a
micro level. We design a privacy-aware access monitoring/reg-
ulation system which can be implemented at organizational
level without substantial change in the existing infrastructure
while satisfying the privacy needs described above. Our key
contributions are listed as follows:

• We designed PAARS, an efficient access regulation sys-
tem that provides strong privacy guarantee while con-
sidering existence of semi-honest server in our system
model. The semi-honest entity in our model does not have
access to any sensitive information that will allow it to
deduce social interaction graph of any user or link any of
the information available to itself to any particular user
without the user’s explicit consent.

• Our system design for PAARS requires minimal in-
frastructure addition as our system works on existing
infrastructure available within the organization.

• We designed a novel probability calculation scheme to
determine the positive diagnosis probability of the user.
Our scheme uses the state of the art epidemiological
models available in literature to calculate the disease ex-
posure score of an user which is then used to calculate the
probability of the user being positively diagnosed for the
disease. The whole process for calculation of probability
and query result release to the user is differentially private
which preserves each user’s privacy from any other users
or attackers (Section III-B).

The rest of the paper is organized as follows. In the next
section, we provide a background on contact tracing and
differential privacy as well as provide with an overview of
the recent works in these two domains. In the next section we
present PAARS methodology and its working procedures. The
sections that follow are utility analysis and security analysis
which contains the privacy loss calculation and security vul-
nerabilities analysis for the PAARS system. We conclude the
paper by giving a short analytic discussion on our approach.

II. BACKGROUND AND RELATED WORKS

Contact/Proximity Tracing is an umbrella term for the
generic approach of identifying a contact event between two
users of the system. Usually the systems use Bluetooth or GPS
to perform the detection of contact between two users. When
two users come in contact, they exchange a token which may
or may not contain any persistent identifier of the user. These
exchanged tokens can later be used to identify if there has been
a contact with an infected user and take measures accordingly.

Recent works on contact tracing have focused heavily on
privacy issues of the underlying principles of contact tracing.
Epione [19] is a lightweight contact tracing system proposed
by Trieu et. al. which relies on faster private set intersection
cardinality method to achieve efficiency over other similar
methods. Their work specifically focuses on the case of
matching between large scale contact database and small input
queries. DP-3T [4] is one of the most prominent one among the
recent works on proximity tracing. This proposed system uses
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a decentralized model and provides robust privacy guarantees.
PEPP-3T [5] is another similar protocol with centralized de-
sign instead of decentralized. Centralized systems offer more
useful data which can be used by health authorities to make
effective decisions however, numerous scholars believe that
this approach might be harmful as it can become a mass
surveillance tool for governments. EPIC [7] is another similar
scheme which provides a proximity tracing scheme by using
hybrid wireless and localization technology. However, this
system has scalability issues as noted in [12].

There are multiple real world implementations of the contact
tracing protocols. South Korean Government implemented
their own contact tracing system which is reported to have
widespread privacy issues [2]. Tracetogether [8] is an adoption
of the contact tracing protocol by the government of Singa-
pore. It is a centralized system which stores the user phone
number, identifying information and a randomized token. It
does not store gps locations of the user. However, being a
centralized system it is vulnerable to multiple security and
privacy risks. Moreover, the slow adoption rate among the
population also hinders it’s applicability and effectiveness to
a certain extent. In addition, Bluetooth based systems suffer
from security vulnerabilities and privacy issues. Sophisticated
GPS based solutions exist as noted in [9] by Berke et. al.
However, the computational overhead of this system prevents
implementation by hindering scalability due to the fact that
MPC (multi party computation) is used to preserve privacy of
this system.

Private Kit [17] is another protocol proposed by Raskar et.
al. which is a privacy-first contact tracing protocol by design.
It provides a mix of voluntary sharing and unicasting which
eliminates the need of a central monitoring entity. PACT [11]
is another example of similar protocol with improvements over
the earlier versions of contact tracing protocols available at the
beginning of the pandemic. Technology industry leaders Apple
and Google proposed their joint collaborative contact tracing
protocol for smartphone devices which ensures strong privacy
[3]. However, we are yet to witness any major government
taking their services to combat the pandemic. COVI [6] is
another contact tracing framework which attracted a lot of
attention from academia. This work is different from the afore-
mentioned ones in the sense that it contains discussion and
mitigation strategy for ethical and privacy issues. Moreover, it
also contains guidelines for secure data collection as well as
using them for machine learning models which makes it the
most complete and robust privacy preserving data collection
and analysis framework for contact tracing data till date.

