
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (SUBMISSION) 1

Blind Signal Classification for Non-Orthogonal
Multiple Access in Vehicular Networks

Minseok Choi, Member, IEEE, Daejung Yoon, Member, IEEE, and Joongheon Kim, Senior Member, IEEE

Abstract—In this paper, blind signal classification and detection
in a non-orthogonal multiple access (NOMA) system are explored.
Since a NOMA scheme superposes the multiple-user (MU) signals
within nonorthogonal resources, classical modulation classifica-
tion methods used in orthogonal multiple access (OMA) systems
are not sufficient to process the superposed NOMA signal. NOMA
receivers require information about the multiple access schemes
such as modulation order and need interference cancellation of
the co-scheduled user’s signal; therefore, a NOMA system causes
more high-layer signaling overheads than OMA during packet
scheduling. Blind detection algorithms used for multiplexing
information are considered to be possible solutions; however,
they pose various challenges and could cause performance loss
while performing blind modulation classification in the order
of 1) OMA/NOMA classification, 2) co-scheduled user’s modu-
lation classification, and 3) classification of the signal, due to
the necessity for successive interference cancellation (SIC). To
improve the performance of blind detection, we propose a NOMA
transmission scheme that applies phase-rotation to data or pilot
symbols depending on the NOMA multiplexing format, as an aid
to the blind detection. The proposed classification algorithm can
implicitly provide essential information on NOMA multiplexing
without the need for any extra high layer signaling or resources.
The performance improvement is verified through simulation
studies, and it is found that the proposed algorithm provides
a gain of more than 1 dB compared to the existing blind signal
classification methods and shows almost equivalent performance
as the genie information scheme.

Index Terms—Non-orthogonal multiple access (NOMA), blind
signal classification, signaling overhead, spectrum efficiency, 5G-
enabled vehicular networks

I. INTRODUCTION

To utilize the radio spectrum efficiently for a massive num-
ber of user terminals (UTs), non-orthogonal multiple access
(NOMA) based on power multiplexing has been widely stud-
ied [1]–[5]. In particular, NOMA has been actively researched
as a promising technology to improve system performance
in 5G networks [6]–[8] and to provide robustness in high-
mobility vehicular networks [9], [10]. The 3rd Generation
Partnership Project (3GPP) has studied deployment scenarios
and receiver designs for NOMA systems in Rel-14 in the
context of a working item labeled multiple user superposition
transmission (MuST) [11].
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NOMA superposes the multiple-user (MU) signals within
the same frequency, time, or spatial domain, and therefore
successive interference cancellation (SIC) is generally consid-
ered to detect non-orthogonally multiplexed signals [4], [5].
Theoretically, NOMA is known to provide significant benefits
in terms of improving the cell throughput [12]; nevertheless,
such gains can be obtained only when the receiver is able to
cancel or sufficiently suppress interference from co-scheduled
users. NOMA has been extensively researched in conjunction
with various technologies on the basis of the well-designed
SIC. Studies have been conducted on a system that applies
NOMA to multiple-input multiple-output (MIMO) systems
[13], [14], and studies on NOMA in cooperative networks
were reported in [15], [16]. In addition, a distributed NOMA
scheme without the requirement of SIC for the Internet of
Things (IoT) was studied in [17]. In most existing studies on
NOMA, an ideal SIC with a knowledge of the channel state
information (CSI) was assumed, but in the recent studies in
[18], [19], imperfect CSI for NOMA was handled using deep
learning.

For orthogonal multiple access (OMA), there have been
extensive research efforts on blind modulation classification
(MC). MC was originally developed for military applications
such as electronic warfare; therefore, most of the existing MC
techniques were developed for systems having no knowledge
of the signal amplitude, phase, channel fading characteristics,
and noise distribution [20], [21]. In [22], a maximum likeli-
hood (ML)-based classifier was presented to provide optimal
performance in the presence of white Gaussian noise when
candidate modulation schemes are equally probable. However,
ML-based classification requires high computational complex-
ity; therefore, the feature-based approaches for blind MC
presented in [23] take advantage of the fact that good statistical
features allow robust blind MC. Furthermore, convolutional
neural network (CNN)-based feature extraction methods were
recently addressed in [24]–[27]. However, the existing studies
on blind signal classification were primarily limited to MC
techniques in an OMA system.

As NOMA has become popular and is being implemented in
many applications, blind MC is also important in the NOMA
system. Since the MU signals are superposed in the NOMA
system, additional and necessary information of the signal
modulation is required. Before attempting to handle interfer-
ence, the NOMA receiver must first determine the presence
of co-scheduled users. If SIC is to be used, the modulation
order and power allocation ratio of the co-scheduled users
should also be known to the receiver. In summary, the blind
MC steps required for the NOMA receiver are as follows:
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1) OMA/NOMA classification, 2) co-scheduled UTs’ MC,
and 3) classification of the signal based on the necessity
of SIC. Therefore, we refer to these classification steps in
the NOMA system as blind signal classification, not to be
confused with blind MC for OMA. Blind classification of
something else, e.g., channel coding rate, can be considered,
but this paper basically focuses on blind MC in the NOMA
system; therefore, the classification steps for information not
related to signal modulation are not considered in this paper.

The information required for signal classification and data
detection can be transmitted to the receiver via a high layer;
however, the required signaling overhead is a concern as
more information of the signal is needed for decoding at
the NOMA receiver. In particular, in vehicular networks with
limited energy and resources (e.g., time limits due to the high
mobility in vehicular networks) [9], [10], this motivates the
use of blind signal classification at the receiver side followed
by appropriate data detection. Moreover, vehicular networks
must cope with periodic short burst communications related
to safety information and alarm services [28], [29]. Because
the concern about signaling overheads becomes more critical
in the case of short burst communications, blind signal clas-
sification could emerge as a promising technology to reduce
these overheads in vehicular communications [30].

While the existing MC techniques are aimed at determining
the UT’s modulation, the NOMA receiver attempts to clas-
sify the co-scheduled user’s modulation to perform SIC. In
addition, the NOMA system should perform OMA/NOMA
classification, as well as determine whether SIC is required
for the received signal. The blind MC technique in the context
of NOMA has been actively studied in 3GPP, for example,
[11] provides throughput analysis of ML-based blind MC in
NOMA systems. However, the improved blind MC technique
has not been well explored in academia. The recent study in
[31] was focused on signal classification only with respect to
the necessity of SIC, and both power allocation and the user
scheduling scheme, which guarantee a reliable classification
performance, were jointly optimized. In this paper, the perfor-
mance effect of errors in blind NOMA signal classification is
analyzed and the ensuing receiver challenges in practical MU
cases are addressed. In addition, two transmission policies are
proposed for improving the performances of ML-based blind
NOMA signal classification.