III. PAARS MOTIVATION AND SYSTEM DESIGN

While designing PAARS our key motivation was to ensure
maximum data security and privacy. In the meantime the utility
of the system was also not to be compromised by design issues
or slow adoption rate among users. Keeping these in mind,
we took a novel approach in PAARS system design principles
compared to already implemented systems. Instead of token
exchange between users to detect proximity, we use the

existing wireless network present in an organization for token
exchange between users and the server which can be later used
to detect contact between users. In addition to that, our system
does not require any additional infrastructure or collaboration
with any third party. Therefore, the scalability and adoption
among users are easier than the existing approaches.

A. Detection of Contact Event between Two User

We assume that a network consisting of wireless network
access points (e.g. routers) is present in the organization
environment. We denote this network as a set of access points
R = {R1, R2, R3, · · · , Rn}. We assume that at any given time
all elements in R simultaneously broadcast a single pseudo-
random number which we denote as Knet. This pseudo-
random Knet changes over time. The time difference between
each new pseudo-random number broadcasted by the central
network is denoted by the τ .

According to Center for Disease Control guideline, a contact
event between two individuals is defined as the individuals
being in 2 metres of each other for more than 15 seconds
[1]. Taking this definition into account, our system divides
the system environment in GPS co-ordinate blocks. A GPS
co-ordinate block in our system contains co-ordinates that are
within maximum 2 meters. Every co-ordinate block is assigned
an unique identifier by the system. When an user enters into

Fig. 1: Userx and Usery is in the same GPS co-ordinate block. They connect with
the same wireless access point which provides them C

τk
gps and Kτk

net. Userx generates
a random number Randτkx and Usery generates a random number Randτky . Both
users concatenate the parameters sent by the server with the network address of the access
point and pass them to a hash function to generate a hashed token. Both users upload
their generated random numbers and hashed tokens to the server. The server stores the
hashed tokens and the random values sent by the users in a database to later use them
for contact detection.

the system environment, the smartphone of the user connects
to the network of the environment and starts exchanging tokens
with the system. In order to generate a token and exchange it
with the system, the user performs the following computation
on the smartphone. Let’s assume that the current time interval
is τk. Firstly, it takes the unique identifier of the GPS co-
ordinate block it is currently located in. We call it Cτkgps.
Secondly, it takes the pseudo-random number generated by the
wireless access point covering that GPS co-ordinate block at
that time which we denote as Kτk

net. The token ID generation
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TABLE III: A sample contact event in the contact database. Both entries have same
hashed token value but different user generated pseudo-random number entry.

Hashed Token Randuser Time Status Probability
FF56182345FA6BF7 18728712789 6:32 N/A 0
FF56182345FA6BF7 74826390017 6:32 N/A 0

process consists of concatenating these two and then passing
them through SHA-256 hash function.

ID← SHA256(C
τk
gps||K

τk
net)

Therefore, it can be ensured that at a given time τk, if two
users are in the same block of GPS co-ordinates, they will
generate the same token which will indicate a contact event
between them. The user also generates a pseudo-random num-
ber Randτkuser. The user then sends this pseudo-random number
along with the hashed token to the server. The server stores the
hashed token, pseudo-random number , time , current infection
status of this user and the probability value of being infected
(initialized with value 0) in a database table. The server does
not store any other persistent information about the user that
might compromise the anonymity of the user. The user also
stores the hashed tokens and the pseudo-random numbers sent
to the servers on his/her device.

In the server database, a contact event between two users
will be registered as having same hash token values with
different Randτkuser value.

Fig. 2: Workflow of the system once an user reports to be positively diagnosed and
chooses to share the hashed tokens and pseudo-random numbers generated during the
contact detection period of the system.

Once an user tests positive for the infectious disease, that
user can choose to share the hashed tokens and the random
tokens generated during the contact detection phase with the
system server. The integrity of the claims of positive test
diagnosis can be ensured by secure methods. For instance,
public health authority may provide each positively diagnosed
user with an unique identifier or secure login methods to
verify the claim of the user being positively diagnosed. After
the authenticity of the claim of being positively diagnosed
is confirmed, the user can voluntarily share the hashed tokens
and the random numbers generated by the user with the system
server. The system server performs a series of operations after
receiving the tokens and random numbers from the user. The
system updates the matching entries for the contact database
where it sets the value of Status as “Infected” and value
of probability as 1. Moreover, for the matching entries of

TABLE IV: Updated contact database entries when an user reports being infected and
chooses to share relevant information with the server.

Hashed Token Randuser Time Status Probability
FF56182345FA6BF7 18728712789 6:32 TBD TBD
FF56182345FA6BF7 74826390017 6:32 Infected 1

same hash tokens of other users we set the status column and
probability value as “TBD”. This workflow is shown in figure
2.

Referring back to table III, let’s assume that an user
whose claim of being positively diagnosed has been validated
by the system, chose to share his/her hashed tokens and
pseudo-random numbers generated with the system server. The
server received all these and updated the database accordingly.
Moreover, let’s assume that among the contact event entries
uploaded by the user, there is a contact event entry with hashed
token value of “FF56182345FA6BF7” and Randuser value of
“74826390017”. After the database is updated, the relevant
contact entries will be as in table IV.

After updating the database entries, the server retrieves the
updated entries and calculates probability of being positively
diagnosed for the users who have had a contact event with the
infected user. To calculate this probability we formulated a
novel probability calculation model which depends on state of
the art epidemiological models available in the literature such
as variations of Susceptible-Infected-Removed (SIR) model
[13] while taking in account factors such as temporal shedding
nature of the viral transmission [15]. The details of this
probability calculation model is described in the following
subsection.

B. Mathematical Model for Probability of an User Being
Positively Diagnosed

Let’s assume the event of being tested positive at time t
is denoted by λ(t) which is a binary random variable which
takes the value 0 if the user is tested negative and 1 if tested
positive. We denote the contact database entries for an user u
up to time t as Ctu. We intend to find out P(λ(t) = 1|Ctu)
which is the probability of being positively diagnosed of an
user for the disease given the contact database entries of the
user. Let’s assume that Ctu is a set of contact entries which
contains contact event entries that coincides with both infected
and non-infected users. Therefore, this can be written as a
set, Ctu = {C+

v + C−
v } where v ∈ V . V denotes the set of

users who had contact events with user u and the + and −
superscript denotes whether the user v is diagnosed as being
positively infected or not. The set of all positively diagnosed
users are denoted as D+. Therefore, we can write the intended
probability function of being infected as:

P(λ(t) = 1|Ctu) = f(P(λ(t) = 1|C+
v )); ∀v ∈ (V ∩D+) (1)

To calculate our intended probability function f , we need to
find the average of the probability of each individual contact
event with user v who were positively diagnosed for the
disease. This is due to the fact that each contact event with a
positively diagnosed user v ∈ V can contribute to the user u
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in question to be positively diagnosed. Moreover, we assume
that each contact event between two users are independent of
any prior contact events between any two users. Therefore,
it is possible to view each individual contact events between
users as independent events. Therefore, the equation 1 can be
written as:

P(λ(t) = 1|Ctu) =
1

N

N∑
i=0

P(λ(t) = 1|C+
v ); ∀v ∈ (V ∩D+)

where,N = |(V ∩D+)|
(2)

In order to understand how our system calculates the
individual probability of each contact event contributing to
the total probability we would like to draw attention to the
[13] which shows how a variant of widely used Susceptible-
Infectious-Removed (SIR) model was used to mathematically
model the recent COVID-19 pandemic outbreak in Italy. In
this work, the authors noted that transmission of the disease
from one individual to another can depend on multiple factors.
However, the most important factors are the time duration of a
contact event between two individuals and the viral shedding
factor of the infected individual. The later one can be described
as the rate at which the infected individual is spreading the
virus within a certain distance [1]. We take these two important
aspect into account and design our probability calculation
method accordingly.

We define Evu(t) as the exposure score of the contact event
between user u and v at time t which we calculate from
the work described in [18]. In this work, the authors design
multiple models to determine the severity of a contact event
between two individuals. In our particular case, we will use
the sigmoid model developed by the authors to determine the
severity of a contact event. This model takes the duration of
a contact and the distance between two individuals during the
contact as input of the model and produces a scalar value
which is the severity score of the contact event.

We define Sv(t) as the viral shedding rate of the infected
user at time t. This can be directly determined by using
the work described in [15]. In this work, the authors drew
the temporal relation between the days of infection and viral
shedding. According to this work, for the first few days after
being infected, the viral shedding of an infected person is
significantly higher than the subsequent days. We can get
Sv(t) from this model by inputting the number of days when
the contact event took place.