The main contributions of this paper are summarized as
follows:
• Signal to interference plus noise ratio (SINR) and user

capacity analyses to determine the effect of errors on per-
formance in the three blind NOMA signal classification
steps are presented.

• A phase-rotated modulation is proposed for blind NOMA
signal classification. The rotated data symbols implicitly
render the constellations of modulation formats as blind
detection aids. This method is based on the existing ML-
based classification algorithm [24].

• A pilot-rotation transmission method and the correspond-
ing new signal classification algorithm are proposed. By
using the algorithm, a receiver estimates the rotation value
of pilots and utilizes it for blind signal classification.

Since the proposed scheme depends only on the rotated
phases of the pilots and not on the pilot values, it requires
no extra pilot overhead.

• The presented numerical results verify the performance
analysis of blind signal classification in the NOMA
system. Moreover, the proposed phase-rotated modulation
and the pilot-rotation transmission scheme are shown
to provide better classification performances than the
conventional ML-based method.

The rest of the paper is organized as follows. The NOMA
system model and the blind classification steps for received
NOMA signals are described in Section II. SINR analysis for
the three steps of blind NOMA signal classification and the ca-
pacity of a NOMA UT in the presence of signal classification
errors are provided in Sections III and IV, respectively. The
proposed phase-rotated modulation is described in Section V.
In Section VI, the proposed pilot-rotation transmission method
and the corresponding new signal classification algorithm are
presented. In Section VII, the performance improvements
of the proposed algorithms are verified using the results of
rigorous numerical simulations.

II. SYSTEM MODELS

A. Non-Orthogonal Multiple Access Signal Model and Re-
ceiver Structure

In downlink power-multiplexing NOMA, a base station (BS)
intentionally superposes the signals for multiple UTs with
different power weightings. However, when information about
the transmitted NOMA signal is unknown at the receiver
side, the computational complexity of the ML-based signal
classification in the NOMA system grows significantly with
the number of co-scheduled UTs [31]. Therefore, this paper
considers a two-user NOMA system. The received signal in a
two-user downlink NOMA transmission is given by

y = h(sf + sn) + w, (1)

where y, s, h, and w correspond to the received signal, trans-
mitted symbol, channel gain, and thermal noise, respectively,
and the subscripts f and n denote far and near UTs. In
addition, E[|sf |2] = Pf and E[|sn|2] = Pn, where Pf and
Pn are the power allocations to two UTs. A BS normally
schedules UTs having a large channel gain difference and
allocates larger power to a far (weak) UT to compensate its low
channel gain, i.e., Pf > Pn. Suppose that there is a normalized
power constraint, Pf + Pn = 1. When its power allocation is
large, the far UT does not perform SIC and only detects its data
while ignoring the near UT’s signal. Meanwhile, the near UT
requires SIC to cancel the far UT’s signal; therefore, only the
near UT is considered as a NOMA-serviced user in general.
For this reason, all the statements in this paper are focused on
the near UT of the NOMA system.

When the near UT performs SIC, interference, i.e., the far
UT’s signal, is regenerated from the decoder or the detector,
corresponding to the codeword-level interference cancellation
(CWIC) or symbol-level interference cancellation (SLIC),
respectively [32]. In this study, CWIC is mainly utilized to
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mitigate the intra-cell interference unless otherwise noted;
signal classification is required before CWIC is applied.

Let M = {M0,M1, · · · ,ML} be a set of modulation
modes, including L NOMA modes, Ml for l = 1, · · · , L, and
an OMA mode, M0. The constellation set of the modulation
mode Ml is denoted by χl for all l ∈ {0, · · · , L}. For
l ∈ {1, · · · , L}, χl is constructed by combinations of power-
scaled near and far UTs’ constellation sets, χl = χfl

⊕
χnl ,

where χfl and χnl are power-scaled constellation sets of the
near and far UTs, respectively. Therefore, the average powers
of symbols in χfl and χnl are Pf and Pn, respectively. In
addition, let N be a set of the constellation points of all
NOMA modes; i.e., N = χ1 ∪ · · · ∪ χL.

B. Maximum Likelihood-based Signal Classification

The existing ML-based MC algorithm [22], which is optimal
in OMA based on hypotheses testing, can be directly applied
to NOMA signal classification. We define some hypotheses to
identify the received signal information:

• Hl: the hypothesis of the signal modulated by the l-th
mode Ml for all l ∈ {0, 1, · · · , L}

• HN : the hypothesis of the signal, i.e., HN = H1 ∪ · · · ∪
HL.

• Hf : the hypothesis of the signal that does not require
SIC.

• Hn: the hypothesis of the signal for which SIC is
necessary.

• Hfl : the hypothesis of the signal that is modulated by
the l-th NOMA mode and does not require SIC for all
l ∈ {1, · · · , L}.

• Hnl : the hypothesis of the signal that is modulated by
the l-th NOMA mode and requires SIC for all l ∈
{1, · · · , L}.

The ML-based hypothesis testing can classify the received
signal according to whether it is modulated by OMA or
NOMA, which modulation and power weightings are used, and
whether SIC is required or not. For example, suppose that the
transmitted signal is modulated by the l-th modulation mode
for l ∈ {1, · · · , L} and that the target signal can be decoded
after performing SIC, i.e., Hnl is true. Then, the likelihood
probability of hypothesis Hnl is computed by

p(y|Hnl ) =
1

|χl|
∑
s∈χl

1

πσ2
e−
|y−hs|2

σ2 , (2)

where σ2
n is the noise variance and |χnl | is the number of

symbols in χnl . If K symbols are used for blind signal clas-
sification and are not correlated, the joint likelihood function
of the K symbols of y = [y1, · · · , yK ] is given by

Γ(y|Hnl ) =

K∏
k=1

p(yk|Hnl ). (3)

According to the ML criterion, the detected hypothesis Ĥ can
be determined by

Ĥ = arg max
ξ∈H

Γ(y|ξ), (4)

Fig. 1: Processes of maximum likelihood-based signal classi-
fication in non-orthogonal multiple access systems

where H = {H0,Hf1 , · · · ,H
f
L,Hn1 , · · · ,HnL}.