Therefore, we can derive the probability of being positively
diagnosed from each contact event by using the following
formulation:

P(λ(t) = 1|C+
v ) =

Evu(t) ∗ Sv(t)
max(Evu(t) ∗ Sv(t))

(3)

Using equation 3, we can calculate the probability of being
positively diagnosed for each contact events and average them
to get absolute probability score for an user being positively
diagnosed. However, there is a caveat in the above formulation

which is privacy breach. A malicious user may track the dif-
ferences between the updates of his/her probability score and
might attempt to infer which contact event caused the update
of the probability score. Therefore, we attempt to mitigate this
problem by using differential privacy. After calculation of the
left hand term in 3, we add a noise to it which is from Laplace
distribution. Then equation (3) becomes:

P(λ(t) = 1|C+
v ) =

Evu(t) ∗ Sv(t)
max(Evu(t) ∗ Sv(t))

+ L(0, α
N

) (4)

where α is the regularization parameter for the noise and the
mechanism is N

α differentially private. The accuracy analysis
of this noise addition mechanism will be discussed in the
utility analysis section.

Using equation 4 for all the contact events between the
user in question u and the infected users v, we can derive
noisy probability scores for each contact event. We input these
noisy probability scores in equation 2 and calculate the final
probability score of an user being positively diagnosed given
the contact events in the contact database.

C. Privacy Aware User Alerting System

The server has a set of hashed tokens Hsys which contains
the hashed tokens that have positive probability scores. Let’s
assume user u wants to access his/her probability score from
the system. In order to do that, the user uses Hu which is
the relevant hashed tokens within the time period which is
generated by the user and have been shared to the server. The
server and the user performs a PSI (private set intersection) as
described in the work of [19]. The result of PSI(Hsys, Hu) is
shared to the user u. If the result returns a non-empty set, the
user u makes a request to the server which contains the result
of the PSI(Hsys, Hu) and the Randτkuser associated with each
elements in the result of PSI(Hsys, Hu). The server receives
the request and sends back the probability scores associated
with the query. The user receives the result and based on the
result the user can decide to self-isolate, quarantine or seek
medical help from professionals. It is important to note that the
user gets the probability scores associated with the entries in
the result of PSI(Hsys, Hu) and his/her generated Randτkuser
only. Therefore, he/she does not have access to the probability
scores calculated for the other users with the same hashed
token values.

IV. UTILITY ANALYSIS

A. Building Occupancy Level Determination:

PAARS can automatically calculate the building occupancy
level in real time by analyzing the number of active con-
nections sending in hashed tokens in every wireless access
point within the system environment. Based on the level of
occupancy at a given time, it can alert the authorities if
maximum occupancy level set by health professionals are
being violated.

0159



B. Error Estimation of the Probability Calculation Model:

In order to calculate the accuracy of the noisy probability
scores in subsection III-B, we adopt the accuracy analysis
method presented in the work of [10] and [14]. Let’s assume
Pactual is the actual probability and Pnoisy is the calculated
noisy probability. According to [14], the error of a differen-
tially private mechanism output is determined by the variance
V (P ) = E[(Pnoisy−Pactual)2]−E[(Pnoisy−Pactual)], where
E is the mathematical expectation. Referring to equation 4,
(Pnoisy −Pactual) in this case is L(0, αN ) which has variance
of 2α2

N2 . Therefore, each term on the right hand side in equation
2 is expected to add 2α2

N2 error to the final output. Accordingly,
the final expected accumulated error is:

error =
1

N

N∑
i=0

2α2

N2
=

2α2

N2
(5)

V. SECURITY ANALYSIS

To analyze the security of the system firstly we consider
a set of parties and a few protocols. We assume that in our
proposed system there is a set of parties who have agreed
to perform some computation. Moreover, the parties have
consented to release the final result of the computation to
a specific party and nothing else will be released from any
other parties, not even the computational process used. There
are two classical security models in this case:

• Semi-Honest Model: This type of adversary is someone
who is presumed to follow the execution protocol. How-
ever, it attempts to obtain extra information from the
execution protocol.

• Malicious Model: This type of adversary may attack the
system using any possible strategy i.e. brute force attack,
side channel attack, supplying inconsistent output or
trying to infer information about system data or execution
process of the computation involved.

In this work, we define three individual entities: The user
group U , the semi-honest system server S and malicious
adversary A who would try to attack the system using any
possible method that is executable in polynomial time. At-
tacker A can be a malicious user or someone outside the
system environment. For simplicity, we assume that the no
entity is colluding with one another. Moreover, we assume
that all communications between the user U and the server S
are securely authenticated (i.e. TLS).

The robustness of all proposed decentralized solutions so far
relies on the fact that individual user identities are not linkable
to the pseudo-random tokens they generate. However, the
exchange of these pseudo random tokens between users still
poses some security threats such as possibility of identifying
positively tested users in case of a single contact event in the
given time period. In the following paragraphs we will show
that our proposed system prevents majority of the security
risks of the previous approaches while ensuring privacy.