If Ĥ = H0, the receiver determines that the signal is
modulated by OMA. However, if Ĥ = Hfl , then the received
signal is classified as a NOMA signal modulated by Ml,
which does not require SIC. In addition, Ĥ = Hnl represents
that the received signal is a NOMA signal modulated by
Ml for which SIC is necessary. However, the accuracy of
hypothesis testing is significantly degraded as the number of
hypotheses grows. Therefore, this paper considers the three-
step classification framework for the NOMA signal to reduce
the number of hypotheses in each classification step as follows:
OMA/NOMA classification, MC (i.e., modulation order and
power weightings), and near/far UT classification (i.e., the
necessity for SIC). The relevant likelihood probabilities and
the hypothesis testing results can be computed by

1) OMA/NOMA Classification:

p(y|H0) =
1

|χ0|
∑
s∈χ0

1

πσ2
e−
|y−hs|2

σ2 (5)

p(y|HN ) =
1

|N |
∑
s∈N

1

πσ2
e−
|y−hs|2

σ2 (6)

Ĥ = arg max
ξ∈{H0,HN}

Γ(y|ξ); (7)

2) Modulation Classification:

p(y|Hl) =
1

|χl|
∑
s∈χl

1

πσ2
e−
|y−hs|2

σ2 (8)

Ĥ = arg max
ξ∈{H1,··· ,HL}

Γ(y|ξ); (9)

3) Near/Far UT Classification:

p(y|Hnl ) =
1

|χl|
∑
s∈χl

1

πσ2
e−
|y−hs|2

σ2 (10)

p(y|Hfl ) =
1

|χf
l̂
|

∑
s∈χf

l̂

1

πσ2
e−
|y−hs|2

σ2 (11)

Ĥ = arg max
ξ∈{Hnl ,H

f
l }

Γ(y|ξ). (12)
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The overall steps of the ML-based signal classification
in the NOMA system are shown in Fig. 1. In summary,
OMA/NOMA classification should be performed first, fol-
lowed by the classification of the modulation orders and power
ratios of the UTs. Near/far UT classification is the last step
because it requires χl and χfl , whose modulation mode is
already given. This paper investigates the additional classifi-
cation steps required for NOMA compared to OMA; therefore,
we assume that a UT already knows its own modulation order,
whose classification was extensively studied earlier. Then, if
the far and near UTs’ modulation orders are different, the UT
does not have to perform near/far UT classification; otherwise,
near/far UT classification is necessary.

The hierarchical classification steps can reduce the computa-
tional dimension and increase the accuracy of hypothesis test-
ing as compared to that performed with respect to the whole set
of modulation formats in (4), in which 2L+ 1 hypotheses are
compared. In the proposed three-step classification framework,
both OMA/NOMA and near/far UT classification compare
only two hypotheses each, and L hypotheses are compared
in the MC step. In addition, a decrease in the number of
compared hypotheses also reduces computational complexity.

III. SINR ANALYSIS FOR NON-ORTHOGONAL MULTIPLE
ACCESS UT WITH SIGNAL CLASSIFICATION ERRORS

In this section, the effects of signal classification errors on
the SINR are examined. Again, the near UT is considered only
as the NOMA-serviced user.

A. OMA/NOMA and Near/Far UT Classification Errors

When the BS transmits a NOMA signal, but the near UT
incorrectly classifies it as an OMA signal, severe perfor-
mance degradation is expected. Even though the transmitted
signal contains the far UT’s signal component, incorrect
OMA/NOMA classification causes the receiver to take no
action to remedy the interference; i.e., it would not perform
SIC. Similar results occur when an OMA signal is transmitted
but the receiver classifies the signal as NOMA. In this case,
the receiver performs SIC, but there is no interference in the
OMA signal. Both cases do not guarantee a reliable classifi-
cation performance. Therefore, in this paper, the throughput
is reasonably considered to be zero when an OMA/NOMA
classification error occurs.

Similarly, incorrect near/far UT classification significantly
degrades the system performance. If incorrect near/far UT
classification occurs, the far UT of the NOMA system cancels
the target signal, and the near UT does not perform SIC.
Therefore, an error in the near/far UT classification step is
also assumed to yield no throughput. The classification results
of the far UT’s modulation order and power ratio become
meaningful only when the signal is classified as NOMA and
near UT.

B. Power Ratio Classification Errors

For the NOMA system, there are some modulation modes
that have the same modulation orders but different power

ratios for two UTs. The MC among these modes can be
interpreted as power ratio classification. Although the receiver
incorrectly classifies the power ratio as one of the competing
modulation modes, the transmitted symbols can still be de-
tected correctly if the incorrectly classified modulation mode
has a constellation point indicating the same bit-labeling as
the transmitted one. However, the SINR could be degraded
because of erroneous power ratio classification.

For simplicity, consider a flat fading channel and two
competing modulation modes, M1 and M2, having the same
order but different power allocation ratios for two NOMA UTs.
Suppose that the transmitted signal is modulated by M1; then,
the received signal is given by

y = h(sf,1(i) + sn,1(k)) + w, (13)

where sf,1(i) and sn,1(k) are the i-th and k-th symbols
in χf1 and χn1 for the far and near UTs, respectively, and
Ei[|sf,1(i)|2] = Pf,1 and Ek[|sn,1(k)|2] = Pn,1.

Assuming perfect SIC, correct MC yields an SINR of

η1→1 =
Pn,1
σ̃2

, (14)

where σ̃2 = σ2

|h|2 . The subscript l → m means that the
transmitted mode is Ml, but Mm is determined. Let ŝf be
the interference component for the near UT to be subtracted
from the received signal (13), which is regenerated by SIC.
Then, the signal after SIC is denoted by

ySIC = h(sf,1(i) + sn,1(k)− ŝf ) + w (15)
= hsn,2(k) + h(sf,1(i)− ŝf )

+ h(sn,1(k)− sn,2(k)) + w. (16)

Although the classification of power ratio is incorrect, the data
detection could still be correct if sn,2(k), whose bit-labeling is
the same as that of the transmitted signal sn,1(k), is detected.
Therefore, the SINR becomes

η1→2 =

Pn,2
Ei[|sf,1(i)− ŝf |2] + Ek[|sn,1(k)− sn,2(k)|2] + σ̃2

. (17)

Note that, when Pn,1 ≥ Pn,2, incorrect classification of
power ratio obviously results in SINR degradation; i.e., η1→1−
η1→2 ≥ 0. However, if Pn,1 < Pn,2, η1→1 − η1→2 ≥ 0 only
when

Pn,1(Ei[|sf,1(i)− ŝf |2] + Ek[|sn,1(k)− sn,2(k)|2] + σ̃2)

≥ Pn,2σ̃2. (18)

If (18) is not satisfied, the SINR can increase even when the
power ratio is incorrectly classified. Accordingly, power ratio
classification becomes more important as the power allocated
to the near UT, i.e., Pn,l, increases.

Suppose that the same index i of sf,1(i) and sf,2(i) indi-
cates the same bit-labeling. Then, when the power ratio clas-
sification is incorrect, it is highly likely that the interference
regenerated by SIC is ŝf = sf,2(i) without a large σ̃2. In this
case, the inequality (18) holds in the high SNR region.
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C. Modulation Order Classification Errors

Consider two competing modes, M1 and M2, whose far
UTs have different modulation orders. It is very important for
the near UT to find the modulation order of the far UT in
order to perform SIC appropriately. If the modulation order of
the far UT is incorrectly classified, the interference estimated
by SIC, i.e., ŝf , also becomes incorrect. Then, the signal after
SIC and the SINR of η1→2 are the same as (16) and (17),
respectively.

Comparing with section III-B, the only difference is that
ŝf is regenerated by SIC based on a competing mode whose
modulation order is different from that of the transmitted
mode, rather than power coefficient. In section III-B, ŝf can
have the same bit-labeling as the transmitted symbol; however,
ŝf cannot because the modulation order of M2 is different
from that of the transmitted mode of M1.

Similar to the power ratio classification error described in
Section III-B, a classification error of the far UT’s modulation
order always causes SINR degradation at the near UT when
Pn,1 ≥ Pn,2. However, when Pn,1 < Pn,2, η1→1 − η1→2 > 0
only when the system satisfies the condition given by (18).
Again, (18) can be satisfied in the high SNR region. If (18)
is not satisfied, the SINR is not degraded even when the far
UT’s modulation order is incorrectly classified. However, this
situation is considerably less likely to happen than when the
power ratio is incorrectly classified but the SINR does not de-
crease. The reason is that |sf,l(i)−sf,u(k)| > |sf,l(i)−sf,v(i)|
in general, with the assumption that the far UT’s modulation
orders of Ml and Mu are different, while its modulation orders
of Ml and Mv are the same but with different power ratios.

An additional problem results from incorrect classification
of a far UT’s modulation order. As mentioned in Section II,
the decision feedback for SIC can be generated at either the
symbol or codeword level. However, incorrect classification of
the far UT’s order does not allow the use of CWIC because of a
mismatch in the codeword length. Because CWIC outperforms
SLIC substantially, this is highly undesirable for the system-
level performance.

IV. CAPACITY OF NON-ORTHOGONAL MULTIPLE ACCESS
UT WITH SIGNAL CLASSIFICATION ERRORS

By performing SINR analysis, we can compute the capacity
of a NOMA UT, which is denoted by C, including the effects
of signal classification errors. With the assumption that the
transmitted mode is Ml, let pl→m be the probability that the
classified modulation mode is Mm. The user capacity can then
be computed as

C =

L∑
l=0

πlEh
[{
pl→lq

n
l log2(1 + ηl→l)

+
∑
m 6=l

pl→mq
n
m log2(1 + ηl→m)

}]
, (19)

where πl is the probability that the signal is modulated by
Ml for all l ∈ {0, · · · , L} and qnl is the probability that the
signal of the modulation mode Ml is determined to perform
SIC. The equally probable modulation mode is assumed, i.e.,

Fig. 2: Legacy constellations of two modulation modes

Fig. 3: Rotated constellations of two modulation modes

πl = 1
L . Again, because only the near UT of the two-user

NOMA system represents the NOMA user, the capacity in
(19) is achieved for the near UT case. In addition, ηl→m
is achieved, as explained in Section III. Because incorrect
OMA/NOMA and near/far classifications give rise to zero
throughput, η0→l = 0, ηl→0 = 0 for l 6= 0, and only qnl are
considered, while the situation in which SIC is not necessary
is not.

The performance of ML-based signal classification strongly
depends on how well the constellations of the competing
modulation modes can be distinguished from one another. To
quantify this effect, we denote the minimum distance between
constellation sets of two different modulation modes of Ml

and Mm by dmin(Ml,Mm), l 6= m. In general, dmin can be
defined for L modulation modes as follows:

∀s1 ∈ χ1, · · · , ∀sL ∈ χL,
dmin(M1, ...,ML) = min d(s1, ..., sL). (20)

Fig. 2 shows the constellation sets of two competing modu-
lation modes, M1 and M2. In this figure, dmin(Ml,Mm) is the
distance between two closest points from different modes, as
marked by the dashed circles. These symbols are very close
to each other; therefore, when ML-based signal classification
is performed, these pairs are expected to be the main cause
of incorrect classification. In this example, if all the symbol
points are equally probable, the probability of a classification
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error can be computed as

pl→m =
1

|χl||χm|

|χl|∑
i=1

|χm|∑
k=1

Q
( |h(sl(i)− sm(k))|/2

σ/
√

2

)
(21)

≈ Nmin

|χl||χm|
Q
(h · dmin(Ml,Mm)/2

σ/
√

2

)
, (22)

where sl(i) is the i-th constellation point of Ml.
In (21), let sm(k) be the closest to sl(i) among the constel-

lation points of Mk. Then, the case where sl(i) is confused
with sm(k) becomes one of the most frequent classification
errors. In this context, (22) is approximated one step further
by considering only the symbol pairs from different modes,
providing the minimum distance dmin(Ml,Mm). In addition,
Nmin is the total number of symbol pairs providing the
minimum distance dmin(Ml,Mm), and Nmin = 4 in Fig. 2.

We remark some conclusions of analysis here. First, we
can determine user capacity analytically by substituting the
expressions for the SINR and classification error probability
in (19). Second, the trade-off between the classification error
probability of pl→m and the SINR degradation term of ηl→m
is observed in (19). According to (22), the classification error
rate decreases with dmin(Ml,Mm). However, if an MC error
occurs, further demodulation process got meaningless, as the
SINR is dramatically degraded with increasing dmin(Ml,Mm).
Third, selection of the appropriate power allocation ratios for
each NOMA modulation mode which maximizes capacity in
(19), can be beneficial. A maximum capacity is achieved with
maximum power allocation on a near UT, but a far UT needs
minimum power constrain in a reasonable problem setup.