• Positively tested user identification attack: In this
attack a malicious user tries to identify a positively

tested user by matching the tokens exchanged between
them. Most of the proposed contact tracing/proximity
monitoring systems have token exchange as a core part
of their functionality. However, in our proposed system
there is no token exchange between two users. Therefore,
this attack is not feasible in our system.

• False positive reporting attack by user: In this attack
a malicious user Umal tries to generate false alarm, by
reporting him/her self as positively diagnosed with the
disease to the server S. This attack could cause erroneous
computation on the server and result in confusion and
panic among users. However, in our proposed system, this
attack is not possible as every claim made by any user
of being positively diagnosed for the disease is verified
with the proper authority.

• Impersonation attack by user: This attack is aimed at
faking a person’s presence when that person was actually
not present there. The attacker A gathers exchanged
tokens from other users and broadcasts them. If any of
those tokens are later marked as tokens from an individual
who has been positively diagnosed with the disease,
a number of users may be falsely alerted of being in
contact with that person while in reality they never had
any contact with that positively diagnosed person. In our
proposed system this attack is not possible as individual
users do not exchange tokens with each other.

• Exposure of Social Interaction Graph of the user
by the server: One of the major privacy issues for any
contact tracing or access monitoring/regulations system is
that there are inherent risks of the server S associating an
user U with a set of users Ucontacts where each member
of the set Ucontacts is the ones who were in proximity of
U . In our proposed system, the server S does not keep
any persistent identifier of any user U and the user U
never shares any persistent identifier of him/her to the
server S. The server S only receives the securely hashed
values from the user U which can not be linked back to
individual users. Therefore, in our proposed system this
attack is not possible.

• Track user’s location by the server: This attack is
performed by the server to use the shared tokens to
track the location of any individual user. Theoretically
speaking, any system where the user U exchanges some
kind of token with the server S , it is possible for the
server S to track the user by using passive packet sniffer.
In our proposed system we assumed the server to be semi-
honest entity which does not employ any such malicious
tactics. Therefore, it is not possible for the server S in
our proposed system to track the users movement since
the exchanged tokens contain no persistent identifier and
they change over time based on user’s location.

VI. DISCUSSION

A. Decentralized Data Storage:

One of the key differences between PAARS and the existing
approaches is the fact that PAARS enables decentralized data
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storage. Each organization implements their own version of
PAARS and stores the data locally. Therefore, it is not feasible
for an adversary to compromise all different data storages
residing in different organizations at once and get a complete
picture. On the contrary, majority of the existing approaches
that rely on ephemeral token exchange between users store
these tokens from all users in large central databases. There-
fore, a data breach in these systems from the inside or the
outside can bear catastrophic effect in terms of privacy.

B. Differential Privacy:

To the best of our knowledge, no work in literature yet
addressed the user side privacy issues in contact tracing/access
monitoring systems by incorporating differential privacy. Most
of these work rely on using homomorphic encryption or private
set intersection (PSI) method [19] which is computationally
costly. In our work, we use efficient PSI for once in the user
query only. The rest of the privacy is guaranteed by differential
privacy.

C. Infrastructure Requirement:

PAARS do not require any significant addition in the
infrastructure available in the environment. This is a major
advantage over existing systems or the ones being imple-
mented. For instance, every organization has wireless network
now a days and majority of the population has access to
smartphones. Therefore, deploying and maintaining PAARS
is easy and adoption should be fast. On the contrary, imple-
menting PAARS architecture in city-wide scale would require
a singular network which has city-wide coverage. Cell service
providers are capable of providing such network. However, to
collaborate with them to build and deploy a system like this
would require a lot of time and effort, whereas, PAARS can
be deployed quickly in organizational level.

D. GPS accuracy:

GPS accuracy can be perceived as a technical issue in
PAARS system design. However, using other sensors (i.e.
magnetometer and accelerometer and IMU) available in smart-
phones, the accuracy issue can be effectively resolved [16] .

VII. CONCLUSION

In this paper, our main contribution is to show that the
privacy issues of contact tracing/access monitoring systems
can be efficiently solved if the problem is handled in a
decentralized and micro scale. By designing PAARS, we
have shown that our approach can be used as a framework
for reducing viral transmission risks in organizations while
simultaneously allowing them to return to normal operational
capacity. As a future work, we plan to implement the system
and analyze it’s performance and other relevant issues in terms
of privacy and efficiency in system design. Another direction
of farther extension of the work described in this paper, is
the analysis of the novel probability calculation method we
proposed. By implementing rapidly changing disease models
available in the literature, we hope to improve the performance
of our probability calculation method.
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