V. PHASE-ROTATED MODULATION
BASED ON ML SIGNAL CLASSIFICATION

In this section, we propose a phase-rotated modulation
method to increase the accuracy of signal classification. As
explained in Section IV, the reliability of ML-based signal
classification strongly depends on how well the competing
modes are distinguished from one another. Based on this
observation, different phase rotations are assigned to individual
modulation modes so that their constellation points are more
effectively separated.

A comparison of Fig. 2 and Fig. 3, which show the legacy
and phase-rotated composite constellations of two different
modulation modes, respectively, demonstrates this idea. In
Fig. 3, M1 is rotated by θ; therefore, it becomes M1e

jθ.
The symbol pairs from different modes giving the minimum
distance of dmin(M1e

jθ,M2) are marked by the dashed ellipses
in Fig. 3. Because dmin(M1e

jθ,M2) > dmin(M1,M2), it is
easily expected that the phase-rotated modulation provides a
lower classification error probability than the legacy mod-
ulation method. If the same phase rotation is applied to
every modulation mode, the minimum distance dmin(M1,M2)
between the rotated composite constellations of M1e

jθ and
M2e

jθ remains unchanged. Accordingly, the application of
different phase rotations to different modulation modes is a
key point. We can make the phase list Θ = {θ0, θ1, · · · , θL},
whose element θl corresponds to Ml for all l ∈ {0, · · · , L}.

TABLE I: Example of Modulation Mode Table for Phase-
Rotated Modulation

Modulation
Mode

M0 M1 · · · ML

Modulation
orders

(mO,−) (mf,1,mn,1) · · · (mf,L,mn,L)

Power coef-
ficients

(P,−) (Pf,1, Pn,1) · · · (Pf,L, Pn,L)

Phase rota-
tions

θ0 θ1 · · · θL

The modulation mode table is updated to include the phase
rotations, as shown in Table I.

However, a larger dmin(M1e
jθ,M2) does not guarantee

better user capacity, because the SINR terms in (19) would
be changed. We have mentioned the tradeoff between pl→m
and ηl→m in (19) in Section IV; although phase-rotated
modulation can provide a lower classification error rate, the
SINR degradation due to incorrect signal classification would
be larger than that in legacy modulation. Therefore, we should
carefully find the phase rotation values that maximize the user
capacity by balancing the tradeoff between the classification
error probability and the SINR degradation due to incorrect
classification. We can formulate the optimization problem to
find the phase rotation list Θ as follows:

Θ = arg max
Θ={θ0,··· ,θL}

C. (23)

The above optimization problem is difficult to solve theo-
retically because the expectation in (19) is taken over random
channel realizations; we have obtained the optimal phase
rotations numerically in this paper. When there exist many
modulation modes, however, numerical determination of all
the rotation values requires excessively massive computations.
In this study, phase-rotated modulation was applied for only
OMA/NOMA classification, i.e., θ0 6= 0 and θl = 0 for all
l ∈ {1, · · · , L}, because incorrect OMA/NOMA classification
results in zero throughput, as shown in Section III. However,
incorrect determination of the far UT’s modulation order
or power allocation ratio is not as critical as OMA/NOMA
misclassification.

On the other hand, near/far UT classification is not af-
fected by phase-rotated modulation. According to (10) and
(12), near/far UT classification depends on the constellation
structures of χl and χfl . Phase-rotated modulation changes
the constellations to χle

jθl and χfl e
jθl , but the minimum

distance between them is not changed. Hence, phase-rotated
modulation cannot influence the performance of ML-based
near/far UT classification.

VI. PILOT REUSE-BASED SIGNAL CLASSIFICATION

In Section V, the ML-based phase-rotated modulation
scheme was proposed, which uses data symbols for blind
signal classification, and we discussed the manner in which
user capacity and classification accuracy change depending
on the phase rotations. However, because a tradeoff exists
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TABLE II: Characteristics of the proposed blind signal clas-
sification schemes

Phase-rotated Pilot reuse-based
OMA/NOMA o oclassification
Modulation o oclassification
Near/Far UT x oclassification
Additional overhead x x
Additional constraint x o
Complexity high low

Fig. 4: Processes of pilot reuse-based signal classification

between the classification accuracy and SINR degradation in
the case of a classification error, the ML-based phase-rotated
modulation scheme is limited in terms of improving the blind
classification performance. Therefore, a pilot-based scheme
that does not affect the SINR is presented in this section;
however, this scheme requires an additional constraint, as
explained below. This signal classification algorithm based
on pilot reuse requires no changes in the modulation scheme.
In addition, phase-rotated modulation cannot improve near/far
UT classification, which means that phase rotations of data
symbols do not influence the near/far UT classification per-
formance. Therefore, the phase rotations assigned to pilots are
considered.

The various processes of the pilot reuse-based signal clas-
sification algorithm are shown in Fig. 4. The OMA/NOMA
classification and modulation order and power ratio selection
are conducted simultaneously. Then, near/far UT classification
is executed. A comparison of the ML-based phase rotated
modulation and the pilot reuse-based signal classification
scheme is briefly shown in Table II.

A. Pilot Reuse-based OMA/NOMA and Modulation Classifi-
cations

In contrast to phase-rotated modulation, phase rotations for
existing pilots are introduced in this subsection. The data

symbols are conventionally modulated; therefore, the SINR
terms in (19) do not change. This algorithm does not require
additional pilots. It just rotates the existing pilot symbols
already used for other purposes, e.g., carrier frequency offset
estimation.

The proposed pilot reuse-based scheme requires some as-
sumptions. First, the channel should be static for at least
two pilot symbol durations. Second, an identical value should
be used for two consecutive pilots that experience the static
channel gain. In the proposed method, the BS transmits the
legacy value during the first pilot symbol duration and rotates
the identical pilot during the second pilot symbol duration.
Different phase rotations are assigned to each modulation
mode, as in phase-rotated modulation. The symbol φ is used
to denote the pilot rotation in order to avoid confusion with θ
in phase-rotated modulation.

Assuming Ml0 is used to modulate the signal, the two
received consecutive pilot symbols are given by

ru = hpu + wu (24)

rr = hpr + nr = hpue
jφl0 + wr, (25)

where p and r are the transmitted and received pilots, respec-
tively. The subscripts u and r denote unrotated and rotated
symbols, respectively. In addition, wu, wr ∼ CN (0, σ2

n). The
receiver can estimate the phase rotation of the pilot in the
second symbol duration as

ϕ = ]{(ru)∗rr} ≈ ]{|ru|2ejφl0 }. (26)

By comparing the estimated ϕ with the exact rotations, the
modulation mode, Ml̂, can be easily classified as

l̂ = arg min
l∈{0,··· ,L,}

|ϕ− φl|. (27)

Since different phase rotation values are assigned to each
modulation mode, the determination of the transmitted modu-
lation mode in (27) can be interpreted as finding the decision
region of a particular modulation mode in which the estimated
phase ϕ is placed. In other words, we can make L + 1
exclusive regions in [0, 2π) and assign separate regions to
all modulation modes as their decision regions. First, let ΦO

and ΦN be the phase ranges for OMA and NOMA with
different intervals in [0, 2π), respectively. Then, obviously,
φ0 ∈ ΦO and φ1, · · · , φL ∈ ΦN . It is also assumed that
ΦO ∪ΦN = [0, 2π) and ΦO ∩ΦN = {φ}, where {φ} is the
empty set. The estimated ϕ must be included in either ΦO or
ΦN , but not in both. If ϕ ∈ ΦO, the signal is classified as
OMA; otherwise, as NOMA. Accordingly, ΦO and ΦN are
the decision regions of OMA and NOMA, respectively.

Similarly, the far UT’s modulation order can be classified
by dividing ΦN into several nonoverlapping phase ranges
corresponding to different far UT’s modulation order can-
didates. For example, let QAM, 16-QAM, and 64-QAM be
the candidates of a far UT’s modulation. Then, we can
generate ΦQAM

N , Φ16QAM
N , and Φ64QAM

N , corresponding to
the NOMA modes using QAM, 16-QAM, and 64-QAM as
the far UT’s modulation, respectively. These ranges satisfy
ΦQAM
N ∪Φ16QAM

N ∪Φ64QAM
N = ΦN . Therefore, if ϕ ∈ ΦN ,
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Algorithm 1 Pilot Reuse-based OMA/NOMA and Modulation
Classifications
Precondition: Phase ranges:

ΦO,ΦN ,Φ
QAM
N ,Φ16QAM

N ,Φ64QAM
N

1: Compute ϕ by (26)
2: if ϕ ∈ Φ0 then
3: Decide M0

4: else
5: if ϕ ∈ ΦQAM

N then
6: l̂ ← arg min

l=1,...,L1

|φl − ϕ|

7: else if ϕ ∈ Φ16QAM
N then

8: l̂ ← arg min
l=L1+1,...,L1+L2

|φl − ϕ|

9: else
10: l̂ ← arg min

l=L1+L2+1,...,L
|φl − ϕ|

11: end if
12: Decide Ml̂
13: end if

then ϕ must be included in only one range among ΦQAM
N ,

Φ16QAM
N , and Φ64QAM

N , and the far UT’s modulation can be
determined.

Next, suppose that QAM is classified as the far UT’s
modulation and there exist L1 modulation modes with dif-
ferent power weightings. Again, we can generate decision
regions for the classification of the power ratio by separating
ΦQAM
N into L1 nonoverlapping ranges denoted by ΦQAM

N,l

for all l ∈ {1, · · · , L1}, satisfying
⋃L1

l=1 ΦQAMN,l = ΦQAMN ,
similar to the aforementioned classification steps. A series of
the pilot reuse-based classification processes of OMA/NOMA
and modulation are expressed in Algorithm 1. In Algorithm
1, we assume that the far UT’s modulation of the first
L1 modes, M1, ...ML1 , is QAM. In addition, the next L2

modes, ML1+1, ...,ML1+L2 , and the remaining L3 modes,
ML1+L2+1, ...ML, use 16-QAM and 64-QAM for the far UT’s
modulation, respectively.

Algorithm 1 performs OMA/NOMA and modulation classi-
fications simultaneously; therefore, blind signal classification
becomes simpler. In addition, this scheme does not require the
rotation value to be accurately estimated. It is sufficient that
the roughly estimated ϕ is in the decision region of the trans-
mitted modulation mode for correct signal classification. After
MC, the pilot symbols should serve their original purposes;
therefore, the rotated symbols must be de-rotated, rre−jφl̂ . In
this case, even though the estimation of ϕ is not accurate, if
MC is correct, then we can find the accurate phase rotation
value φl̂ according to the modulation mode table, which is
shown in Table I. Thus, the proposed classification algorithm
does not need to know the pilot value and the channel gain.

The performance of the proposed algorithm depends on the
method of determining the phase rotation values and decision
regions for each modulation mode. From a broad perspective,
there are two phase assignment rules as follows.

1) Uniform Assignment: The simplest rule is the uniform
one, φl = 2π·l

L+1 for Ml and φO = 0 for MO. In this case,
ΦN = [ 2π

L+1 , 2π−
2π
L+1 ) and ΦO = [0, 2π

L+1 )∪ [2π− 2π
L+1 , 2π).

Fig. 5: Phase ranges of non-uniform phase rotation rule

The uniform assignment rule seems reasonable; however, ΦO

becomes smaller as L increases. Therefore, it is unfair when
an OMA signal is transmitted.

2) Non-uniform Assignment: We can give greater impor-
tance to OMA/NOMA classification than to the classification
of modulation order or power ratio by using the non-uniform
assignments of phase rotations. Because OMA/NOMA classi-
fication is more important than MC, the generation of ΦO and
ΦN have the first priority, followed by ΦQAM

N , Φ16QAM
N , and

Φ64QAM
N . Finally, the phase rotations of the NOMA modes

having the same far UT’s modulation order but different power
ratios are determined.

The phase ranges of the non-uniform assignments are shown
in Fig. 5. Although ΦQAM

N , Φ16QAM
N , and Φ64QAM

N consist of
L1, L2, and L3 modes, these ranges occupy the same amount
of interval as that of ΦO. After ΦO and ΦN are generated,
ΦN is divided into ΦQAM

N , Φ16QAM
N , and Φ64QAM

N , as
shown in Fig. 5. The interval sizes of the phase ranges can
be arbitrarily chosen depending on the parameters of the
system environment, such as the number of modulation modes.
The exact phase rotation values for the NOMA modes with
different power weightings, i.e., φ1, · · · , φL, can be uniformly
chosen in the range in which each mode is included, because
power ratio classification is less important than the other
classification steps. For example, if ΦQAM

N = [π4 ,
3π
4 ), then

φl = π
4 + π

2L1
· (l − 1), for all l ∈ {1, ..., L1}.

B. Pilot Reuse-based Near/Far UT Classification

Since the two signals with different power weightings are
transmitted simultaneously, the pilot symbols targeting the two
UTs are also superposed and transmitted. When the transmitted
signal is modulated by Ml, the power-multiplexed legacy pilot
becomes

pl =
√
Pfp

f
l +

√
Pnp

n
l , (28)

where pfl and pnl are legacy pilots for the far and near UTs,
respectively. The rotated pilot symbols used for OMA/NOMA
and modulation classifications can also be utilized for near/far
UT classification after they have been de-rotated. Even though
each UT knows only its own pilot values, the receiver cannot
recognize which power ratio is weighted to its pilot symbol
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Algorithm 2 Pilot Reuse-based Near/Far UT Classification

Precondition: p0
l , χl, χ

f
l

1: Compute af and an
2: af = y − ĥ

√
Pfp

0
l

3: an = y − ĥ
√
Pnp

0
l

4: Compute ∆f
l and ∆n

l

5: ∆f
l = minq∈χl |af − ĥ

√
Pnq|

6: ∆n
l = minq∈χfl

|an − ĥ
√
Pfq|

7: if ∆f
l ≥ ∆n

l then
8: Near UT Decision
9: else

10: Far UT Decision
11: end if

because it does not perform near/far UT classification yet. Let
p0
l be a known pilot value. Then, if the receiver is far UT,
p0
l = pfl , otherwise, p0

l = pnl .
The proposed near/far UT classification algorithm in a two-

user NOMA system is summarized in Algorithm 2. This
algorithm requires that channel estimation and MC should
have been completed in advance. When the MC correctly
determines Ml, the UT computes two hypotheses, ∆f

l and
∆n
l , each of which is true when the receiver is the far or near

UT, respectively.
To explain the algorithm clearly, an example is presented.

From (24) and (28), the received pilot is given by

yl = h(
√
Pfp

f
l +

√
Pnp

n
l ) + nl. (29)

Suppose that the channel estimation is perfect and the receiver
is the near UT, i.e., p0

l = pnl ; then,

af = yl − h
√
Pfp

0
l = h(

√
Pf (pfl − p

n
l ) +

√
Pnp

n
l ) + nl

(30)

an = yl − h
√
Pnp

0
l = h

√
Pfp

f
l + nl. (31)

Here, af and an are obtained under the assumption that the
receiver would be a far and near UT, respectively. The next
step is to compute ∆f

l and ∆n
l as follows:

∆f
l = min

q∈χl
|af − h

√
Pnq| (32)

∆n
l = min

q∈χfl
|an − h

√
Pfq|. (33)

Because MC has been completed, Pf , Pn, χfl , and χl are
known. Note that ∆n

l remains the only noise component when
q = pfl . However, af includes the non-zero term in (30), i.e.,
h
√
Pf (pfl −pnl ), as well as the noise component. Thus, mostly

∆f
l ≥ ∆n

l and the near UT is determined. Otherwise, the
receiver does not require SIC, i.e., it is determined as the far
UT.

VII. PERFORMANCE EVALUATION

A. Simulation Environments

This section describes a variety of performance comparisons
of conventional ML signal classification with the proposed
schemes. Acronyms are used for the signal classification

TABLE III: Case 1: Modulation Mode Table

Modulation Modulation Modulation Power ratio
mode (far UT) (near UT) (far UT)

M0 QPSK - 1.0

M1 QPSK QPSK 0.8

M2 QPSK QPSK 0.8621

M3 QPSK QPSK 0.9163

TABLE IV: Case 2: Modulation Mode Table

Modulation Modulation Modulation Power ratio
mode (far UT) (near UT) (far UT)

M0 16-QAM - 1.0

M1 QPSK 16-QAM 0.8653

M2 16-QAM 16-QAM 0.95

TABLE V: Case 3: Modulation Mode Table

Modulation Modulation Modulation Power ratio
mode (far UT) (near UT) (far UT)

M0 16-QAM - 1.0

M1 QPSK 16-QAM 0.7619

M2 QPSK 16-QAM 0.8653

M3 QPSK 16-QAM 0.9275

M4 16-QAM 16-QAM 0.95

M5 16-QAM 16-QAM 0.97

methods in the related figures: “MLC” for ML classifier,
“MLC-PRM” for phase-rotated modulation based on ML
classification, and “PRC” for the pilot reuse-based classifier.
For MLC and MLC-PRM, 10 data symbols were used to
classify the received signals. PRC utilized only one pair of
pilots, because the number of pilots is usually smaller than
that of data symbols. Three example cases of the modulation
modes are presented.

1) Case 1: Case 1 is based on Table III. The far UT’s
modulation is fixed; therefore, OMA/NOMA and power ra-
tio classifications are considered. It is supposed that M2 is
transmitted.

2) Case 2: Case 2 is based on Table IV. A single power
ratio is assigned to each mode; therefore, OMA/NOMA and
the far UT’s modulation order classifications are considered.
It is supposed that M1 is transmitted.

3) Case 3: Case 3 is based on Table V. It considers
OMA/NOMA, the power ratio, and the far UT’s modulation
order classifications. It is supposed that M2 is transmitted.

The power ratios of the modulation modes, in which the far
UT’s signal is modulated by QPSK in Tables III-V, follow the
MuST parameters of 3GPP [11]. Since MuST considers QPSK
only for the far UT from this point onward, the power ratios
of the far UT that uses 16-QAM were arbitrarily chosen.

We considered a two-user cellular NOMA system assuming
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Fig. 6: OMA/NOMA classification error rates in Case 1

Fig. 7: Near/far UT and modulation classification error rates
in Case 1

Fig. 8: OMA/NOMA classification error rates in Case 2

a Rayleigh fading channel, h ∼ CN(0, 1). An ML equalizer
and a low-density parity check (LDPC) 11ad decoder [33]
were used for word error rate (WER) simulations. CWIC was
basically used for SIC, but the system occasionally chose SLIC
when the decoder-feedback could not be obtained, i.e., the
classification of the far UT’s modulation order was incorrect.
The phase rotations of MLC-PRM were θ0 = 0.6, 0.51, and
0.69 radians optimized at 13 dB, 20 dB, and 20 dB of SNR in
Cases 1, 2, and 3, respectively. As explained previously, these
phase rotations are applied for only OMA/NOMA classifica-
tion. Additionally, the uniform phase assignment rule was used
for PRC.

B. Signal Classification Error Rates and User Capacity

Figs. 6, 8, and 10 show the OMA classification error rates
in Cases 1, 2, and 3, respectively. We can easily see that PRC
yields considerably better performances than MLC and MLC-
PRM in each case. MLC-PRM is also clearly better than MLC,

Fig. 9: Near/far UT and modulation classification error rates
in Case 2

Fig. 10: OMA/NOMA classification error rates in Case 3

Fig. 11: Near/far UT and modulation classification error rates
in Case 3

but not as good as PRC. Since an OMA/NOMA classification
error hampers correct data restoration, the proposed MLC-
PRM and PRC are expected to be favorable for data detection.

The near/far UT classification error rates in Cases 1, 2,
and 3 are represented by the solid curves in Figs. 7, 9, and
11, respectively. Because the signals determined as OMA do
not require near/far UT classification, these error rate curves
include incorrect determinations of OMA, as well as of far
UT of NOMA. As compared to OMA/NOMA classification,
the performance improvements of MLC-PRM over MLC in
near/far UT classification are reduced. It means that even
though MLC-PRM correctly classifies the signals that are
significantly contaminated by noise or channel fading as
NOMA, they fail to be determined as signals for the near
UT in the next step because MLC-PRM does not improve
near/far UT classification, as explained in Section V. In MLC,
these signals have been already classified as OMA in the first
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Fig. 12: Capacity decrease of MLC, MLC-PRM, and PRC as
compared to that of Genie in Case 3

step (i.e., OMA/NOMA classification); therefore, they do not
exacerbate the near/far UT classification error rate as much
as MLC-PRM. A similar phenomenon can be seen in the
PRC graphs, but the decrease in performance gain of near/far
UT classification is not significant, because PRC is designed
to improve both OMA/NOMA and near/far UT classification
steps.

A comparison of the figures of the simulation cases reveals
that there is not much difference in the near UT classification
rates of the three methods shown in Fig. 7 as compared to
those shown in Figs. 9 and 11. In particular, the performances
of MLC and MLC-PRM are similar to that of PRC in the
high SNR region of Case 1. This is because Case 2 and Case
3 are less sensitive to near/far UT classification than Case 1. In
Case 1, every NOMA mode has the same modulation order for
both UTs in Case 1; therefore, even if the signal is classified as
NOMA, near/far UT classification should always be performed
for correct data detection. However, in Cases 2 and 3, there
are some situations where near/far UT classification is not
required; in other words, the modulation orders for near and
far UTs are different for some modes. Note that the receiver
already knows its own modulation order.

The dashed curves in Figs. 7, 9, and 11 represent the MC
error rates among the signals correctly classified as near UT of
NOMA. Incorrect OMA/NOMA or near/far UT classification
almost always results in a packet error; therefore, only the MC
error rates of the signals determined to be near UT of NOMA
are meaningful. The MC error rates look better than the
near/far UT classification error rates in the low SNR region,
because most of the signals severely contaminated by noise or
channel fading are already incorrectly classified as OMA or the
far UT of NOMA; therefore, these signals do not influence the
MC error rates. However, since the modulation classification
step compares much more hypotheses than OMA/NOMA and
near/far UT classification, the MC error rates become worse
than the near/far UT classification error rates as SNR grows.
In the case of MLC-PRM, a data symbol rotation is applied
for only OMA/NOMA classification, and therefore, the MC
error rates of MLC and MLC-PRM are almost the same
in each case. However, PRC shows considerably better MC
performances than both MLC and MLC-PRM.

The capacity degradation due to incorrect signal classifica-
tion, with respect to the Genie scheme with the assumption

Fig. 13: Comparison of WER performances in Case 1

Fig. 14: Comparison of WER performances in Case 2

Fig. 15: Comparison of WER performances in Case 3

of ideal classification, is shown in Fig. 12. When the SNR
is lower than 20 dB, MLC-PRM and PRC obviously provide
better user capacity than MLC, and in particular, PRC shows
almost the same capacity as Genie. In the high SNR region,
the classification rates of all schemes achieve almost the same
capacity as the Genie scheme.

C. Word Error Rates

The word error rate (WER) performances of the signal
classification schemes are obtained to verify the practical
usefulness of the proposed schemes. Figs. 13, 14, and 15
show the WER performances of the comparison classification
schemes in Cases 1, 2, and 3, respectively.

In Case 1, the WER performance of every signal classifica-
tion scheme is significantly worse than that of Genie. In Fig.
7, it can be seen that the classification error rates of none of
the schemes are low enough to compete with the performance
of Genie in the SNR region lower than 10 dB. As the SNR
increases above 10 dB, the near/far UT classification rates
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obtained by MLC-PRM and PRC eventually become superior
to those obtained by MLC, and this tendency is reflected in
Fig. 13.

The WER graphs of Cases 2 and 3 shown in Figs. 14 and 15,
respectively, are quite similar. In these figures, the performance
of PRC is nearly the same as that of the Genie scheme. It can
be seen from Figs. 9 and 11 that PRC provides remarkably
better classification error rates than MLC and MLC-PRM
around 15 dB; In Figs 14 and 15, PRC appears almost always
to classify the NOMA signals correctly in the operating SNR
region.

MLC-PRM provides a 1 dB SNR gain at a WER of 0.1
as compared to MLC in Cases 2 and 3; however, the WER
performances of PRC and Genie are still considerably better
than those of MLC and MLC-PRM, even in the high SNR
region. These results are consistent with the MC error rates
shown in Figs. 9 and 11. In the high SNR region, the near/far
UT classification error rates of all methods are sufficiently
improved, and the effect of the MC error becomes dominant.
Thus, the WER performance of PRC is much better than that
of MLC and MLC-PRM in the high SNR region. However,
because the MC error rates of MLC and MLC-PRM are
identical, their WER performances converge.

VIII. CONCLUSIONS

In this paper, one of the key issues in NOMA systems,
namely the blind signal classification problem of reducing
high-layer signaling to provide information about the co-
scheduled signal formats and to improve spectrum/resource
efficiency in highly-mobile vehicular networks, was addressed.
We considered the classification steps of OMA/NOMA,
near/far UT, modulation orders, and power ratios for NOMA
UTs. In this study, the effects of each type of classification
error in terms of SINR were quantified, and the capacity
of the NOMA user was derived considering the signal clas-
sification errors. This paper proposed a phase-rotated mod-
ulation scheme and a pilot reuse-based signal classification
that rotate data symbols and pilot symbols, respectively, and
utilize the estimated phase to classify the received signal.
The proposed schemes yield better performances in terms of
classification error rate, capacity, and WER than conventional
ML classification in various environment settings. Hence, the
proposed schemes can be helpful in vehicular networks where
only limited energy and spectrum/resource/time are available
because of high mobility.
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